UNIT 2: MULTIPLES AND FACTORS OF A NUMBER

The **multiples** of a number are simply its *times table*

Example: the multiples of 2 are 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, ...

The **factors** of a numbers are all the numbers that *divide into it*

Example: the factors of 24 are 1, 2, 3, 4, 6, 8, 12, 24.

THE WAY TO FIND ALL FACTORS OF A NUMBER

Find all the factors of 24

Start off with $1 \times$ the number itself, then try $2 \times$ the number, then $3 \times$ the number and so on

1×24	= 24
2×12	= 24
3×8	= 24
4×6	= 24
5 × ?	= 24
6 × 4	= 24

listing the pair in rows like this, try each one in turn and put a dash if it doesn't divide exactly. When you get a number repeated you stop

So, the factors of 24 are: 1, 2, 3, 4, 8, 12, and 24.

Exercises

1. - Write the first five multiples of 7, 8, 9, 12, 16,

1. , , 1100 this 1110 interpret of , , o, , , 12, 10,						
Numbers	Multiples					
7						
8						
9	7					
12						
16						

2. – Find all the factors of 12, 56, 64 and 81

PRIME AND COMPOUND NUMBERS

Prime number

It is a number larger than 1 which can only be divided by itself.

Example: 2, 3, 5, 7, 11, 13, 17, 19, ...

As you can see:

The only numbers that will multiply to make 7 are 1×7

The only numbers that multiply to make 13 are 1×13

In fact the only way to get any prime number is $1 \times itself$

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- 1 is not a prime number
- The first four prime numbers are 2, 3, 5 and 7
- 2 and 5 are the exceptions because all the rest end in 1,3,7 or 9
- But not all numbers ending in 1, 3, 7 or 9 are primes; only the black ones are primes.

Compound number

Compound numbers are all the numbers that come up in times table.

Example: 4, 8, 9, 10, 12, 14, 15,

EXPRESSING NUMBERS AS A PRODUCT OF PRIME FACTOR

Any number can be broken down into a string of prime numbers, all multiplied together. This is called *expressing a numbers as a product of prime factors*.

Factor tree method

Where you start at the top and split your number off into factors as shown. Each time you get a prime you circle it and you finally end up with all the prime factors, which can be arranged in order.

$$420 = 2 \times 2 \times 3 \times 5 \times 7$$

Exercises

Express as product of prime factors a) 990 b) 160

HIGHEST COMMON FACTOR (GCF)

The highest common factor (HCF) is the largest factor between two numbers

To find the HCF for two numbers:

- 1) Find the factors for each number
- 2) Compare the factors and identify the largest numbers they have in common.

Example:

Find the HCF for 9 and 12

Factor of 9: 1, 3 and 9

Factor of 12: 1, 2, 3, 4, 6 and 12

So the HCF for 9 and 12, is 3

LOWEST COMMON MULTIPLE

The least common multiple (LCM) is the smallest multiple that two numbers have in common

To find LCM for two numbers:

- 1) Find the multiples for each number
- 2) Identify the lowest number which appeared in both multiplication table.

Example

Find the LCM for 2 and 3

Multiples for 2: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 ...

Multiples for 3: 3, 6, 9, 12, 15, 18, 24, 27, 30 ...

The common multiples are: 6, 12, 24 ...

So the LCM for 2 and 3, is 6

Exercises

- a) List the first ten multiples for 7 and 9. What is their LCM?
- b) List all the factors for 36 and 84. What is their HCF?