

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

INDICE

ENSA	YOS DE MATERIALES: ARIDOS FINOS1
INDIC	E2
INTRO	DDUCCION3
1.	OBJETIVOS DEL EILA17
2.	NORMATIVA DE APLICACIÓN4
3.	ANÁLISIS PRE-ESTADÍSTICO DE LOS RESULTADOS APORTADOS5
ARIDO	OS FINOS: Tipos de ensayos6
4.	ANÁLISIS PRE-ESTADÍSTICO: RESULTADOS CLORUROS SOLUBLES EN AGUA 19
5.	ANÁLISIS PRE-ESTADÍSTICO: RESULTADOS SULFATOS SOLUBLES EN ÁCIDO
6.	LABORATORIOS DE ENSAYO PARTICIPANTES
7.	GRAFICOS DE DISPERSION41
8.	DESCRIPCIÓN DEL MÉTODO DE ANÁLISIS ESTADÍSTICO APLICADO
9.	CALCULO DE LA repetibilidad y reproducibilidad: ANÁLISIS DE VARIANZA44
10.	EVALUACION DE LA CONFORMIDAD: ZSCORE. METODO ESTADISTICO SOBRE APTITUD 46
11.	DIAGRAMA DE CAJA-BIGOTES: ANALISIS PRE- ESTADÍSTICO y ANALISIS ESTADÍSTICO 47
12. el n	ANÁLISIS ESTADÍSTICO DE RESULTADOS: Determinación de los cloruros solubles en agua por nétodo de Volhard48
13.	ANÁLISIS ESTADÍSTICO DE RESULTADOS: Determinación de los sulfatos solubles en ácido 49
14.	DOCUMENTACIÓN GRÁFICA DE LA EJECUCIÓN DE LOS ENSAYOS50
15.	16. EVALUACIÓN GLOBAL DE LOS LABORATORIOS PARA LOS ENSAYOS DE MATERIALES ¡Error! Marcador no definido.
16.	AGRADECIMIENTOS

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

INTRODUCCION

1. OBJETIVOS DEL EILA17

El objetivo del presente EILA 2017 es continuar con la labor iniciada en el año 2014, realizando el cuarto "Ejercicio InterLAboratorios a nivel nacional (EILA)" del Plan EILA. Y por tanto, con la doble finalidad: de evaluar las competencias técnicas de los laboratorios participantes (cuya eficacia pueda ser contrastada en la repetición anual de los ensayos) y de poder investigar sobre aquellos ensayos, que por su novedad o complejidad, son susceptibles de mejorar gracias al volumen de información que se obtiene en estas campañas.

Los ejercicios de intercomparación entre laboratorios tienen su origen y fundamento en la norma **UNE-EN ISO/IEC 17025:2005**, que en el apartado 5.9 "*Aseguramiento de la calidad de los resultados de ensayo y de calibración*" establece, que los laboratorios deben participar en comparaciones interlaboratorio o programas de ensayos de aptitud.

Según define la **Guía sobre la participación en programas de intercomparación G-ENAC-14,** "las intercomparaciones consisten en la organización, el desarrollo y la evaluación de ensayos del mismo ítem o ítems similares por varios laboratorios, de acuerdo con condiciones preestablecidas."

Éstas incluyen diferentes objetivos:

- Evaluación del desempeño de los laboratorios para ensayos.
- Identificación de problemas en los laboratorios e inicio de actividades correctivas.
- Establecimiento de eficacia y comparabilidad de ensayos.
- Identificación de diferencias entre laboratorios.
- Caracterización de métodos.
- Educación de los laboratorios participantes, basándose en los resultados de su participación.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

2. NORMATIVA DE APLICACIÓN.

El tratamiento estadístico de los resultados obtenidos por los laboratorios se analiza siguiendo las siguientes normas:

- UNE 82009-2:1999 "Exactitud (veracidad y precisión) de resultados y métodos de medición. Parte 2: Método básico para la determinación de la repetibilidad y la reproducibilidad de un método de medición normalizado".
- UNE-EN ISO/IEC 17043:2010 "Evaluación de la conformidad. Requisitos generales para los ensayos de aptitud", tomando como valor de referencia del ensayo los valores medios no aberrantes obtenidos.

Además, se consideran dos documentos de ayuda elaborados por la **Entidad Nacional de Acreditación ENAC** para la realización de los ejercicios de intercomparación:

- NT-03 "Política de ENAC sobre Intercomparaciones".
- **G-ENAC-14** "Guía sobre la participación en programas de intercomparación.".

Asimismo, conforme al "Plan de ensayos interlaboratorios a nivel estatal (EILA-17) de ensayos de MATERIALES", cada ensayo será evaluado con el cumplimiento de las Normas indicadas a continuación:

- Ensayo de cloruros. Método volumétrico (Volhard), según la norma UNE-EN 1744-1:1999.
- Ensayo de sulfatos solubles en ácido según la norma UNE-EN 1744-1:1999.
- Ensayo de características de adherencia, según la norma **UNE-EN ISO 15630-1:2003**.
- Ensayo límite elástico y alargamiento total bajo carga máxima, según UNE-EN ISO 15630-1:2003.
- Ensayo de contenido en salas solubles en un suelo, según las normas NLT-114:1999 y UNE 103205:2006.
- Ensayo de contenido de materia orgánica oxidable de un suelo. Método del permanganato potásico, según las normas UNE 103204:1993 y UNE 103204:1993 Erratum.
- Ensayo de compactación, Proctor normal, según la norma UNE 103500:1994.
- Ensayos de granulometría de los fillers (tamizado en corriente de aire), según la norma UNE EN
 933-10:2010.
- Ensayo de densidad aparente del polvo mineral, según la norma UNE-EN 1097-3:1999 Anexo A.
- Ensayo de punto de reblandecimiento. Método del anillo y bola, según UNE-EN 1427:2015.
- Ensayo de resistencia al deslizamiento-resbalamiento (en húmedo), según la norma UNE-ENV 12633:2003.
- Ensayo de resistencia a la helada, según la norma UNE-EN ISO 10545-12:1997.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

3. ANÁLISIS PRE-ESTADÍSTICO DE LOS RESULTADOS APORTADOS

En estos primeros pasos quedan recogidos todos los datos aportados, por los laboratorios participantes, volcados de las fichas de resultados, elaboradas para su uso según el ensayo. En este punto, el análisis preliminar, marca aquellos **valores sospechosos** que puedan explicarse como un "error técnico humano" y se filtran los **valores descartados** por la incorrecta ejecución de la norma.

Para ello, se investiga si el resultado se ha debido a un descuido de transcripción, o por no fijarse en la expresión de las unidades que se estaba pidiendo o por situar el valor en la celda equivocada. Si es así, el resultado se considera *sospechoso*, se sombrea en amarillo en el volcado de datos y se reemplaza por el valor correcto para su análisis pre-estadístico.

Seguidamente, en caso de existir, se aplicará de forma generalizada la fórmula de verificación que aplica el criterio de validación que la propia norma de ensayo establece. Si no cumple la validación, el resultado será *descartado* y se sombreará en rojo. Cuando no cumple alguno de los requisitos, pero que no invalidan el ensayo, se sombrea en naranja.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

ARIDOS FINOS: Tipos de ensayos.

Determinación de los cloruros solubles en agua por el método de Volhard (método de referencia), según UNE-EN 1744-1:1999. Ensayos para determinar las propiedades químicas de los áridos. Parte 1: análisis químico. Apartado 7

En este ensayo de determinación **de los cloruros solubles en agua por el método de Volhard**, se pedía en el "Protocolo de actuación de materiales" de hacerlo conforme la norma de ensayo: UNE-EN 1744-1:1999. Parte 1. Apartado 7.

El método consiste en tratar con agua una masa conocida de árido y solubilizar los iones cloruros presentes, añadiendo además un exceso de disolución de nitrato de plata. De esta segunda disolución, la cantidad que no ha reaccionado, se valora, por retroceso, con una disolución patrón de tiocianato (potásico o amónico), y se obtiene el contenido de éstos.

De los 94 laboratorios participantes, indicar que el 70 % utiliza como indicador de la disolución patrón el tiocianato amónico.

Por tanto, los parámetros analizados durante la ejecución de éste ensayo han sido:

- las masas de árido, de la botella y del agua,
- la concentración de la disolución patrón de tiocianato, y
- la relación agua/árido.

Como información adicional, se establecía en Protocolo que para expresar los resultados se considerara una submuestra que pasara 100% por el tamiz 16 mm, y que, tras agitar rigurosamente el matraz para coagular el precipitado, se lavara el tapón recogiendo las aguas de lavado en la disolución.

Se observa que menos del 10% de los participantes no aporta alguno de estos parámetros, es por ello que se recuerda que para el buen control de los datos y su posterior estudio estadístico es OBLIGATORIO el suministrar todos los datos requeridos, así como aplicar las particularidades del Protocolo. En caso contrario, el laboratorio debe reflejar las incidencias observadas. Como ya sucedió en el ensayo anterior de cloruros, en la Ficha de resultados del laboratorio 139 expresa un valor como" < 0,01", puesto que esto no es un dato numérico, se cambia por 0,0999 para poder llevar a cabo los cálculos.

Mención especial al cálculo de la incertidumbre que en este ensayo, de los 94 laboratorios, el 46,80% presentan el dato.

Análisis de la concentración de la disolución de tiocianato

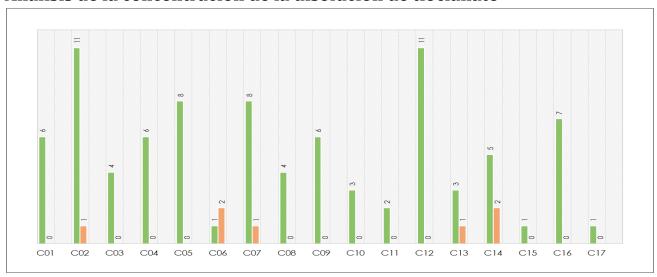


Gráfico 01A. Análisis de la concentración de la disolución de tiocianato durante la ejecución de los ensayos 01 y 02 por comunidades. En verde, los laboratorios que aportan el dato, en naranja, los que no.

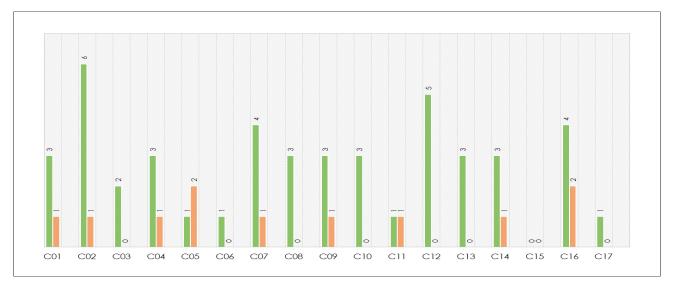


Gráfico 01B. Análisis de la concentración de la disolución de tiocianato durante la ejecución de los ensayos 01 y 02 por comunidades. En verde, los laboratorios que se desvían en 0,01 mol/l o menos en valor absoluto respecto del valor real calculado, en naranja, los que se desvían más.

El 92,6 % de los laboratorios participantes (87) aportan la concentración de la disolución de tiocianato y el 7,4 % restante (7) no.

El 65,6 % de los que aportan el dato (57), aportan también datos suficientes para comprobar los cálculos. De ellos, el 80,7 % (46) determina la concentración de la disolución tiocianato en el ensayo 01 con una desviación igual o inferior a 0,01 mol/l en valor absoluto y el 19,3 % restante (11) con una desviación superior.

Análisis de la relación agua/árido

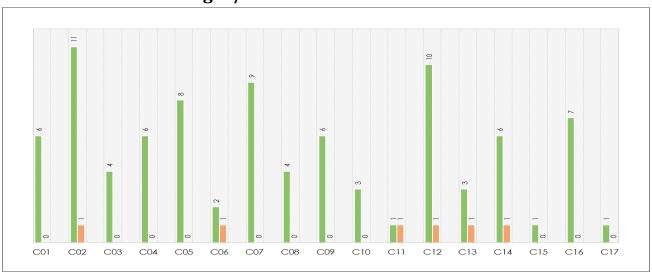


Gráfico 02A. Análisis relación agua/árido durante la ejecución del ensayo 01 por comunidades. En verde, los laboratorios que se desvían en 0,1 unidades o menos en valor absoluto respecto del valor real calculado, en naranja, los que se desvían más.

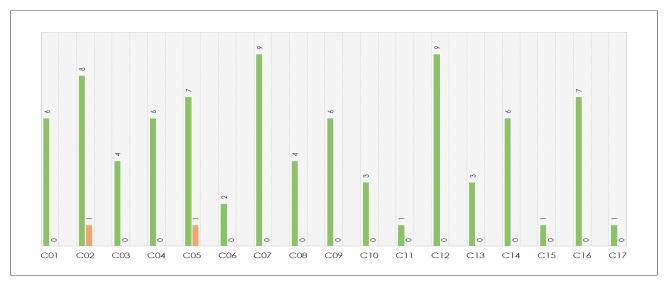


Gráfico 02B. Análisis relación agua/árido durante la ejecución del ensayo 02 por comunidades. En verde, los laboratorios que se desvían en 0,1 unidades o menos en valor absoluto respecto del valor real calculado, en naranja, los que se desvían más.

El 93,6 % de los laboratorios participantes (88) aportan la relación agua/árido de las dos determinaciones individuales, y el 6,4 % restante (6) no. El 96,6 % de los que aportan el dato (85), aportan también datos suficientes para comprobar los cálculos.

De ellos, dan una desviación igual o inferior a 0,1, en valores absolutos:

- el 97,6 % (83) en el ensayo 01 y el 19,3 % restante (2) con una desviación superior.
- el 95,3 % (81) en el ensayo 02 y el 4,7 % restante (4) con una desviación superior

Análisis del contenido en cloruros solubles

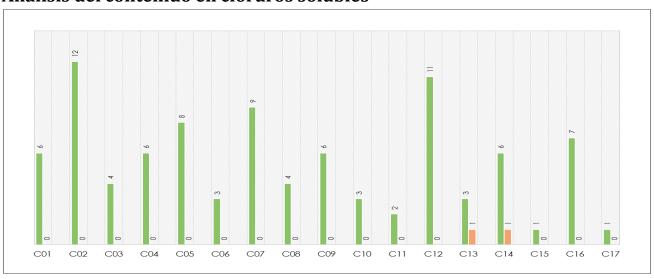


Gráfico 03A. Análisis del contenido en cloruros solubles durante la ejecución de los ensayos 01 y 02 por comunidades. En verde, los laboratorios que aportan el dato, en naranja, los que no.

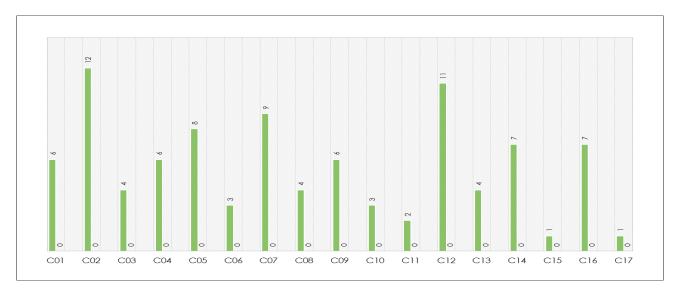


Gráfico 03B. Análisis del contenido en cloruros solubles promedio por comunidades. En verde, los laboratorios que aportan el dato, en naranja, los que no.

El 97,9 % de los laboratorios participantes (92) aportan el contenido de cloruros solubles en las dos determinaciones individuales 01 y 02, y el 2,1 % restante (2) no. El 62,0 % de los que aportan el dato (57), aportan también datos suficientes para comprobar los cálculos.

De ellos, dan una desviación igual o inferior a 0,1, en valores absolutos:

- el 80,7 % (46) en el ensayo 01 y el 19,3 % restante (11) con una desviación superior.
- el 77,2 % (44) en el ensayo 02 y el 22,8 % restante (13) con una desviación superior

CICE le infraestructuras para

Comité de infraestructuras para la Calidad de la Edificación

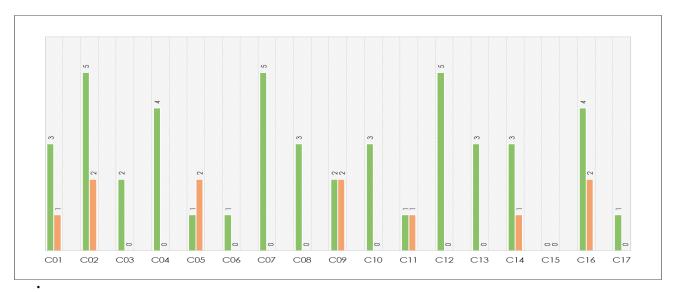


Gráfico 03C. Análisis del contenido en cloruros solubles durante la ejecución del ensayo 01 por comunidades En verde, los laboratorios que se desvían en 0,01 % o menos en valor absoluto respecto del valor real calculado, en naranja, los que se desvían más.

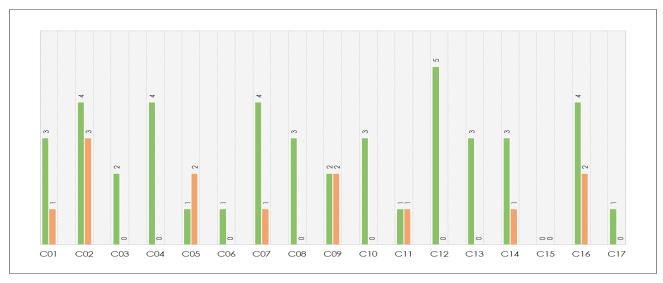


Gráfico 03D. Análisis del contenido en cloruros solubles durante la ejecución del ensayo 02 por comunidades. En verde, los laboratorios que se desvían en 0,01 % o menos en valor absoluto respecto del valor real calculado, en naranja, los que se desvían más.

Análisis del criterio de precisión

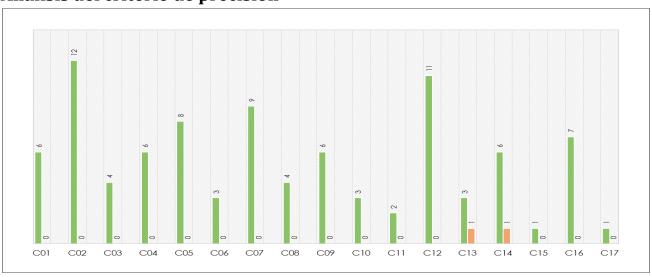


Gráfico 04A. Análisis del criterio de precisión de la norma por comunidades del ensayo 01. En verde, los laboratorios que aportan datos para comprobarlo, en naranja, los que no.

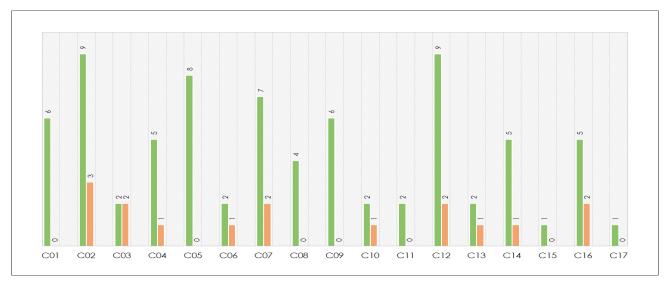


Gráfico 04B. Análisis del criterio de precisión de la norma por comunidades del ensayo 02. En verde, los laboratorios que lo cumplen, en naranja, los que no.

Para el cálculo de las varianzas, y de conformidad con el apartado <u>2 del Anexo A Datos de Precisión de</u> <u>esta norma</u> de ensayo, mencionar que los limites a partir de la misma muestra total, son:

- la **repetibilidad**, **r**, para la exactitud de la determinación de los cloruros solubles en agua
 - o $r_i = 0.0004 + 0.029$ Marit, y
- la reproducibilidad, R, para la exactitud de la determinación de los cloruros solubles en agua
 - \circ R_i= 0.0006 + 0,124 Marit

Comité de infraestructuras para la Calidad de la Edificación

SACESubcomisión Administrativa para la Calidad de la Edificación

Aunque la norma no lo considera un criterio de validación como tal, si puede servir de referencia a la hora de analizar si los resultados obtenidos a lo largo de la ejecución del ensayo son correctos o deberían de repetirse. Es por ello, que para el análisis de los resultados aportados por los laboratorios participantes, se ha tenido en cuenta este valor de precisión.

A nivel nacional se estudiarán estos valores con aquellos laboratorios que han presentado las dos determinaciones, los que no lo hayan hecho no estarán incluidos para este cálculo por falta de datos.

Se puede decir que de los 94 laboratorios participantes, el 97,9 % aporta datos suficientes para comprobar este criterio de precisión y el 2,1 % restante (2) no. De ellos, el 82,6 % (76) lo cumplen, lo que supone que 16 laboratorios no lo cumplen.

	MEDIA CONTENIDO IONES CLORURO Condiciones de Precisión Determinaciones												
CCAA	LAB		minaciones viduales	Promedio	REPETIB.	¿VALIDO?							
		1	2	(%)	(%)	(%)							
C02	096	0,0320	0,0340	0,0330	0,0014	NO							
C02	156	0,0110	0,0100	0,0110	0,0007	NO							
C02	185	0,0209	0,0000	0,0000	0,0004	NO							
C03	101	0,0340	0,0360	0,0350	0,0014	NO							
C03	147	0,0360	0,0410	0,0385	0,0015	NO							
C04	097	0,0291	0,0337	0,0314	0,0013	NO							
C06	033	0,1090	0,0969	0,1030	0,0034	NO							
C07	080	0,0200	0,0020	0,0200	0,0010	NO							
C07	095	0,0034	0,0040	0,0040	0,0005	NO							
C10	113	0,0199	0,0214	0,0207	0,0010	NO							
C12	119	0,0273	0,0266	0,0000	0,0004	NO							
C12	149	0,0010	0,0016	0,0013	0,0004	NO							
C13	144	0,0235	0,0248	0,0241	0,0011	NO							
C13	172			0,0200	0,0010								
C14	069			0,0220	0,0010								
C14	170	0,0090	0,0080	0,0085	0,0006	NO							
C16	155	0,0190	0,0170	0,0180	0,0009	NO							
C16	047	0,0922	0,1000	0,1000	0,0033	NO							

Comité de infraestructuras para la Calidad de la Edificación

Determinación de los sulfatos solubles en ácido, según UNE-EN 1744-1:1999. Ensayos para determinar las propiedades químicas de los áridos. Parte 1: análisis químico. Apartado 12

En este ensayo de determinación **de los sulfatos solubles en acido**, se pedía en el "Protocolo de actuación de materiales" de hacerlo conforme la norma de ensayo: UNE-EN 12697-1:2013. Parte 1. Apartado 12.

El método consiste en disolver los sulfatos presentes en una muestra de suelo de masa conocida en una disolución de ácido clorhídrico diluido, y posteriormente, determinar la cantidad disuelta de éstos por gravimetría. El contenido en iones sulfato se expresa en tanto por ciento, en masa, del árido.

Por tanto, los parámetros analizados durante la ejecución de éste ensayo han sido:

- la masa del ensayo
- la masa del precipitado en la capsula y
- la masa del recipiente vacío,

Se observa que el 1% de los participantes no aporta alguno de estos tres parámetros; son los códigos 033 y 141. Esta minoría es positiva, puesto que la mayoría indica todos los datos solicitados, lo que ayuda a su posterior estudio pre estadístico.

Sobre los resultados promedio, es el código 094 el que indica sus determinaciones individuales, pero no la media de estos.

Como ya sucedió en el ensayo anterior de cloruros, en la Ficha de resultados del laboratorio 139 se expresa un valor como" < 0,05"; puesto que esto no es un dato numérico, se ha cambiado por 0,0099 para poder llevar a cabo los cálculos.

Como información adicional, se establecía en Protocolo que para expresar los resultados se considerara una submuestra de 20 g que pasara 100% por el tamiz 0,125 mm.

Mención especial al cálculo de la incertidumbre que en este ensayo, de los 105 laboratorios, el 50% presentan el dato.

Análisis de la masa del precipitado

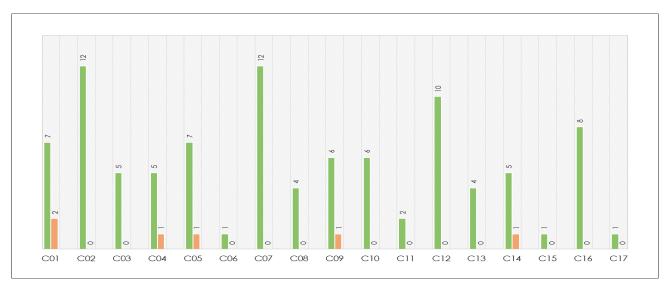


Gráfico 01A. Análisis de la masa de precipitado en la cápsula durante la ejecución del ensayo 01 por comunidades. En verde, los laboratorios que se desvían en 0,0050 g o menos en valor absoluto respecto del valor real calculado, en naranja, los que se desvían más.

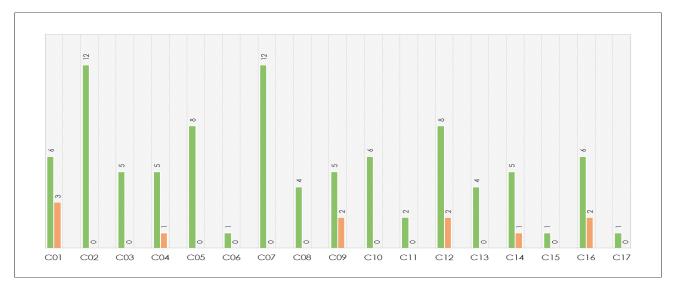


Gráfico 01B. Análisis de la masa de precipitado en la cápsula durante la ejecución del ensayo 02 por comunidades. En verde, los laboratorios que se desvían en 0,0050 g o menos en valor absoluto respecto del valor real calculado, en naranja, los que se desvían más.

Del 99,0 % de los laboratorios participantes (104) que aportan la masa 01 de precipitado, y el 98,1 % de los laboratorios participantes (103) que aportan la masa 02 de precipitado en la cápsula decir que dan también los parámetros pedidos en la Ficha de resultados del EILA17, con una desviación de 0,0050 g o menos en valor absoluto:

Comité de infraestructuras para la Calidad de la Edificación

- en el ensayo 01: el 94,1 % (96) y el 5,9 % restante (6) con una desviación superior.
- en el ensayo 02: el 89,2 % (91) y el 10,8 % restante (11) con una desviación superior

La masa del precipitado, que se debe determinar con una precisión de hasta 4 decimales, tiene gran influencia en el ensayo.

La alta precisión de ésta medida hace necesaria, para la fiabilidad del resultado final, la correcta ejecución del procedimiento de obtención, hasta tal punto que, una variación de ± 1 diezmilésimas en la masa del precipitado, implica un cambio de ± 3 diezmilésimas en el resultado individual.

Puesto que no existe **criterio de Validación** de la norma y que los datos son aportados por los propios laboratorios, consideraremos aceptable un error de \pm 100 diezmilésimas para el cálculo individual del residuo seco en la cápsula, o lo que es lo mismo, un redondeo erróneo de \pm 0,0050 g, lo que se traduce en una variación de \pm 0,03 % en el resultado final.

Cabe mencionar, una situación anómala detectada durante la ejecución de ésta parte del ensayo: laboratorios que calculan la masa de precipitado y aportan los datos con los que la han calculado, pero éste valor, en base a los datos aportados, sale negativo. Un 1,9 % de los laboratorios participantes (2) comete éste tipo de anomalía en el ensayo 02.

Una posible explicación a ésta situación puede ser la falta de atención a la hora de rellenar las fichas de resultados, al haber intercambiado los sumandos en la fórmula matemática para determinar la masa de residuo seco.

Análisis del contenido en sulfatos solubles

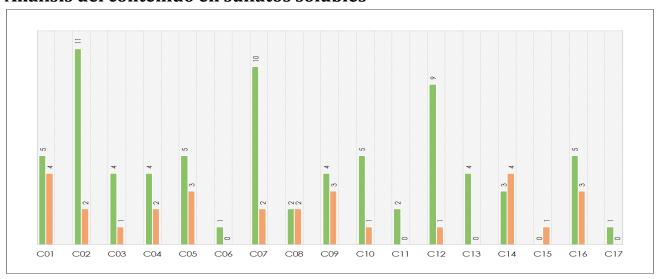


Gráfico 02A. Análisis del contenido en sulfatos solubles durante la ejecución del ensayo 01 por comunidades En verde, los laboratorios que se desvían en 0,0050 g o menos en valor absoluto respecto del valor real calculado, en naranja, los que se desvían más.

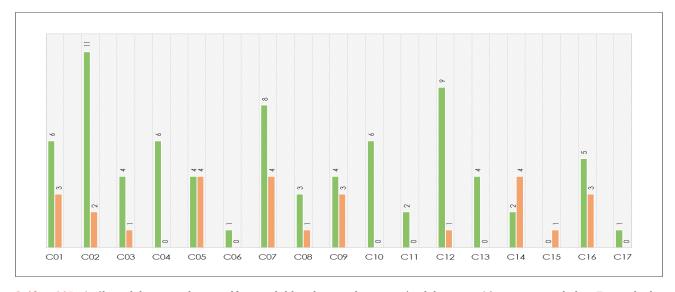


Gráfico 02B. Análisis del contenido en sulfatos solubles durante la ejecución del ensayo 02 por comunidades. En verde, los laboratorios que se desvían en 0,0050 g o menos en valor absoluto respecto del valor real calculado, en naranja, los que se desvían más.

El 100 % de los laboratorios participantes (105) aportan el contenido de sulfatos solubles del ensayo 01 y 02. Decir que con una desviación de 0,0050 g o menos en valor absoluto:

- o en el ensayo 01, son el 72,1 % (75) y el 27,9 % restante (29) con una desviación superior
- o en el ensayo 02, son el 73,8 % (103) y que 27 presentan una desviación superior.

Comité de infraestructuras para la Calidad de la Edificación

Calidad de la Edificación

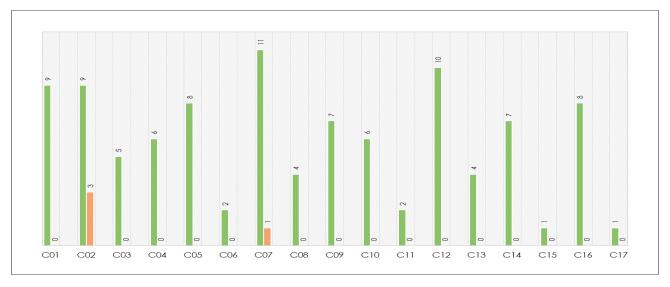


Gráfico 02F. Análisis del contenido en sulfatos solubles <u>promedio</u> por comunidades. En verde, los laboratorios que se desvían en 0,0050 g o menos en valor absoluto respecto del valor real calculado, en naranja, los que se desvían más.

El 99,0 % (104) de los laboratorios participantes, salvo el código 094, aportan el contenido de sulfatos solubles promedio y las 2 determinaciones individuales, así como los datos suficientes para valorar la ejecución correcta de ésta parte del ensayo. De ellos, el 96,2 % (100) determina el contenido de sulfatos solubles promedio con una desviación de 0,0050 g o menos en valor absoluto y el 3,8 % restante (4) con una desviación superior.

Puesto que no existe **criterio de Validación** de la norma y que los datos son aportados por los propios laboratorios, consideraremos aceptable un error de \pm 100 diezmilésimas para el cálculo individual del residuo seco en la cápsula, o lo que es lo mismo, un redondeo erróneo de \pm 0,0050 g, lo que se traduce en una variación de \pm 0,03 % en el resultado final.

Se deduce del análisis que, los laboratorios que no han determinado de forma correcta los resultados se deben principalmente a errores matemáticos a la hora de realizar los cálculos, al no aplicar de forma correcta la siguiente fórmula que especifica la norma:

Contenido en sulfatos SO₃ (en %) =34,30 x (masa de precipitado (g)/ masa de la muestra de ensayo (g))

Análisis del criterio de precisión

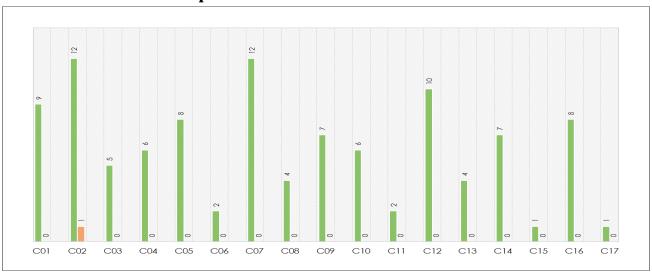


Gráfico 03A. Análisis del criterio de precisión de la norma por comunidades. En verde, los laboratorios que aportan datos para comprobarlo, en naranja, los que no.

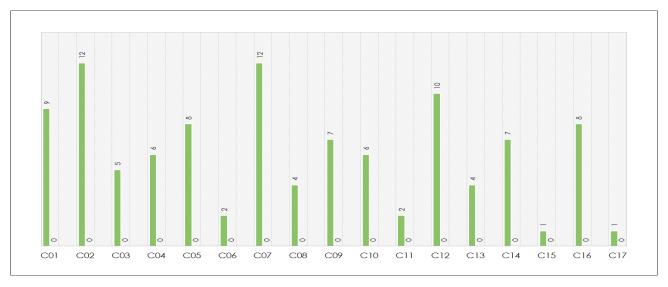


Gráfico 03B. Análisis del criterio de precisión de la norma por comunidades. En verde, los laboratorios que lo cumplen, en naranja, los que no.

Para el cálculo de las varianzas, y de conformidad con el apartado <u>5 del Anexo A Datos de Precisión de</u> <u>esta norma</u> de ensayo, mencionar que los limites a partir de la misma muestra total, son:

- la **repetibilidad**, **r**, para la exactitud de la determinación de los cloruros solubles en agua
 - o $r_i = 0.021 + 0.200$ Marit, y
- la **reproducibilidad**, **R**, para la exactitud de la determinación de los cloruros solubles en agua
 - \circ R_i= 0.000 + 0,812 Marit

Aunque la norma no lo considera un criterio de validación como tal, si puede servir de referencia a la hora de analizar si los resultados obtenidos a lo largo de la ejecución del ensayo son correctos o deberían de repetirse. Es por ello, que para el análisis de los resultados aportados por los laboratorios participantes, se ha tenido en cuenta este valor de precisión.

A nivel nacional se estudiarán estos valores con aquellos laboratorios que han presentado las dos determinaciones, los que no lo hayan hecho no estarán incluidos para este cálculo por falta de datos.

Se puede decir que de los 105 laboratorios participantes, el 99 % aporta datos suficientes para comprobar este criterio de precisión y el 1 % restante (1) no. De ellos, el 100 % (104) lo cumplen.

4. ANÁLISIS PRE-ESTADÍSTICO: RESULTADOS CLORUROS SOLUBLES EN AGUA

I. Resultados aportados de las determinaciones por código y Comunidad Autónoma

Las conclusiones de cada uno de los análisis descritos a continuación, están basadas en los resultados obtenidos al aplicar el procedimiento normativo a los valores aportados por los laboratorios participantes, por lo que la aportación de valores erróneos puede dar lugar a evidencias de posibles No Conformidades.

Se han considerado como **Validación de datos** aquellos cuya desviación, en base a los datos recogidos en las Fichas de resultados de los propios laboratorios no superan los siguientes límites:

LIMITES ADMITIDOS	
1. CONCENTRACION DE LA DISOLUCION DE TIOCIANATO	0,01
1 0010211111010111111111111111111111111	(mol/l)
2. RELACION AGUA/ARIDO	0,1 (g/g)
3. RESULTADOS CONTENIDO IONES CLORURO	0,01%

			"BOT" Y SECA	MASA "BOT + ARI"		MASA "ARI"		MASA "BOT + ARI + AGU"		MASA "H ₂ 0"			
CCAA	LAB	1	2	1	2	1	2	1	2	1	DESVI	2	DESVI
		(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)
C01	107	62,0	64,0	562,0	564,0	500,0	500,0	1.562,0	1.564,0	1.000,0	500,0	1.000,0	500,0
C01	124	327,9	320,6	827,9	820,6	500,0	500,0	1.327,9	1.320,6	500,0	0,0	500,0	0,0
C01	146	96,4	98,2	596,4	598,2	500,0	500,0	1.096,0	1.098,0	499,6	-0,4	499,8	-0,2
C01	162	312,0	310,0	812,0	810,0	500,0	500,0	1.312,0	1.310,0	500,0	0,0	500,0	0,0
C01	163	1364,6	1.358,8	1.924,9	1.903,2	560,3	544,4	2.485,2	2.447,6	560,3	0,0	544,4	0,0
C01	187	159,7	176,6	659,3	676,9	499,6	500,3	1.159,3	1.177,2	500,0	0,4	500,3	0,0
C02	043	89,2	89,7	589,8	589,9	500,6	500,2	1.089,8	1.089,9	500,0	-0,6	500,0	-0,2
C02	070	235,7	241,2	736,0	741,9	500,3	500,7	1.236,3	1.242,6	500,3	0,0	500,7	0,0
C02	094												

Comité de infraestructuras para la Calidad de la Edificación

SACE

			"BOT" Y SECA		"BOT + RI"	MASA	"ARI"	MASA ' ARI +	"BOT + AGU"		MASA	\ "H ₂ 0"	
CCAA	LAB	1	2	1	2	1	2	1	2	1	DESVI	2	DESVI
		(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)
C02	096	422,8	432,9	674,9	675,5	252,0	242,6	1.176,8	1.184,3	501,9	249,9	508,8	266,2
C02	108	126,3	120,9	385,6	372,4	259,3	251,5	670,1	651,7	284,5	25,2	279,3	27,8
C02	129	118,8	122,4	618,2	626,8	499,4	504,4	1.106,6	1.124,6	488,4	-11,0	497,8	-6,6
C02	139			50,0	50,0								
C02	156	980,1	970,3	1.506,2	1.722,3	526,1	752,0	2.032,4	2.475,1	526,2	0,1	752,8	0,8
C02	157	104,2	104,2	604,4	604,4	500,2	500,2	1.604,4	1.604,4	1.000,0	499,8	1.000,0	499,8
C02	165	131,6	131,5	635,7	639,1	504,1	507,6	1.628,1	1.632,6	992,4	488,3	993,5	485,9
C02	185												
C02	186	89,9	90,9	589,9	590,9	500,0	500,0	1.089,5	1.090,8	499,6	-0,4	499,9	-0,1
C03	101	132,6	132,1	649,6	646,6	517,0	514,5	1.648,9	1.646,2	999,3	482,3	999,6	485,1
C03	147	135,5	132,3	655,5	648,8	520,0	516,5	1.655,2	1.649,0	999,7	479,7	1.000,2	483,7
C03	164	86,4	86,5	588,7	593,3	502,3	506,8	1.083,7	1.100,1	495,0	-7,3	506,8	0,0
C03	167	232,2	256,8	732,2	756,8	500,0	500,0	1.232,2	1.256,8	500,0	0,0	500,0	0,0
C04	027	105,7	102,8	355,8	352,1	250,1	249,4	1.216,3	1.229,9	860,5	610,4	877,7	628,4
C04	029	235,0	235,0	735,0	735,0	500,0	500,0	1.235,0	1.235,0	500,0	0,0	500,0	0,0
C04	030	121,0	126,3	666,7	664,8	545,7	538,5	1.216,6	1.203,1	549,9	4,2	538,3	-0,2
C04	074	54,9	56,6	555,5	557,2	500,6	500,6	1.055,5	1.057,3	500,0	-0,6	500,1	-0,5
C04	092	599,4	599,4	899,5	899,6	300,1	300,2	1.899,5	1.899,6	1.000,0	699,9	1.000,0	699,8
C04	097	112,4	112,5	632,7	602,7	520,4	490,2	1.633,3	1.602,8	1.000,5	480,2	1.000,1	509,9
C05	012	613,2	614,8	1.113,2	1.114,9	500,0	500,1	2.113,2	2.114,9	1.000,0	500,0	1.000,0	499,9
C05	013	558,0	562,0	1.058,0	1.062,0	500,0	500,0	1.558,0	1.562,0	500,0	0,0	500,0	0,0
C05	016	100,0	100,0	600,0	600,0	500,0	500,0	1.100,1	1.100,2	500,1	0,1	500,2	0,2
C05	023	80,6	80,6	580,6	580,6	500,0	500,0	1.080,6	1.080,6	500,0	0,0	500,0	0,0
C05	024	74,4	74,4	574,5	574,5	500,0	500,1	1.074,5	1.074,6	500,0	0,0	500,1	0,0
C05	048	318,7	318,7	503,7	504,7	185,0	186,0	822,4	823,4	318,7	133,7	318,7	132,7
C05	057	581,4	580,1	1.081,2	1.080,6	499,8	500,5	1.584,4	1.580,1	503,2	3,4	499,5	-1,0
C05	059	582,8	580,3	1.082,8	1.080,3	500,0	500,0	1.582,8	1.580,3	500,0	0,0	500,0	0,0
C06	039	117,3	123,9	618,5	625,6	501,2	501,7	1.119,4	1.126,0	500,9	-0,3	500,4	-1,3
C06	082	497,3	669,6	748,1	919,8	250,8	250,2	998,2	1.169,9	250,1	-0,7	250,1	-0,1
C06	033												
C07	037	150,0	150,0	650,0	650,0	500,0	500,0	1.150,0	1.150,0	500,0	0,0	500,0	0,0
C07	038	67,7	67,7	317,9	317,9	250,1	250,1	567,9	567,9	250,0	-0,1	250,0	-0,1
C07	052	110,0	111,0	210,0	211,0	100,0	100,0	1.215,0	1.217,0	1.005,0	905,0	1.006,0	906,0
C07	080	579,0	564,0	1.079,0	1.064,0	500,0	500,0	1.580,0	1.564,0	501,0	1,0	500,0	0,0
C07	095	525,0	539,0	1.028,0	1.029,0	503,0	490,0	1.531,0	1.519,0	503,0	0,0	490,0	0,0
C07	168	7764,0	7.711,0	8.264,0	8.211,0	500,0	500,0	8.764,0	8.711,0	500,0	0,0	500,0	0,0
C07	169	73,7	72,2	1.074,0	1.073,6	1.000,3	1.001,4	2.074,2	2.073,5	1.000,2	-0,1	999,9	-1,5
C07	181	115,9	114,9	616,0	615,2	500,1	500,4	1.116,0	1.115,2	500,0	-0,1	500,0	-0,4
C07	191	92,0	93,3	341,9	343,4	249,9	250,1	589,9	591,3	248,1	-1,8	247,9	-2,2
C08	133	73,7	75,8	573,8	575,9	500,1	500,1	1.074,8	1.077,2	501,0	0,9	501,3	1,2
C08	137	55,7	54,8	555,9	554,8	500,2	500,0	1.055,9	1.054,8	500,0	-0,2	500,0	0,0

Comité de infraestructuras para la Calidad de la Edificación

SACE

			"BOT" Y SECA		"BOT + RI"	MASA	"ARI"	MASA ' ARI +	"BOT + AGU"		MASA	"H ₂ 0"	
CCAA	LAB	1	2	1	2	1	2	1	2	1	DESVI	2	DESVI
		(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)
C08	148	74,2	75,5	574,6	575,5	500,4	500,0	1.574,6	1.575,9	1.000,0	499,6	1.000,4	500,4
C08	171	29,9	30,6	530,3	530,8	500,4	500,2	1.030,3	1.031,0	500,0	-0,4	500,2	0,0
C09	020	703,1	710,4	1.212,7	1.221,3	509,6	510,9	1.722,9	1.732,8	510,2	0,6	511,5	0,6
C09	025	117,2	118,3	617,2	618,3	500,0	500,0	1.117,2	118,3	500,0	0,0	-500,0	- 1.000,0
C09	036	305,3	305,7	805,8	806,4	500,5	500,7	1.306,0	1.307,2	500,2	-0,3	500,8	0,1
C09	086	130,5	130,5	630,5	630,5	500,0	500,0	1.132,3	1.132,6	501,8	1,8	502,1	2,1
C09	110	80,0	80,0	580,0	580,0	500,0	500,0	1.080,0	1.080,0	500,0	0,0	500,0	0,0
C09	178	144,4	78,8	642,1	571,6	497,7	492,8	1.139,0	1.073,9	496,9	-0,8	502,3	9,5
C10	028	246,0	258,0	788,0	815,0	542,0	557,0	1.330,0	1.372,0	542,0	0,0	557,0	0,0
C10	040	132,7	149,4	682,3	714,0	549,6	564,7	1.232,3	1.278,7	550,0	0,3	564,7	0,0
C10	113	96,9	97,6	597,0	597,6	500,1	500,0	1.597,0	1.597,6	1.000,0	499,9	1.000,0	500,0
C11	067	0,0	0,0	500,0	500,0	500,0	500,0	1.500,0	1.500,0	1.000,0	500,0	1.000,0	500,0
C11	087	145,6	145,3	659,6	657,3	514,0	512,0	1.660,2	1.649,8	1.000,6	486,6	992,5	480,5
C12	035	736,7	739,8	1.237,0	1.239,9	500,3	500,1	1.737,5	1.740,4	500,6	0,3	500,5	0,4
C12	051	169,2	170,2	667,9	670,8	498,7	500,6	1.167,9	1.171,0	500,0	1,3	500,2	-0,5
C12	093	91,4	90,0	591,4	589,9	500,0	499,9	1.091,6	1.089,1	500,2	0,2	499,2	-0,7
C12	105	110,0	11,0	160,0	162,0	50,0	151,0	215,0	217,0	55,0	5,0	55,0	-96,0
C12	112	118,1	119,2	625,1	629,3	507,0	510,1	1.133,1	1.140,5	508,0	1,0	511,2	1,1
C12	115	0,0	0,0	500,0	500,0	500,0	500,0						
C12	119	7959,0	7.713,0	8.459,0	8.213,0	500,0	500,0	9.453,0	9.206,0	994,0	494,0	993,0	493,0
C12	138	446,3	447,5	946,3	947,5	500,0	500,0	1.446,3	1.447,5	500,0	0,0	500,0	0,0
C12	142			250,0	250,0								
C12	149	613,0	645,0	1.115,0	1.194,0	502,0	549,0	1.612,0	1.695,6	497,0	-5,0	501,6	-47,4
C12	175	55,0	55,0	569,0	519,0	514,0	464,0	1.065,0	1.016,0	496,0	-18,0	497,0	33,0
C13	088	126,8	129,3	626,8	629,6	500,1	500,3	1.625,9	1.628,2	999,1	499,0	998,6	498,3
C13	144	110,5	108,9	614,5	609,1	504,0	500,2	1.118,4	1.113,1	503,9	-0,1	504,0	3,8
C13	172												
C13	202	59,3	57,4	559,4	557,5	500,1	500,0	1.059,5	1.057,5	500,1	0,0	500,0	0,0
C14	069	620,5	621,3	1.125,7	1.128,2	505,2	506,9		2.128,3	1.000,1	494,9	1.000,1	493,2
C14	135	310,4	306,3	1.310,4	1.306,3	1.000,0	1.000,0		2.306,3	1.000,0	0,0	1.000,0	0,0
C14	141	76,4	75,2	576,4	575,2	500,0	500,0	1.076,4	1.075,2	500,0	0,0	500,0	0,0
C14	151	7139,0	7.118,0	7.639,0	7.618,0	500,0	500,0	8.139,0		500,0	0,0	500,0	0,0
C14	152	7138,0	7.117,0	7.638,0	7.617,0	500,0	500,0	8.138,0	8.117,0	500,0	0,0	500,0	0,0
C14	161	95,5	95,7	595,9	596,6	500,5	500,9	1.095,9	1.096,6	500,0	-0,5	500,0	-0,9
C14	170	0,0	0,0	500,0	500,0	500,0	500,0	1.000,0	1.000,0	500,0	0,0	500,0	0,0
C15	042	140,6	140,6	640,6	640,6	500,0	500,0	1.137,3	1.137,3	496,7	-3,3	496,7	-3,3
C16	021	987,0	980,0	1.037,0	1.030,0	50,0	50,0	1.537,0	1.530,0	500,0	450,0	500,0	450,0
C16	056	91,7	92,6	591,8	592,6	500,2	500,1		1.092,6	500,0	-0,1	500,0	-0,1
C16	116	0,0	0,0	501,3	501,3	501,3	501,3		1.003,5	502,2	0,9	502,2	0,9
C16	134	101,4	100,8	601,4	600,8	500,0	500,0	1.110,7	1.101,3	509,3	9,3	500,5	0,5
			/**	1 , -	, .	/ *	/*	,-	,-	/	. ,-	/~	. , -

Comité de infraestructuras para la Calidad de la Edificación

SACESubcomisión Administrativa para la Calidad de la Edificación

			A "BOT" A Y SECA		"BOT + RI"	MASA	"ARI"	MASA "BOT + ARI + AGU"		MASA "H ₂ 0"			
CCAA	LAB	1	2	1	2	1	2	1	2	1	DESVI	2	DESVI
		(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)
C16	155	72,7	73,0	574,9	576,5	502,2	503,5	1.575,8	1.576,6	1.000,9	498,7	1.000,1	496,6
C16	176	0,0	0,0	505,4	501,7	505,4	501,7	1.503,4	1.501,7	998,0	492,6	1.000,0	498,3
C16	047	956,0	957,8	1.206,0	1.207,8	250,0	250,0	2.206,0	2.207,8	1.000,0	750,0	1.000,0	750,0
C17	084	94,3	94,8	594,4	594,9	500,1	500,1	1.094,4	1.094,9	500,0	-0,1	500,0	-0,1

Valores aportados cuya expresión de las unidades no coincide con el Protocolo (valores sospechosos)
Valores no aportados y que se piden por el Protocolo (y Ficha de resultados)
Valor en los que se observan posibles evidencias de No Conformidad en el cálculo.
Valor que está dentro de lo recomendado en Protocolo

Respecto a la <u>masa de la muestra de árido</u> y volumen de agua a ensayar, el artículo 7.3 de la norma de aplicación, se indica que en caso de áridos ligeros, las dos muestras de ensayo deben ser de aproximadamente 1 litro. $(500 \pm 75 \text{ g cada una})$ y que en la botella donde se introduce, hay que añadir la misma cantidad de agua o incluso, para áridos ligeros, 1 l de agua, según el siguiente artículo 7.4.

Si en la tabla de masas hay una desviación mayor a 0 significa que el operador ha introducido una cantidad de agua mayor que de muestra de ensayo. Se da el caso (se han sombreado en rojo) de cantidades negativas, es decir, inferiores a la masa de la muestra.

		CON	CENTRA	CION DISO PAT		N TIOCI	ANATO	TIOCIAN	MASA SOLI		IOCIA	NATO	VOL CONSU	X-SCN
CCAA	LAB	1	1	compro bación	2	1	compro bación	ATO EMPLEA	1	1	2	2	1	2
		mol/l	mol/l	mol/l	mol/l	mol/l	mol/l	DO	(g)	(g)	(g)	(g)	(ml)	(ml)
C01	107	0,100	0,003	0,098	0,100	0,003	0,098	Amónico	7,6	OK	7,6	OK	1000	1000
C01	124	0,098	0,099	-0,001	0,098	0,099	-0,001	Amónico	7,6	OK	7,6	OK	25,30	25,30
C01	146	0,100			0,100			Potásico						
C01	162	0,098	0,099	-0,001	0,098	0,099	-0,001	Amónico	7,6	OK	7,6	OK	25,30	25,30
C01	163	0,100			0,100			Amónico						
C01	187	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	7,6	OK	7,6	OK	25,10	25,10
C02	043	0,100	0,100	0,000	0,100	0,100	0,000	Potásico					25,08	25,04
C02	070	0,100			0,100			Amónico						
C02	094													
C02	096	0,050			0,050			Amónico						
C02	108	0,104	0,104	0,000	0,104	0,104	0,000	Amónico	7,6	OK	7,6	OK	24,00	24,00
C02	129	1,030	0,581	0,449	1,030	0,521	0,509	Potásico	9,7	OK	9,7	OK	4,30	4,80
C02	139	0,050			0,050			Potásico						

Comité de infraestructuras para la Calidad de la Edificación

SACE

		CON	CENTRA	CION DISC PAT		N TIOCI	ANATO	TIOCIAN	MAS. SOLI		IOCIA	NATO	VOL CONSU	X-SCN
CCAA	LAB	1	1	compro bación	2	1	compro bación	ATO EMPLEA	1	1	2	2	1	2
		mol/l	mol/l	mol/l	mol/l	mol/l	mol/l	DO	(g)	(g)	(g)	(g)	(ml)	(ml)
C02	156	0,110	0,113	-0,003	0,110	0,113	-0,003	Potásico	9,7	OK	9,7	OK	22,20	22,20
C02	157	0,098	0,098	0,000	0,098	0,098	0,000	Amónico	7,6	OK	7,6	OK	25,40	25,40
C02	165	0,090	0,090	0,000	0,090	0,090	0,000	Amónico	7,6	OK	7,6	OK	27,70	27,70
C02	185	0,100			0,100									
C02	186	0,100	0,107	-0,007	0,100	0,107	-0,007	Amónico	7,6	OK	7,6	OK	23,30	23,30
C03	101	0,100	0,104	-0,004	0,100	0,104	-0,004	Amónico	7,5	???	7,5	???	24,00	24,00
C03	147	0,100	0,104	-0,004	0,100	0,102	-0,002	Amónico	7,6	OK	7,5	???	24,00	24,50
C03	164	0,010			0,100									
C03	167	0,100			0,100			Potásico						
C04	027	0,100			0,100			Amónico						
C04	029	0,100			0,100			Potásico						
C04	030	0,101	0,126	-0,025	0,101	0,126	-0,025	Amónico	7,6	ОК	7,6	OK	19,83	19,83
C04	074	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	7,6	ОК	7,6	OK	25,00	25,00
C04	092	0,100	0,100	0,000	0,100	0,100	0,000	Potásico	9,7	ОК	9,7	OK	25,00	25,00
C04	097	0,104	0,104	0,000	0,104	0,104	0,000	Amónico	7,6	ОК	7,6	OK	24,00	24,00
C05	012	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	7,6	OK	7,6	OK	25,00	25,00
C05	013	0,100			0,100			Amónico	7,6	OK	7,6	OK		
C05	016	0,098	0,490	-0,392	0,100	0,490	-0,390	Amónico	7,6	OK	7,6	OK	5,10	5,10
C05	023	0,100			0,100			Amónico						
C05	024	0,100			0,100			Amónico						
C05	048	0,100	0,167	-0,067	0,100	0,167	-0,067	Amónico	0,1	???	0,1	???	15,00	15,00
C05	057	0,100			0,100			Amónico						
C05	059	0,100			0,100			Amónico						
C06	039	0,100	0,099	0,001	0,100	0,098	0,002	Amónico	7,6	OK	7,6	OK	25,20	25,40
C06	082													
C06	033													
C07	037	0,050			0,050			Amónico						
C07	038							Potásico						
C07	052	0,050			0,050									
C07	080	0,097	0,097	0,000	0,097	0,097	0,000	Amónico	7,6	ОК	7,6	OK	25,70	25,70
C07	095	0,100			0,100			Amónico						
C07	168	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	7,6	OK	7,6	OK	24,95	24,95
C07	169	0,106	0,106	0,000	0,100	0,106	-0,006	Amónico	7,6	OK	7,6	OK	23,60	23,60
C07	181	0,095	0,477	-0,382	0,095	0,477	-0,382	Amónico	7,6	OK	7,6	OK	5,24	5,24
C07	191	0,102	0,102	0,000	0,103	0,103	0,000	Amónico	7,6	OK	7,6	OK	24,50	24,30
C08	133	0,096	0,096	0,000	0,096	0,096	0,000	Amónico	7,6	OK	7,6	OK	26,05	26,05
C08	137	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	7,6	OK	7,6	OK	25,10	25,10
C08	148	0,100	-		0,100	<u> </u>		Potásico						
C08	171	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	7,6	OK	7,6	OK	24,90	24,90
C09	020	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	7,6	OK	7,6	OK	25,05	25,05
1	•	-,	-,	-,	1 - , - 5 5	-,=50	-,		,-		. ,-		-,	-,55

Comité de infraestructuras para la Calidad de la Edificación

SACE

		CON	CENTRA	CION DISC PAT	OLUCIO RON	N TIOCI	ANATO	TIOCIAN	MASA SOLII		IOCIA	NATO	VOL CONSU	X-SCN
CCAA	LAB	1	1	compro bación	2	1	compro bación	ATO EMPLEA	1	1	2	2	1	2
		mol/l	mol/l	mol/l	mol/l	mol/l	mol/l	DO	(g)	(g)	(g)	(g)	(ml)	(ml)
C09	025	0,100	12,50 0	-12,400	0,100	8,333	-8,233	Amónico	7,6	ОК	7,6	OK	0,20	0,30
C09	036	0,100			0,100			Amónico						
C09	086	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	2,5	???	2,5	???	25,05	25,05
C09	110	0,100			0,100			Amónico						
C09	178	0,090	0,090	0,000	0,090	0,090	0,000	Amónico	7,6	OK	7,6	OK	27,70	27,70
C10	028	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	7,6	OK	7,6	OK	24,95	24,90
C10	040	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	7,6	OK	7,6	OK	25,00	25,00
C10	113	0,106	0,106	0,000	0,106	0,106	0,000	Amónico	17,0	???	17,0	???	23,50	23,50
C11	067	0,100	0,025	0,075	0,100	0,025	0,075	Amónico					100,00	100,0 0
C11	087	0,100	0,104	-0,004	0,100	0,104	-0,004	Amónico	7,5	???	7,5	???	24,00	24,00
C12	035	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	7,6	ОК	7,6	OK	25,10	25,10
C12	051	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	7,6	OK	7,6	OK	25,00	25,00
C12	093	0,100			0,100			Amónico						
C12	105	0,100			0,100									
C12	112	0,100			0,100			Potásico						
C12	115	0,100			0,100									
C12	119	0,104	0,104	0,000	0,104	0,104	0,000	Amónico					24,00	24,00
C12	138	0,099	0,099	0,000	0,099	0,099	0,000	Amónico	7,6	OK	7,6	OK	25,20	25,20
C12	142	0,100			0,100			Amónico						
C12	149	0,100			0,100									
C12	175	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	7,6	OK	7,6	OK	24,90	24,90
C13	088	0,102	0,102	0,000	0,099	0,099	0,000	Amónico	7,6	OK	7,6	ОК	24,60	25,20
C13	144	0,101	0,101	0,000	0,101	0,101	0,000	Amónico	1,9	???	1,9	???	24,80	24,80
C13	172													
C13	202	0,098	0,098	0,000	0,098	0,098	0,000	Amónico	7,6	OK	7,6	ОК	25,60	25,60
C14	069							Potásico	9,7	OK	9,7	OK		
C14	135	0,100	0,099	0,001	0,100	0,099	0,001	Potásico	0,2	???	0,2	???	25,20	25,20
C14	141	0,100			0,100			Potásico						
C14	151	0,100	0,100	-0,001	0,100	0,100	-0,001	Potásico	9,7	OK	9,7	OK	24,90	24,90
C14	152	0,100	0,410	-0,310	0,100	0,410	-0,310	Potásico	9,7	OK	9,7	OK	6,10	6,10
C14	161	0,101	0,101	0,000	0,101	0,101	0,000	Amónico	7,6	OK	7,6	OK	24,85	24,85
C14	170		0,500			0,500		Amónico					5,00	5,00
C15	042	0,100			0,100			Amónico						
C16	021	0,100	0,100	0,000	0,100	0,099	0,000	Amónico	7,6	OK	7,6	OK	25,10	25,15
C16	056	0,100	0,106	-0,006	0,100	0,106	-0,006	Amónico	7,6	OK	7,6	OK	23,60	23,60
C16	116	0,100	0,500	-0,400	0,100	0,510	-0,410	Amónico					5,00	4,90
C16	134	0,100			0,100			Potásico						
C16	155	0,100	0,102	-0,002	0,100	0,102	-0,002	Amónico	7,6	OK	7,6	ОК	24,50	24,50

Comité de infraestructuras para la Calidad de la Edificación

SACESubcomisión Administrativa para la Calidad de la Edificación

		CON	CENTRA	ANATO	TIOCIAN	MASA TIOCIANATO SOLIDO				VOL X-SCN CONSU				
CCAA	LAB	1	1	compro bación	2	1	compro bación	ATO EMPLEA	1	1	2	2	1	2
		mol/l	mol/l	mol/l	mol/l	mol/l	mol/l	DO	(g)	(g)	(g)	(g)	(ml)	(ml)
C16	176	0,098	0,098	0,000	0,099	0,099	0,000	Amónico	7,6	OK	7,6	OK	25,40	25,30
C16	047	0,100	0,208	-0,108	0,100	0,208	-0,108	Potásico	9,7	OK	9,7	OK	12,00	12,00
C17	084	0,100	0,100	0,000	0,100	0,100	0,000	Amónico	0,2	???	0,2	???	25,00	25,00

Sobre la <u>disolución patrón de tiocianato</u> nos remite la norma al artículo 4.2.2 donde indica que para calcular la concentración de la disolución de tiocianato en moles/ litros es igual a 2,5 * Volumen consumido de la disolución. Por otra parte, la cantidad de masa de tiocianato solido debe estar comprendida entre los siguientes valores:

Amónico $7,55 \le X \le 7,64$ Potásico $9,65 \le X \le 9,74$

		RELAC	CION AC	GUA/AI	RIDO			CONTE	NIDO IO	ONES CL	oruro			RESULT	'ADO	
CCAA	LAB	1	1	DESV	2	2	DESV	1	1	DESV	2	2	DESV	MEDIA	MEDIA	DESV
		(g/g)	(g/g)	(g/g)	(g/g)	(g/g)	(g/g)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
C01	107	2,0	2,0	0,0	2,0	2,0	0,0	0,054	0,084	- 0,030	0,054	0,084	- 0,030	0,054	0,054	0,000
C01	124	1,0	1,0	0,0	1,0	1,0	0,0	0,026	0,026	0,000	0,026	0,026	0,000	0,026	0,026	0,000
C01	146	1,0	1,0	0,0	1,0	1,0	0,0	0,020			0,020			0,017	0,020	- 0,003
C01	162	1,0	1,0	0,0	1,0	1,0	0,0	0,026	0,026	0,000	0,026	0,026	0,000	0,026	0,026	0,000
C01	163	1,0	1,0	0,0	1,0	1,0	0,0	0,030			0,030			0,030	0,030	0,000
C01	187	1,0	1,0	0,0	1,0	1,0	0,0	0,027	0,027	0,000	0,028	0,028	0,000	0,027	0,028	- 0,001
C02	043	1,0	1,0	0,0	1,0	1,0	0,0	0,109	0,027	0,082	0,108	0,027	0,081	0,109	0,109	0,001
C02	070	1,0	1,0	0,0	1,0	1,0	0,0	0,026			0,025			0,030	0,026	0,005
C02	094							0,300			0,300			0,300	0,300	0,000
C02	096	1,0	2,0	-1,0	1,0	2,1	-1,1	0,032			0,034			0,033	0,033	0,000
C02	108	1,1	1,1	0,0	1,1	1,1	0,0	0,019	0,019	0,000	0,019	0,019	0,000	0,019	0,019	0,000
C02	129	1,0	1,0	0,0	1,0	1,0	0,0	0,129	- 0,059	0,188	0,133	- 0,063	0,196	0,131	0,131	0,000
C02	139	10,0			10,0			0,010			0,010			0,010	0,010	0,000
C02	156	1,0	1,0	0,0	1,0	1,0	0,0	0,011	0,011	0,000	0,010	0,010	0,000	0,011	0,011	0,001
C02	157	2,0	2,0	0,0	2,0	2,0	0,0	0,035	0,035	0,000	0,035	- 0,090	0,125	0,035	0,035	0,000
C02	165	2,0	2,0	0,0	2,0	2,0	0,0	0,032	0,032	0,000	0,033	0,033	0,000	0,033	0,033	0,000
C02	185	1,0			1,0			0,021			0,000			0,000	0,010	- 0,010

Comité de infraestructuras para la Calidad de la Edificación

SACE

		RELAC	CION AC	GUA/AF	RIDO			CONTE	NIDO IO	ONES CL	oruro			RESULT	'ADO	
CCAA	LAB	1	1	DESV	2	2	DESV	1	1	DESV	2	2	DESV	MEDIA	MEDIA	DESV
		(g/g)	(g/g)	(g/g)	(g/g)	(g/g)	(g/g)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
C02	186	1,0	1,0	0,0	1,0	1,0	0,0	0,017	0,017	0,000	0,017	0,017	0,000	0,017	0,017	0,000
C03	101	1,9	1,9	0,0	1,9	1,9	0,0	0,034	0,031	0,003	0,036	0,033	0,003	0,035	0,035	0,000
C03	147	1,9	1,9	0,0	1,9	1,9	0,0	0,036	0,033	0,003	0,041	0,040	0,001	0,039	0,039	0,000
C03	164	1,0	1,0	0,0	1,0	1,0	0,0	0,010			0,010			0,010	0,010	0,000
C03	167	1,0	1,0	0,0	1,0	1,0	0,0	0,025			0,024			0,025	0,025	0,000
C04	027	3,4	3,4	0,0	3,5	3,5	0,0	0,038			0,039			0,039	0,039	0,000
C04	029	1,0	1,0	0,0	1,0	1,0	0,0	0,020			0,020			0,020	0,020	0,000
C04	030	1,0	1,0	0,0	1,0	1,0	0,0	0,025	0,021	0,004	0,026	0,021	0,005	0,026	0,026	0,000
C04	074	1,0	1,0	0,0	1,0	1,0	0,0	0,017	0,018	0,001	0,017	0,018	0,001	0,017	0,017	0,000
C04	092	3,3	3,3	0,0	3,3	3,3	0,0		0,030	0,000	,	0,032	0,002	0,030	0,030	0,000
C04	097	1,9	1,9	0,0	2,0	2,0	0,0	0,029	0,029	0,000	0,034		0,000	0,031	0,031	0,000
C05	012	2,0	2,0	0,0	2,0	2,0	0,0	0,025	0,025	0,000	0,024	0,024	0,000	0,025	0,024	0,000
C05	013	1,0	1,0	0,0	1,0	1,0	0,0	0,025			0,025			0,025	0,025	0,000
C05	016	1,0	1,0	0,0	1,0	1,0	0,0	0,025	0,089	0,114	0,024	0,091	0,115	0,025	0,025	0,001
C05	023	1,1	1,0	0,1	1,1	1,0	0,1	0,028			0,028			0,028	0,028	0,000
C05	024	1,1	1,0	0,1	1,1	1,0	0,1	0,030			0,030			0,030	0,030	0,000
C05	048	1,0	1,7	-0,7	1,0	1,7	-0,7	0,026	0,013	0,013		0,014	0,012	0,026	0,026	0,000
C05	057	1,0	1,0	0,0	1,0	1,0	0,0	0,028			0,028			0,028	0,028	0,000
C05	059	1,0	1,0	0,0	1,0	1,0	0,0	0,028			0,028			0,028	0,028	0,000
C06	039	1,0	1,0	0,0	1,0	1,0	0,0	0,030	0,027	0,003	0,030	0,028	0,002	0,030	0,030	0,000
C06	082	1,0	1,0	0,0	1,0	1,0	0,0	0,029			0,028			0,028	0,028	0,000
C06	033							0,109			0,097			0,103	0,103	0,000
C07	037	1,0	1,0	0,0	1,0	1,0	0,0	0,049			0,048			0,048	0,049	0,001
C07	038	1,0	1,0	0,0	1,0	1,0	0,0	4,200			4,200			4,200	4,200	0,000
C07	052	10,0	10,1	-0,1	10,0	10,1	-0,1	0,090			0,090			0,090	0,090	0,000
C07	080	1,0	1,0	0,0	1,0	1,0	0,0		0,022	0,002		0,022	0,020	0,020	0,011	0,009
C07		1,0	1,0	0,0	1,0	1,0	0,0	0,003			0,004			0,004	0,004	0,000
C07	168	1,0	1,0	0,0	1,0	1,0	0,0	0,026	0,025	0,000	0,026	0,026	0,000	0,026	0,026	0,000
C07		1,0	1,0	0,0	1,0	1,0	0,0		0,130			0,130			0,131	- 0,031
C07	181		1,0	0,0	1,0	1,0	0,0		0,016			0,016			0,018	0,002
C07		1,0	1,0	0,0	1,0	1,0	0,0	0,022		0,000		0,021		0,022	0,022	0,001
C08	133	1,0	1,0	0,0	1,0	1,0	0,0		0,027			0,028		0,030	0,030	0,000
C08	137	1,0	1,0	0,0	1,0	1,0	0,0	0,022	0,022	0,000		0,022	0,000	0,022	0,022	0,000
C08	148	2,0	2,0	0,0	2,0	2,0	0,0	0,030			0,030			0,030	0,030	0,000
C08	171	1,0	1,0	0,0	1,0	1,0	0,0		0,026			0,026			0,026	0,004
C09	020	1,0	1,0	0,0	1,0	1,0	0,0	0,020	0,019	0,001	0,020	0,020	0,000	0,020	0,020	0,000
C09	025	1,0	1,0	0,0	1,0	-1,0	2,0	0,017	0,071	0,088	0,017	0,071	0,054	0,017	0,017	0,000

Comité de infraestructuras para la Calidad de la Edificación

SACE

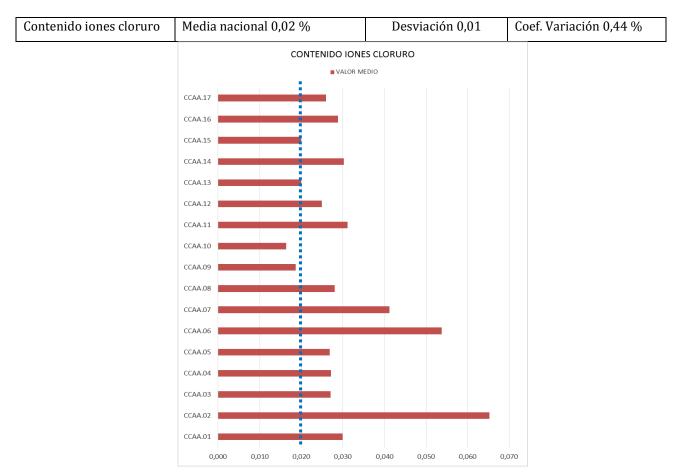
		RELAC	CION AC	GUA/AF	RIDO			CONTE	NIDO IO	NES CL	oruro			RESULT	'ADO	
CCAA	LAB	1	1	DESV	2	2	DESV	1	1	DESV	2	2	DESV	MEDIA	MEDIA	DESV
		(g/g)	(g/g)	(g/g)	(g/g)	(g/g)	(g/g)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
C09	036	1,0	1,0	0,0	1,0	1,0	0,0	0,030			0,030			0,030	0,030	0,000
C09	086	1,0	1,0	0,0	1,0	1,0	0,0	0,025	0,025	0,000	0,025	0,025	0,000	0,025	0,025	0,000
C09	110	1,0	1,0	0,0	1,0	1,0	0,0	0,020			0,020			0,020	0,020	0,000
C09	178	1,0	1,0	0,0	1,0	1,0	0,0	0,000	0,016	- 0,016	0,000	0,017	- 0,017	0,000	0,000	0,000
C10	028	1,0	1,0	0,0	1,0	1,0	0,0	0,002	0,002	0,000	0,001	0,001	0,000	0,001	0,001	0,000
C10	040	1,0	1,0	0,0	1,0	1,0	0,0	0,027	0,027	0,000	0,027	0,027	0,000	0,027	0,027	0,000
C10	113	2,0	2,0	0,0	2,0	2,0	0,0	0,020	0,020	0,000	0,021	0,021	0,000	0,021	0,021	0,000
C11	067		2,0			2,0		0,032	0,061	0,029	0,033	0,061	0,029	0,032	0,032	0,000
C11	087	1,9	1,9	0,0	1,9	1,9	0,0	0,032	0,030	0,002	0,031	0,030	0,001	0,030	0,032	0,002
C12	035	1,0	1,0	0,0	1,0	1,0	0,0		0,024		0,023	0,024	0,001	0,024	0,024	0,001
C12	051	1,0	1,0	0,0	1,0	1,0	0,0	0,020	0,018	0,002	0,020	0,019	0,001	0,020	0,020	0,000
C12	093	1,0	1,0	0,0	1,0	1,0	0,0	0,070			0,070			0,070	0,070	0,000
C12	105	1,0	1,1	-0,1	1,0	0,4	0,6	0,010			0,010			0,010	0,010	0,000
C12	112	1,0	1,0	0,0	1,0	1,0	0,0	0,037			0,037			0,037	0,037	0,000
C12	115							0,027			0,027			0,030	0,027	0,003
C12	119	2,0	2,0	0,0	2,0	2,0	0,0	0,027	0,027	0,000	0,027	0,026	0,000	0,000	0,027	0,027
C12	138	1,0	1,0	0,0	1,0	1,0	0,0	0,025	0,025	0,000		0,025	0,000	0,025	0,025	0,000
C12	142	1,0	4.0	0.0	1,0	0.0	0.0	0,028			0,027			0,028	0,027	0,000
C12	149	1,0	1,0	0,0	0,9	0,9	0,0	0,001	0.000	0.004	0,002	0.000	0.004	0,001	0,001	0,000
C12	175	1,0	1,0	0,0	1,1	1,1	0,0	0,030	0,029	0,001	0,030	0,029	0,001	0,030	0,030	0,000
C13	088	2,0	2,0	0,0	2,0	2,0	0,0	0,020	0,021	0,001	0,020	0,028	0,008	0,020	0,020	0,000
C13	144	1,0	1,0	0,0	1,0	1,0	0,0	0,024	0,024	0,000	0,025	0,025	0,000	0,024	0,024	0,000
C13	172													0,020		
C13	202	1,0	1,0	0,0	1,0	1,0	0,0	0,000	0,001	0,001	0,000	0,001	0,001	0,000	0,000	0,000
C14	069	1.0	2,0	0.0	1.0	2,0	0.0	0.022	0.022	0.000	0.022	0.022	0.000	0,022	0.022	0.000
C14 C14		1,0	1,0	0,0	1,0	1,0	0,0	0,022	0,022	0,000	0,022	0,022	0,000	0,022	0,022	0,000
C14		1,0	1,0	0,0	1,0	1,0	0,0	0,030	0,049	0,000		0,048	0,001	0,030	0,030	0,000
C14	152	1,0	1,0	0,0	1,0	1,0	0,0	0,047	- 0,009	0,060	0,050	- 0,016	0,066	0,045	0,045	0,000
C14	161	1,0	1,0	0,0	1,0	1,0	0,0	0,030	0,005	0.005	0,030	0,010	0,005	0,030	0,030	0,000
C14		1,0	1,0	0,0	1,0	1,0	0,0	0,009	-,	-,- 55	0,008	-,-20	-,-55	0,009	0,009	0,000
C15	042	1,0	1,0	0,0	1,0	1,0	0,0	0,016			0,016			0,020	0,016	0,004
C16	021	10,0	10,0	0,0	10,0	10,0	0,0		0,018	0,000		0,019	- 0,001	0,018	0,018	0,000
C16	056	1,0	1,0	0,0	1,0	1,0	0,0	0,027	0,026	0,001	0,026	0,025	0,001	0,026	0,026	0,000
C16	116	1,0	1,0	0,0	1,0	1,0	0,0	0,000	- 0,432	0,432	0,000	- 0,441	0,441	0,000	0,000	0,000

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

		RELAC	CION AC	GUA/AF	RIDO			CONTE	NIDO IC	ONES CL	oruro			RESULT	'ADO	
CCAA	LAB	1	1	DESV	2	2	DESV	1	1	DESV	2	2	DESV	MEDIA	MEDIA	DESV
		(g/g)	(g/g)	(g/g)	(g/g)	(g/g)	(g/g)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
C16	134	1,0	1,0	0,0	1,0	1,0	0,0	0,017			0,017			0,020	0,017	0,003
C16	155	2,0	2,0	0,0	2,0	2,0	0,0	0,019	0,019	0,000	0,017	0,016	0,001	0,018	0,018	0,000
C16	176	2,0	2,0	0,0	2,0	2,0	0,0	0,020	0,024	- 0,004	0,020	0,024	- 0,004	0,020	0,020	0,000
C16	047	4,0	4,0	0,0	4,0	4,0	0,0	0,092	0,028	0,064	0,100	0,057	0,043	0,100	0,096	0,004
C17	084	1,0	1,0	0,0	1,0	1,0	0,0	0,026	0,026	0,000	0,026	0,026	0,000	0,026	0,026	0,000


Valores aportados cuya expresión de las unidades no coincide con el Protocolo (valores sospechosos)

Valores no aportados y que se piden por el Protocolo (y Ficha de resultados)

Valor en los que se observan posibles evidencias de No Conformidad en el cálculo.

Valor que está dentro de lo recomendado en Protocolo

II. Gráficas de las determinaciones individuales de los laboratorios con la media nacional (con todo el grupo de valores por Comunidades , y la media (línea azul), descartando anómalos y aberrantes)

5. ANÁLISIS PRE-ESTADÍSTICO: RESULTADOS SULFATOS SOLUBLES EN ÁCIDO

I. Resultados aportados de las determinaciones por código y Comunidad Autónoma

Las conclusiones de cada uno de los análisis descritos a continuación, están basadas en los resultados obtenidos al aplicar el procedimiento normativo a los valores aportados por los laboratorios participantes, por lo que la aportación de valores erróneos puede dar lugar a evidencias de posibles No Conformidades.

Se han considerado como **Validación de datos** aquellos cuya desviación, en base a los datos recogidos en las Fichas de resultados de los propios laboratorios no superan los siguientes límites:

LIMITES ADMITIDOS	
1. MASA DEL RESIDUO SECO EN LA CAPSULA	0,005 g
2. SULFATOS SOLUBLES	0,005 g
3. RESULTADO	0,000050

		MA ENS <i>A</i>			MASA "	CRIS." VA	CIO		۸	MASA "CRI	S. + PRECI	"
CC AA	LAB	01	02	01	compro bacion	02	02	DIF	01	02	01	02
		(g)	(g)	(g)	(g)	(g)	(g)		(g)	(g)	(g)	(g)
C01	107	8,0	8,0	0,0081	0,0081	0,0077	0,0077	0,0000	20,8828	20,9919	20,8909	20,9996
C01	124	2,0	2,0	0,0078	0,0078	0,0077	0,0077	0,0000	22,9324	24,9937	22,9402	25,0014
C01	136	10,0	10,0	0,0481	0,0481	0,0048	0,0481	0,0433	49,6577	49,6577	49,7058	49,7058
C01	140	8,1	8,1	0,1000	0,1390	0,1000	0,1200	-0,0200	24,3807	24,3952	24,5197	24,5152
C01	146	2,0	2,0	0,0090	0,0090	0,0090	0,0090	0,0000	17,0903	16,9562	17,0993	16,9652
C01	162	2,0	2,0	0,0054	0,0054	0,0073	0,0073	0,0000	23,1384	25,2999	23,1438	25,3072
C01	163	2,0	2,0	0,0095	0,0095	0,0095	0,0095	0,0000	13,6892	13,4693	13,6987	13,4788
C01	187	2,0	2,0	0,0003	0,0003	0,0002	0,0002	0,0000	21,3879	24,1258	21,3882	24,1260
C01	201	8,1	8,0	0,1000	0,1277	0,1000	0,1492	0,0492	24,3576	24,1126	24,4853	24,2618
C02	043	8,1	8,0	0,0500	0,0500	0,0415	0,0415	0,0000	13,1752	14,3282	13,2252	14,3697
C02	070	2,0	2,0	0,0021	0,0021	0,0027	0,0027	0,0000	22,0014	21,9775	22,0035	21,9802

Comité de infraestructuras para la Calidad de la Edificación

SACE

		MA ENS <i>A</i>			MASA "	CRIS." VA	CIO		٨	MASA "CRI	S. + PRECI	"
CC AA	LAB	01	02	01	compro bacion	02	02	DIF	01	02	01	02
		(g)	(g)	(g)	(g)	(g)	(g)		(g)	(g)	(g)	(g)
C02	094	8,0	8,0	0,0038		0,0047						
C02	096	8,0	8,0	0,2290	0,2290	0,2170	0,2170	0,0000	8,1237	9,0362	8,3527	9,2532
C02	108	6,9	7,3	0,0044	0,0044	0,0047	0,0047	0,0000	16,8361	17,3301	16,8405	17,3348
C02	129	2,1	2,0	0,0272	0,0272	0,0278	0,0278	0,0000	27,2002	27,1893	27,2274	27,2171
C02	139	1,0	1,0	0,0007	0,0007	0,0006	0,0006	0,0000	18,5091	18,1136	18,5098	18,1142
C02	156	2,1	2,0	0,0165	0,0165	0,0135	0,0135	0,0000	18,0026	27,8233	18,0191	27,8368
C02	157	8,0	8,0	0,0366	0,0366	0,0370	0,0370	0,0000	8,5889	8,5889	8,6255	8,6259
C02	165	2,0	2,0	0,0100	0,0100	0,0090	0,0090	0,0000	44,9497	47,1067	44,9597	47,1157
C02	185	2,0	2,0	0,0080	0,0080	0,0085	0,0085	0,0000	68,8292	68,8390	68,8372	68,8475
C02	186	2,0	2,0	0,0067	0,0067	0,0052	0,0052	0,0000	26,3557	26,1265	26,3624	26,1317
C02	198	2,0	2,0	0,0057	0,0057	0,0051	0,0041	0,0010	29,2748	26,1610	29,2805	26,1651
C03	101	2,0	2,0	0,0030	0,0030	0,0028	0,0028	0,0000	19,7615	19,5341	19,7645	19,5369
C03	125	70,0	70,0	0,0204	0,0206	0,0207	0,0209	0,0002	67,0020	67,5146	67,0226	67,5355
C03	147	2,0	2,0	0,0031	0,0031	0,0027	0,0027	0,0000	54,1610	53,6222	54,1641	53,6249
C03	164	5,0	5,0	0,0024	0,0024	0,0010	0,0010	0,0000	17,3787	15,4383	17,3811	15,4393
C03	167	2,0	2,0	0,0090	0,0090	0,0077	0,0077	0,0000	15,5468	19,9993	15,5558	20,0070
C04	029	2,0	2,0	0,5923	0,5923	0,5838	0,5838	0,0000	24,2357	24,2673	24,8280	24,8511
C04	030	2,1	2,4	0,0054	0,0054	0,0049	0,0049	0,0000	26,6002	25,4315	26,6056	25,4364
C04	041	2,0	2,0	0,0014	0,0014	0,0009	0,0009	0,0000	30,6947	27,4210	30,6961	27,4219
C04	075	2,0	2,0	0,0044	0,0044	0,0040	0,0040	0,0000	28,9334	27,2039	28,9378	27,2079
C04	097	8,1	8,2	0,0330	0,0079	0,0340	0,0081	0,0259	21,9638	18,7248	21,9717	18,7329

Comité de infraestructuras para la Calidad de la Edificación

SACE

		MA ENSA			MASA "	CRIS." VA	ACIO		٨	MASA "CRI	S. + PRECI	."
CC AA	LAB	01	02	01	compro bacion	02	02	DIF	01	02	01	02
		(g)	(g)	(g)	(g)	(g)	(g)		(g)	(g)	(g)	(g)
C04	098	2,0	2,0	0,0019	0,0019	0,0026	0,0026	0,0000	20,2391	17,6511	20,2410	17,6537
C05	012	8,0	8,0	0,8582	0,8582	0,8590	0,8590	0,0000	36,9656	33,3842	37,8238	34,2432
C05	013	8,0	8,0	0,0034	0,0034	0,0034	0,0036	0,0002	24,5862	24,1576	24,5896	24,1612
C05	016	2,0	2,0	0,0003	0,0003	0,0004	0,0005	0,0001	25,6591	22,2684	25,6594	22,2689
C05	023	8,0	8,0	0,0120	0,0120	0,0120	0,0120	0,0000	19,4718	20,1536	19,4838	20,1656
C05	024	8,0	8,0	0,0119	0,0119	0,0118	0,0118	0,0000	20,7631	19,4912	20,7750	19,5030
C05	048	2,0	2,1	0,0031	0,0031	0,0024	0,0024	0,0000	19,0175	18,1459	19,0206	18,1483
C05	057	8,0	8,0	0,2000	0,2028	0,2000	0,1999	0,0001	35,1009	35,1999	35,3037	35,3998
C05	059	8,0	8,0	0,2000	0,1879	0,2000	0,2004	0,0004	35,1159	35,2002	35,3038	35,4006
C06	033											
C06	039	20,0	20,0	0,1253	0,1253	0,0969	0,0969	0,0000	33,9600	34,8219	34,0853	34,9188
C07	037	8,0	8,0	0,0147	0,0147	0,0155	0,0155	0,0000	12,1690	17,2050	12,1837	17,2205
C07	038	8,0	8,0	0,0472	0,0472	0,0470	0,0470	0,0000	25,8948	24,8876	25,9420	24,9346
C07	052	1,0	1,0	0,0000	0,0000	0,0000	0,0000	0,0000	24,3117	26,4125	24,3117	26,4125
C07	079	2,0	2,0	0,0063	0,0063	0,0068	0,0068	0,0000	28,1366	28,1531	28,1429	28,1599
C07	080	2,0	2,0	0,0033	0,0033	0,0025	0,0025	0,0000	29,9813	26,8227	29,9846	26,8252
C07	095	2,0	2,0	0,0045	0,0045	0,0038	0,0039	0,0001	19,1721	19,1122	19,1766	19,1161
C07	114	50,0	50,0	0,0494	0,0494	0,0466	0,0466	0,0000	27,1451	27,8387	27,1945	27,8853
C07	168	2,0	2,0	0,0006	0,0006	0,0007	0,0007	0,0000	16,9441	16,9359	16,9447	16,9366
C07	169	8,1	8,1	0,0185	0,0185	0,0171	0,0171	0,0000	15,0412	15,2916	15,0597	15,3087
C07	181	2,0	2,0	0,0183	0,0183	0,0174	0,0174	0,0000	36,5985	36,5014	36,6168	36,5188

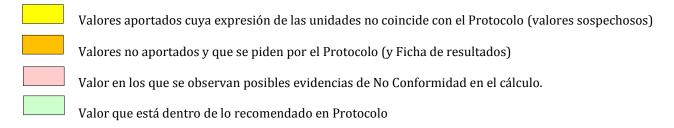
Comité de infraestructuras para la Calidad de la Edificación

SACE

		MA ENSA			MASA "	CRIS." VA	ACIO		٨	MASA "CRI	S. + PRECI	."
CC AA	LAB	01	02	01	compro bacion	02	02	DIF	01	02	01	02
		(g)	(g)	(g)	(g)	(g)	(g)		(g)	(g)	(g)	(g)
C07	189	50,2	50,1	0,0774	0,0770	0,0767	0,0763	0,0004	26,1710	25,5530	26,2480	25,6293
C07	191	2,1	2,1	0,0088	0,0088	0,0100	0,0100	0,0000	19,6958	18,6670	19,7046	18,6770
C08	133	2,0	2,0	0,0051	0,0051	0,0058	0,0058	0,0000	28,0361	24,0971	28,0412	24,1029
C08	137	2,0	2,0	0,0070	0,0070	0,0063	0,0063	0,0000	37,5324	38,0776	37,5394	38,0839
C08	148	2,0	2,0	0,0091	0,0091	0,0085	0,0085	0,0000	17,6324	17,9490	17,6415	17,9575
C08	171	2,0	2,0	0,0023	0,0023	0,0023	0,0023	0,0000	18,8915	20,2247	18,8938	20,2270
C09	020	2,0	2,0	0,0023	0,0023	0,0021	0,0021	0,0000	19,1155	20,5314	19,1178	20,5335
C09	025	2,0	2,0	0,0142	0,0142	0,0149	0,0149	0,0000	20,7582	21,8188	20,7724	21,8337
C09	036	8,1	8,1	0,0130	0,0130	0,0131	0,0131	0,0000	24,5378	24,0735	24,5508	24,0866
C09	086	2,0	2,0	0,0069	0,0069	0,0059	- 8,9941	9,0000	28,5265	39,7972	28,5334	30,8031
C09	109	2,0	2,0	0,0000	0,0075	0,0000	0,0076	0,0076	29,5052	29,5051	29,5127	29,5127
C09	110	8,0	8,0	0,0027	0,0027	0,0025	0,0025	0,0000	41,2332	39,7489	41,2359	39,7514
C09	178	2,0	2,0	0,0260	0,0260	0,0190	0,0210	0,0020	49,1580	45,4310	49,1840	45,4520
C10	017	2,0	2,0	0,0055	0,0055	0,0046	0,0046	0,0000	15,2098	15,2017	15,2153	15,2063
C10	028	2,0	2,0	0,0009	0,0009	0,0010	0,0010	0,0000	18,8848	19,0156	18,8857	19,0166
C10	040	2,0	2,0	0,0075	0,0075	0,0081	0,0081	0,0000	36,3360	35,5753	36,3435	35,5834
C10	081	2,0	2,0	0,0160	0,0164	0,0135	0,0135	0,0000	44,5286	43,8730	44,5450	43,8865
C10	103	2,1	2,0	0,0140	0,0144	0,0140	0,0140	0,0000	28,4345	28,4340	28,4489	28,4480
C10	113	8,0	8,0	0,0386	0,0386	0,0421	0,0421	0,0000	34,4382	34,4972	34,4768	34,5393
C11	067	2,0	2,0	0,0035	0,0035	0,0038	0,0038	0,0000	12,4194	23,5475	12,4229	23,5513
C11	087	2,0	2,0	0,0030	0,0030	0,0029	0,0029	0,0000	21,6314	20,1579	21,6344	20,1608

Comité de infraestructuras para la Calidad de la Edificación

SACE


		MA ENSA			MASA "	CRIS." VA	ACIO		۸	MASA "CRI	S. + PRECI	."
CC AA	LAB	01	02	01	compro bacion	02	02	DIF	01	02	01	02
		(g)	(g)	(g)	(g)	(g)	(g)		(g)	(g)	(g)	(g)
C12	035	2,0	2,0	0,0003	0,0003	0,0008	0,0008	0,0000	20,4096	22,8513	20,4099	22,8521
C12	051	8,0	8,1	0,0287	0,0287	0,0274	0,0274	0,0000	12,1004	11,9866	12,1291	12,0140
C12	093	2,0	2,0	0,0017	0,0017	0,0017	3,0017	3,0000	19,9744	23,6138	19,9761	26,6155
C12	105	8,0	8,0	0,0131	0,0131	0,0125	0,0125	0,0000	19,6077	19,9384	19,6208	19,9509
C12	112	2,0	2,0	0,0017	0,0017	0,0012	0,0000	0,0012	27,7081	27,4707	27,7098	27,4707
C12	115	2,0	2,0	0,0041	0,0041	0,0033	0,0033	0,0000	13,8093	13,7992	13,8134	13,8025
C12	119	2,0	2,0	0,0090	0,0090	0,0082	0,0282	0,0200	18,9812	20,9035	18,9902	20,9317
C12	138	2,0	2,0	0,0057	0,0057	0,0060	0,0060	0,0000	21,3417	21,0898	21,3474	21,0958
C12	149	2,1	2,0	0,0050	0,0050	0,0060	0,0060	0,0000	27,8994	35,1284	27,9044	35,1344
C12	175	2,0	2,0	0,0004	0,0004	0,0005	0,0005	0,0000	17,7133	19,1425	17,7137	19,1430
C13	088	2,0	2,0	0,0107	0,0107	0,0109	0,0109	0,0000	69,4937	63,3303	69,5044	63,3412
C13	132	2,0	2,0	0,0032	0,0032	0,0038	0,0008	0,0030	19,9853	21,4698	19,9885	21,4706
C13	144	8,0	8,0	0,0014	0,0014	0,0006	0,0006	0,0000	13,4772	13,3466	13,4786	13,3472
C13	202	2,0	2,0	0,0094	0,0094	0,0093	0,0093	0,0000	56,6571	60,0833	56,6665	60,0926
C14	069	20,0	20,0	2,0048	0,0136	2,0011	0,0158	1,9853	16,1887	18,5687	16,2023	18,5845
C14	135	8,0	8,0	0,0121	0,0121	0,0090	0,0090	0,0000	26,1549	26,1550	26,1670	26,1640
C14	141	2,0	2,0	0,0087								
C14	151	2,0	2,0	0,0033	0,0033	0,0037	0,0037	0,0000	25,1768	25,1766	25,1801	25,1803
C14	152	2,0	2,0	0,0020	0,0020	0,0029	0,0029	0,0000	25,2389	25,2388	25,2409	25,2417
C14	161	2,1	2,0	0,0047	0,0047	0,0041	0,0041	0,0000	15,1996	17,8659	15,2043	17,8700
C14	170	2,0	2,0	0,0001	0,0003	0,0001	0,0003	0,0002	56,8309	62,0967	56,8312	62,0970

Comité de infraestructuras para la Calidad de la Edificación

SACESubcomisión Administrativa para la Calidad de la Edificación

		MA ENSA	-		MASA "	CRIS." VA	ACIO		٨	MASA "CRI	S. + PRECI	"
CC AA	LAB	01	02	01	compro bacion	02	02	DIF	01	02	01	02
		(g)	(g)	(g)	(g)	(g)	(g)		(g)	(g)	(g)	(g)
C15	042	1,0	1,0	0,0033	0,0033	0,0029	0,0029	0,0000	15,6088	15,8541	15,6121	15,8570
C16	021	2,0	2,0	0,0005	0,0025	0,0005	0,0025	0,0020	25,9741	24,1415	25,9766	24,1440
C16	056	2,0	2,0	0,0128	0,0128	0,0114	0,0014	0,0100	17,9747	21,2038	17,9875	21,2052
C16	077	1,0	1,0	0,0000	0,0000	0,0000	- 4,0000	4,0000	25,6860	28,4210	25,6860	24,4210
C16	116	2,0	2,0	0,0038	0,0038	0,0038	0,0038	0,0000	19,7370	19,7370	19,7408	19,7408
C16	134	2,0	2,0	0,0074	0,0074	0,0076	0,0076	0,0000	20,3850	21,1871	20,3924	21,1947
C16	155	2,0	2,0	0,0034	0,0034	0,0026	0,0026	0,0000	19,3725	26,1813	19,3759	26,1839
C16	176	2,0	2,0	0,0020	0,0020	0,0015	0,0015	0,0000	33,5970	34,4135	33,5990	34,4150
C16	196	2000	2000	0,0120	0,0101	0,0140	0,0103	0,0037	56,1700	59,0860	56,1801	59,0963
C17	084	2,0	2,0	0,0065	0,0065	0,0066	0,0066	0,0000	18,8851	17,2072	18,8916	17,2138

Sobre la <u>masa de muestra de árido a ensayar</u>, en el apartado 12.3 de la norma, considera una sub muestra de 20 g que pasara 100% por el tamiz 0,125 mm, de los cuales habrá que tomar 2 g de este material para obtener dos determinaciones. Se observa a este respecto lo siguiente:

- valores sospechosos, que expresan en unidades diferentes el dato, se consideran los códigos 039
 (20), 069 (20) y 196 (2000),
- laboratorios que ensayan con 1 g: códigos 042, 052, 077 y 139,
- el 63,81 % de los laboratorios ensayan con 2 g como indica la norma,
- el 25,71 % de los laboratorios dicen ensayar con muestras principalmente de 8 g, y

SACESubcomisión Administrativa para la
Calidad de la Edificación

valores que se desvían, por exceso, más de cinco veces la masa establecida en la norma son el 3,81
 %, códigos 114, 125, 136 y 189, lo que evidencian una posible No Conformidad de ejecución del ensayo.

Por otra parte, para evitar cualquier oxidación de los sulfuros (y que dé lugar a un contenido mayor de sulfatos), se recuerda poner 90 ml de agua y 10 ml de ácido clorhídrico concentrado en un vaso de 250 ml y calentar hasta ebullición. Una vez alcanzado, se retira y mientras se agita, rociar la superficie de la muestra de ensayo

			CON	ITENIDO	EN SULFA	TOS		ı	RESULTADO		CRITERIO VALIDACION
CCAA	LAB	01 (%)	comprob (%)	DIF	02 (%)	comprob (%)	DIF	MEDIA (%)	comprob (%)	DIF	¿VALIDO?
C01	107	0,0400	0,0347	0,0053	0,0300	0,0330	- 0,0030	0,0400	0,0350	0,0050	SI
C01	124	0,1300	0,1317	- 0,0017	0,1300	0,1306	0,0006	0,1300	0,1300	0,0000	SI
C01	136	0,3300	0,1650	0,1650	0,3300	0,0165	0,3135	0,3300	0,3300	0,0000	SI
C01	140	0,5900	0,4250	0,1650	0,6000	0,4245	0,1755	0,6000	0,5950	0,0050	SI
C01	146	0,1540	0,1544	- 0,0004	0,1540	0,1544	- 0,0004	0,1540	0,1540	0,0000	SI
C01	162	0,0900	0,0926	0,0026	0,1300	0,1252	0,0048	0,1100	0,1100	0,0000	SI
C01	163	0,1600	0,1628	- 0,0028	0,1600	0,1628	- 0,0028	0,1600	0,1600	0,0000	SI
C01	187	0,0051	0,0051	0,0000	0,0034	0,0034	0,0000	0,0042	0,0043	- 0,0001	SI
C01	201	0,5800	0,4249	0,1551	0,6400	0,4286	0,2114	0,6100	0,6100	0,0000	SI
C02	043	0,2500	0,2123	0,0377	0,2100	0,1781	0,0319	0,2300	0,2300	0,0000	SI
C02	070	0,0380	0,0360	0,0020	0,0460	0,0463	0,0003	0,0400	0,0420	0,0020	SI
C02	094	0,0200	0,0163	0,0037	0,0200	0,0202	0,0002		0,0200		
C02	096	0,9800	0,9810	0,0010	0,9300	0,9300	0,0000	0,9600	0,9550	0,0050	SI
C02	108	0,0218	0,0218	0,0000	0,0221	0,0221	0,0000	0,0220	0,0219	0,0001	SI
C02	129	0,4400	0,4411	- 0,0011	0,4740	0,4747	- 0.0007	0,4500	0,4570	- 0,0070	SI
C02	139	0,0499	0,0232	0,0267	0,0499	0,0204	0,0295	0,0499	0,0499	0,0000	SI
C02	156	0,2700	0,2716	- 0,0016	0,2300	0,2279	0,0021	0,2500	0,2500	0,0000	SI
C02	157	0,1568	0,1569	- 0,0001	0,1585	0,1586	- 0,0001	0,1577	0,1577	0,0000	SI
C02	165	0,1710	0,1711	- 0,0001	0,1542	0,1542	0,0000	0,1626	0,1626	0,0000	SI
C02	185	0,1370	0,1371	- 0,0001	0,1442	0,1442	0,0000	0,1000	0,1406	- 0,0406	SI
C02	186	0,1100	0,1149	- 0,0049	0,0900	0,0892	0,0008	0,080,0	0,1000	- 0,0200	SI
C02	198	0,0980	0,0978	0,0002	0,0870	0,0875	0,0005	0,0925	0,0925	0,0000	SI
C03	101	0,0510	0,0513	0,0003	0,0470	0,0480	0,0010	0,0485	0,0490	0,0005	SI

Comité de infraestructuras para la Calidad de la Edificación

SACE

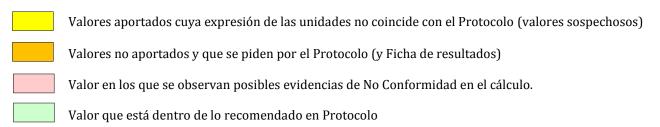
		CONTENIDO EN SULFATOS						RESULTADO			CRITERIO VALIDACION
CCAA	LAB	01 (%)	comprob	DIF	02 (%)	comprob (%)	DIF	MEDIA (%)	comprob (%)	DIF	¿VALIDO?
C03	125	0,0280	0,0100	0,0180	0,0280	0,0102	0,0178	0,0280	0,0280	0,0000	(%) SI
C03	147	0,0530	0,0531	0,0001	0,0460	0,0462	0,0002	0,0495	0,0495	0,0000	SI
C03	164	0,0200	0,0164	0,0001	0,0100	0,0069	0,0002	0,0200	0,0150	0,0050	SI
C03	167	0,1538	0,1538	0,0000	0,1320	0,1320	0,0000	0,1429	0,1429	0,0000	SI
C04	029	10,1300	10,1276	0,0024	10,0000	9,9972	0,0028	10,0650	10,0650	0,0000	SI
C04	030	0,0900	0,0900	0,0000	0,0700	0,0706	0,0006	0,0800	0,0800	0,0000	SI
C04	041	0,0200	0,0241	- 0,0041	0,0200	0,0155	0,0045	0,0200	0,0200	0,0000	SI
C04	075	0,0700	0,0754	- 0,0054	0,0700	0,0686	0,0014	0,0700	0,0700	0,0000	SI
C04	097	0,1300	0,1389	- 0,0089	0,1400	0,1424	- 0,0024	0,1400	0,1350	0,0050	SI
C04	098	0,0322	0,0322	0,0000	0,0439	0,0440	- 0,0001	0,0400	0,0381	0,0020	SI
C05	012	3,6700	3,6738	- 0,0038	3,6800	3,6778	0,0022	3,6800	3,6750	0,0050	SI
C05	013	0,0200	0,0146	0,0054	0,0200	0,0146	0,0054	0,0200	0,0200	0,0000	SI
C05	016	0,0050	0,0051	0,0001	0,0090	0,0069	0,0021	0,0070	0,0070	0,0000	SI
C05	023	0,0520	0,0514	0,0006	0,0520	0,0514	0,0006	0,0520	0,0520	0,0000	SI
C05	024	0,0510	0,0510	0,0000	0,0506	0,0506	0,0000	0,0500	0,0508	- 0,0008	SI
C05	048	0,0500	0,0526	0,0026	0,0500	0,0402	0,0098	0,0500	0,0500	0,0000	SI
C05	057	0,9000	0,8575	0,0425	0,9000	0,8575	0,0425	0,9000	0,9000	0,0000	SI
C05	059	0,9000	0,8575	0,0425	0,9000	0,8575	0,0425	0,9000	0,9000	0,0000	SI
C06	033	0,0127		_	0,0109			0,0118	0,0118	0,0000	SI
C06	039	0,2100	0,2149	0,0049	0,1700	0,1662	0,0038	0,1900	0,1900	0,0000	SI
C07	037	0,0600	0,0630	0,0030	0,0700	0,0665	0,0035	0,0600	0,0650	0,0050	SI
C07		0,2428	•		0,2406	0,2005		0,2417	0,2417	0,0000	
C07	052	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	SI
C07	079	0,1100	0,1079	0,0021	0,1200	0,1166	0,0034	0,1200	0,1150	0,0050	SI
C07	080	0,0600	0,0566	0,0034	0,0400	0,0429	0,0029	0,0500	0,0500	0,0000	SI
C07	095	0,0800	0,0772	0,0028	0,0600	0,0652	0,0052	0,0700	0,0700	0,0000	SI
C07	114	1,2300	0,0339	1,1961	1,1600	0,0320	1,1280	1,2000	1,1950	0,0050	SI
C07	168	0,0102	0,0102	0,0000	0,0120	0,0120	0,0000	0,0100	0,0111	0,0011	SI
C07	169	0,0788	0,0788	0,0000	0,1000	0,0726	0,0274	0,1000	0,0894	0,0106	SI
C07	181	0,3140	0,3140	0,0000	0,2980	0,2984	0,0004	0,3100	0,3060	0,0040	SI
C07	189	0,0535	0,0529	0,0006	0,0530	0,0525	0,0005	0,0533	0,0533	0,0001	SI
C07	191	0,1470	0,1477	- 0,0007	0,1650	0,1649	0,0001	0,1560	0,1560	0,0000	SI
C08	133	0,0900	0,0858	0,0042	0,1000	0,0987	0,0013	0,0900	0,0950	- 0,0050	SI

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

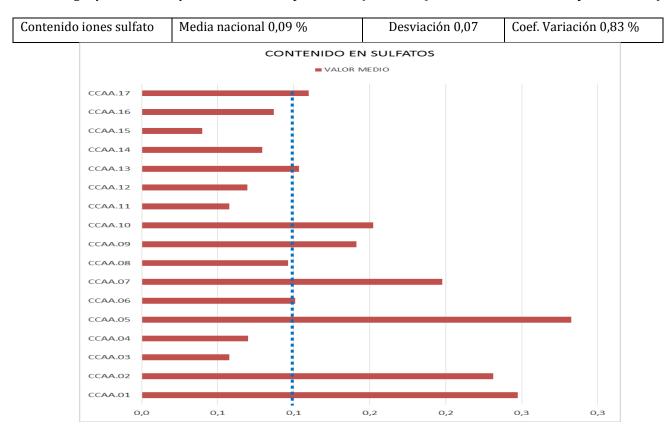
			CON	ITENIDO	EN SULFA	TOS			RESULTADO		CRITERIO VALIDACION
CCAA	LAB	01 (%)	comprob (%)	DIF	02 (%)	comprob (%)	DIF	MEDIA (%)	comprob (%)	DIF	¿VALIDACION ¿VALIDO? (%)
C08	137	0,1100	0,1200	- 0,0100	0,1200	0,1080	0,0120	0,1150	0,1150	0,0000	SI
C08	148	0,1500	0,1553	- 0,0053	0,1400	0,1443	- 0,0043	0,1400	0,1450	- 0,0050	SI
C08	171	0,0400	0,0394	0,0006	0,0400	0,0395	0,0005	0,0400	0,0400	0,0000	SI
C09	020	0,0400	0,0389	0,0011	0,0400	0,0354	0,0046	0,0400	0,0400	0,0000	SI
C09	025	0,2440	0,2435	0,0005	0,2560	0,2555	0,0005	0,2500	0,2500	0,0000	SI
C09	036	0,0600	0,0553	0,0047	0,0600	0,0558	0,0042	0,0600	0,0600	0,0000	SI
C09	086	0,1400	0,1179	0,0221	0,1200	0,1010	0,0190	0,1300	0,1300	0,0000	SI
C09	109	0,1000	0,0000	0,1000	0,1000	0,0000	0,1000	0,1000	0,1000	0,0000	SI
C09	110	0,0100	0,0116	0,0016	0,0100	0,0107	0,0007	0,0100	0,0100	0,0000	SI
C09	178	0,4000	0,4378	0,0378	0,4000	0,3259	0,0741	0,4000	0,4000	0,0000	SI
C10	017	0,0900	0,0943	0,0043	0,0800	0,0789	0,0011	0,0850	0,0850	0,0000	SI
C10	028	0,0154	0,0154	0,0000	0,0172	0,0172	0,0000	0,0163	0,0163	0,0000	SI
C10	040	0,1300	0,1285	0,0015	0,1400	0,1383	0,0017	0,1400	0,1350	0,0050	SI
C10	081	0,2700	0,2743	0,0043	0,2300	0,2314	0,0014	0,2500	0,2500	0,0000	SI
C10	103	0,2500	0,2287	0,0213	0,2400	0,2401	0,0001	0,2500	0,2450	0,0050	SI
C10	113	0,1650	0,1649	0,0001	0,1790	0,1797	- 0,0007	0,1720	0,1720	0,0000	SI
C11	067	0,0600	0,0599	0,0001	0,0700	0,0651	0,0049	0,0650	0,0650	0,0000	SI
C11	087	0,0510	0,0513	0,0003	0,0490	0,0497	- 0,0007	0,0500	0,0500	0,0000	SI
C12	035	0,0100	0,0051	0,0049	0,0100	0,0137	0,0037	0,0100	0,0100	0,0000	SI
C12	051	0,1200	0,1229	- 0,0029	0,1200	0,1166	0,0034	0,1200	0,1200	0,0000	SI
C12	093	0,0300	0,0291	0,0009	0,0300	0,0291	0,0009	0,0300	0,0300	0,0000	SI
C12	105	0,0400	0,0559	- 0,0159	0,0400	0,0535	- 0,0135	0,0400	0,0400	0,0000	SI
C12	112	0,0290	0,0292	- 0,0002	0,0210	0,0206	0,0004	0,0250	0,0250	0,0000	SI
C12	115	0,0700	0,0702	0,0002	0,0600	0,0565	0,0035	0,0600	0,0650	- 0,0050	SI
C12	119	0,1543	0,1544	- 0,0001	0,1372	0,1406	- 0,0034	0,1500	0,1458	0,0043	SI
C12	138	0,1000	0,0977	0,0023	0,1000	0,1027	- 0,0027	0,1000	0,1000	0,0000	SI
C12	149	0,0820	0,0817	0,0003	0,1029	0,1029	0,0000	0,0925	0,0925	0,0000	SI
C12	175	0,0100	0,0069	0,0031	0,0100	0,0086	0,0014	0,0100	0,0100	0,0000	SI
C13	088	0,1800	0,1834	- 0,0034	0,1900	0,1867	0,0033	0,1900	0,1850	0,0050	SI
C13	132	0,0550	0,0548	0,0002	0,0650	0,0651	- 0,0001	0,0600	0,0600	0,0000	SI
C13	144	0,0060	0,0060	0,0000	0,0026	0,0026	0,0000	0,0043	0,0043	0,0000	SI
C13	202	0,1600	0,1612	0,0012	0,1600	0,1595	0,0005	0,1600	0,1600	0,0000	SI


Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

			CON	ITENIDO	EN SULFA	TOS		1	RESULTADO		CRITERIO VALIDACION
CCAA	LAB	01 (%)	comprob (%)	DIF	02 (%)	comprob (%)	DIF	MEDIA (%)	comprob (%)	DIF	¿VALIDO? (%)
C14	069	0,2300	3,4382	- 3,2082	0,2700	3,4319	- 3,1619	0,2500	0,2500	0,0000	SI
C14	135	0,0620	0,0519	0,0101	0,0460	0,0386	0,0074	0,0540	0,0540	0,0000	SI
C14	141	0,1500	0,1491	0,0009	0,1300			0,1400	0,1400	0,0000	SI
C14	151	0,0230	0,0566	0,0336	0,0250	0,0634	0,0384	0,0240	0,0240	0,0000	SI
C14	152	0,0140	0,0343	0,0203	0,0200	0,0497	- 0,0297	0,0170	0,0170	0,0000	SI
C14	161	0,0800	0,0785	0,0015	0,0700	0,0694	0,0006	0,0700	0,0750	- 0,0050	SI
C14	170	0,0010	0,0017	0,0007	0,0010	0,0017	- 0,0007	0,0010	0,0010	0,0000	SI
C15	042	0,0400	0,1112	- 0,0712	0,0300	0,0992	- 0,0692	0,0400	0,0350	0,0050	SI
C16	021	0,0400	0,0085	0,0315	0,0400	0,0085	0,0315	0,0400	0,0400	0,0000	SI
C16	056	0,2191	0,2191	0,0000	0,1944	0,1944	0,0000	0,2067	0,2068	0,0000	SI
C16	077	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	SI
C16	116	0,0700	0,0652	0,0048	0,0700	0,0652	0,0048	0,0700	0,0700	0,0000	SI
C16	134	0,2539	0,1269	0,1270	0,2607	0,1303	0,1304	0,2573	0,2573	0,0000	SI
C16	155	0,0580	0,0583	0,0003	0,0450	0,0446	0,0004	0,0520	0,0515	0,0005	SI
C16	176	0,0300	0,0342	- 0,0042	0,0300	0,0257	0,0043	0,0300	0,0300	0,0000	SI
C16	196	0,0300	0,0002	0,0298	0,0400	0,0002	0,0398	0,0400	0,0350	0,0050	SI
C17	084	0,1100	0,1114	- 0,0014	0,1100	0,1132	- 0,0032	0,1100	0,1100	0,0000	SI



CICEComité de infraestructuras para la Calidad de la Edificación

SACESubcomisión Administrativa para la Calidad de la Edificación

II. Gráficas de las determinaciones individuales de los laboratorios con la media nacional *(con todo el grupo de valores por Comunidades , y la media (línea azul), descartando anómalos y aberrantes*)

Comité de infraestructuras para la Calidad de la Edificación

6. LABORATORIOS DE ENSAYO PARTICIPANTES

En el presente informe EILA 17 de MATERIALES, han participado en hormigón un total de 17 Comunidades Autónomas y 162 laboratorios de ensayo. En la siguiente tabla se muestra el número de laboratorios declarados por Comunidad Autónoma:

Tabla 9.1. Laboratorios participantes, por Comunidad Autónoma.

Comunidad Autónoma	$N^{\underline{o}}$ de Laboratorios Participantes
Andalucía	23
Aragón	12
Asturias	03
Cantabria	02
Castilla- La Mancha	10
Castilla- León	10
Cataluña	13
Comunidad de Madrid	17
Comunidad de Valencia	12
Extremadura	03
Galicia	05
Islas Baleares	08
Islas Canarias	12
La Rioja	03
Murcia	10
Navarra	09
País Vasco	10

Tabla 9.2. Nº de Laboratorios participantes por ensayo A NIVEL NACIONAL.

MATERIAL	ENSAYO	Nº de LABORATORIOS
Áridos finos	Ensayo de Cloruros. Método volumétrico (Volhard)	93
(ARENAS)	Ensayo de Sulfatos solubles en ácidos	103
BARRAS	Ensayo de Características de adherencia: Altura de corrugas	92
CORRUGADAS DE ACERO	Ensayo de Límite elástico y alargamiento total bajo carga máxima	86
	Ensayo de determinación del contenido en sales solubles	134
SUELO	Ensayo de contenido de materia orgánica oxidable. Método del permanganato potásico	130
	Ensayo de compactación, Proctor normal	138
Áridos (FILLER)	Ensayo de Granulometría de los fillers (tamizado en corriente de aire)	25
	Ensayo de Densidad aparente del polvo mineral	61
BETUNES	Ensayo de Punto de reblandecimiento – Método del anillo y bola.	51
BALDOSA CERÁMICA	Ensayo de Resistencia al deslizamiento/ resbalamiento (péndulo de fricción) en húmedo	70
	Ensayo de heladicidad	22

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

7. GRAFICOS DE DISPERSION

Los gráficos de dispersión son diagramas matemáticos en los que podemos apreciar, a golpe de vista, la dispersión y la simetría que existe para una distribución de valores.

La representación gráfica más útil para describir el comportamiento conjunto de dos variables es el diagrama de dispersión o **nube de puntos**, donde cada caso aparece representado como un punto en el plano definido por las variables de cada laboratorio para una misma muestra.

Para ello, se han considerado <u>todos los valores</u> incluidos los "sospechosos" por error técnico, pero se han anulado los "descartados" por una mala praxis de la norma de ensayo.

Una vez construido el diagrama se analiza la forma que tiene la nube de puntos obtenida, para así determinar las relaciones entre los dos tipos de datos. Este análisis puede efectuarse por técnicas estadísticas que permitan determinar si existe o no relación, y el grado de existencia en su caso. Para ello se utiliza como recta de regresión la Media aritmética de las medias inter-laboratorios más/ menos la desviación típica y el doble de la desviación típica (dos franjas de líneas rojas), que son los valores asignados y que resultan de referencia para la central de hormigón en estudio.

En la hoja aparecen dos gráficas: la de la izquierda, se grafía con las medias de los laboratorios como puntos negros y la de la derecha, con las determinaciones individuales de cada laboratorio con círculos y cuadrados en línea de color, respectivamente.

	Media aritmética interlaboratorios + 2xDesviación típica
	Media aritmética interlaboratorios
Ma	edia aritmética interlaboratorios – 2xDesviación estándar
	ula aritmetica interiadoratorios – 2xDesviación estandar

Comité de infraestructuras para la Calidad de la Edificación

8. DESCRIPCIÓN DEL MÉTODO DE ANÁLISIS ESTADÍSTICO APLICADO

Una vez que los datos se han revisado, se realiza un primer Análisis, el Pre-estadístico, donde ya se han eliminado aquellas mediciones que no cumplen la norma ("los descartados") y se han corregido los valores "sospechosos". De este primer análisis conocemos:

- El número mínimo de laboratorios participantes que se aceptan en el Plan EILA debe ser p≥3, puesto que prima la disponibilidad de recursos y entendemos que la distancia geográfica dificulta la fabricación de las probetas en menos centrales en pro de una mayor concentración de participantes, que reducirían la incertidumbre de las estimaciones a un nivel satisfactorio.
 - Bien es cierto que hay que recordar que en la norma UNE 82009-1:1999 en su Artículo 6.3.4 dice que, estas estimaciones de las desviaciones de repetibilidad y de reproducibilidad podrían diferir de forma sustancial de sus valores verdaderos si sólo toman parte del contraste un pequeño número de laboratorios (p=5). Lo habitual es un valor de p entre 8 y 15. Y cuando p es superior a 20, las incertidumbres de las estimaciones ya sólo experimentan pequeñas reducciones.
- El número mínimo de réplicas en el interior de cada laboratorio para la misma muestra, que debe ser n≥2. En general, por Protocolo son dos, excepto en el hormigón con el ensayo de la resistencia a compresión a 28 días y con el ensayo de profundidad de penetración de agua bajo presión estática, que son tres.

Si los datos cumplen con estos valores mínimos para "p" y "n", se realiza el análisis de conformidad en base a las normas **UNE 82009-2** y **82009-6** (equivalentes a las normas **ISO 5725-2 e ISO 5725-6**, respectivamente), referentes al *Método básico de la repetibilidad y reproducibilidad de un método de medición normalizado*, y por consiguiente, se realizan las siguientes aproximaciones:

- **Técnica gráfica de consistencia**, utilizando dos estadísticos determinados: interlaboratorios (*h*) e intralaboratorios (*k*) **de Mandel**.
- Ensayos de detección de resultados numéricos aberrantes: ensayos de variabilidad, donde el ensayo Mandel haya conducido a la sospecha.
 - **Ensayo de Cochran** (C): verifica el mayor valor de un conjunto de desviaciones típicas, siendo ello un test unilateral de valores aberrantes.
 - Ensayo de Grubbs (G): verifica la desviación estándar de todas las medias, eliminando de todo el rango de distribución de valores la/s media/s más alta/s y más baja/s, según si es el Simple Grubbs o el Doble Grubbs.

Comité de infraestructuras para la Calidad de la Edificación

Para los ensayos Mandel, Cochran y Grubbs simple, los resultados se consideran:

	Correcto	Si el valor del estadístico es menor o igual (≤) al 5% de su valor crítico.
	Anómalo (*)	Si el valor del estadístico es mayor (>) al 5% y menor o igual (≤) al 1% de su valor crítico.
	Aberrante (**)	Si el valor del estadístico es mayor (>) al 1% de su valor crítico.
Y, para el ens	ayo Grubbs doble, l	os resultados se consideran:
	Correcto	Si el valor del estadístico es mayor o igual (≥) al 5% de su valor crítico.
	Anómalo (*)	Si el valor del estadístico es menor (<) al 5% y mayor o igual (≥) al 1% de su valor crítico.
	Aberrante (**)	Si el valor del estadístico es menor (<) al 1% de su valor crítico.

Para rechazar un valor, será necesario que sea aberrante o anómalo tanto en las técnicas gráficas de consistencia como en los ensayos de detección de resultados numéricos.

Para identificar si los resultados son anómalos y/o aberrantes, estos métodos comparan el valor estadístico resultante de h, k, C y G obtenido en el Análisis estadístico de los resultados aportados por los laboratorios, con los indicadores estadísticos y valores críticos recogidos en las Tablas 4, 5, 6 y 7 de las normas antes citadas para una (p) y una (n) conocidas, respectivamente.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

9. CALCULO DE LA REPETIBILIDAD Y REPRODUCIBILIDAD: ANÁLISIS DE VARIANZA.

La importancia de conocer la precisión de los procesos de medida en los ensayos de los laboratorios, comienza a ser un aspecto cada vez más importante dentro del Plan EILA: junto con el cálculo de la incertidumbre en los ensayos. La precisión se expresa generalmente en términos de falta de precisión, pero lo que realmente importa es la medida en que esto ocurre. Para ello, la imprecisión se relaciona con la tolerancia establecida en la propia norma de ensayo, a partir de unos límites máximos permisibles, por debajo de los cuales, verifican que se está realizando correctamente.

En caso de no tener criterios de validación propios en la norma de ensayo, la mejora de un proceso de medida pasa por analizar los distintos factores de imprecisión. En general, establecer estos límites deben ser resultado del cociente entre la imprecisión (s) y la tolerancia (σ).

Los métodos para determinar la repetibilidad y reproducibilidad están basados en la evaluación estadística de las dispersiones de los resultados, ya sea en forma de rango o su representación como varianzas o desviaciones estándar. El método utilizado en este informe para determinar ambos conceptos es el del promedio de las varianzas o también conocido como ANOVA (siglas de analisys of varience) recogido en la norma ISO 17025.

Sabiendo que una varianza es una suma de cuadrados dividida por un número, que se llama grados de libertad, en una varianza muestral S^2 como es en el EILA17, con una varianza de población σ^{2} , el número de grados de libertad es el número de participantes menos 1:

- a. para el **Análisis pre-estadístico**, es el número de laborantes <u>no descartados</u> menos 1 y
- b. para el **Análisis estadístico**, el número de laborantes menos 1, una vez <u>filtrados los descartados</u>, <u>aberrantes y anómalos</u>.

Los datos básicos para los cálculos de las varianzas que, por tanto aparecen en las hojas de Análisis en dos momentos distintos, son:

- Los <u>resultados X_i </u> por laboratorio (determinaciones individuales de la misma muestra ensayada "i" veces en un laboratorio).
- Los <u>valores medios</u> de cada laboratorio (mLab) que a su vez, aparece junto a una segunda media, la aritmética (mArit) calculada a partir de los valores individuales aportados por el laboratorio, para asegurar la correspondencia entre unos y otros para el análisis estadístico.
- La <u>media de la central</u> (M) obtenida como promedio del grupo de valores medios de todos los laboratorios participantes de la central.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

En el EILA17, los laboratorios aportan en su mayoría al menos dos determinaciones, por lo que el nivel de ensayo es 2 y por tanto, la varianza de la diferencia es 2 σ 2, y la desviación típica de la diferencia su raíz cuadrada ($\sqrt{2} \sigma$ 2). A partir de aquí, los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística de las dispersiones de los resultados, en forma de varianzas o desviaciones estándar (ANOVA).

Este planteamiento equivale a la descomposición en dos componentes de imprecisión en la que se consideran dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad, (variabilidad intra-laboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad interlaboratorio).

Para ello se parte de la desviación típica de repetibilidad σ_r (%) y se calcula el límite de repetibilidad multiplicando esta por 2,8. La desviación típica de repetibilidad σ_r (%) se obtiene a partir de las determinaciones individuales de cada laboratorio y la desviación típica intralaboratorios S_R (%) se obtiene a partir de la diferencia entre los valores medios de cada laboratorio con la media de todo el grupo de distribución para una misma muestra. Para terminar, la reproducibilidad se evalúa de forma análoga, multiplicando 2,8 al sumando (σ_r y σ_l)= S_R .

Por tanto, la **repetibilidad de los resultados** significa que las mediciones sucesivas para un mismo ensayo y muestra, se efectúan en las mismas condiciones dentro de un periodo de tiempo corto: mismo laborante, mismo laboratorio (condiciones ambientales) y mismo equipo de medición utilizado. Sin embargo, la **reproducibilidad de los ensayos** es, teniendo en cuenta que las mediciones son para un mismo ensayo y muestra dentro de un periodo de tiempo corto, cambiando alguna de las condiciones de medición: el laborante, el laboratorio (las condiciones de uso (p.ej.procedimientos)) y/o el equipo de medición. En resumen, la primera hace referencia a la variabilidad entre medidas en el mismo laboratorio y la segunda debida al cambio de laboratorio.

- Si la repetibilidad r (%) es mayor a la reproducibilidad R (%) las posibles causas pueden ser que: el instrumento necesita mantenimiento, el equipo requiere ser calibrado, el montaje o ubicación donde se efectúan las mediciones necesita ser mejorado o existe una variabilidad excesiva entre las dos medidas hechas en un mismo laboratorio.
- Si la reproducibilidad R (%) es mayor que la repetibilidad r (%), las causas pueden ser que: el operador necesita más formación y/o mejor entrenamiento en cómo utilizar y cómo leer el instrumento, o no se han mantenido las condiciones de reproducibilidad (ambientales y/o de montaje del equipo).

Comité de infraestructuras para la Calidad de la Edificación

10.EVALUACION DE LA CONFORMIDAD: ZSCORE. METODO ESTADISTICO SOBRE

APTITUD

El método de evaluación adoptado en esta parte del informe es mediante el Z-Score, parte de la Norma ISO IEC 17043:2011 que consiste en determinar **el valor asignado**, el cálculo de estadísticas de desempeño y la evaluación del desempeño, cuyos cálculos estadísticos utilizados en el presente estudio se describen a continuación:

• Desviación típica o estándar (σ) $\sigma = \sqrt{\frac{1}{N-1}\sum_i(x_i - \overline{m})^2}$

La precisión se expresa generalmente en términos de falta de precisión, calculándose a partir de la desviación típica de los resultados. A mayor desviación típica menor precisión (Nota 10 del Art. 3.11 de la norma UNE 82009-1:1999).

• Coeficiente de variación (CV)

$$CV = \frac{\sigma}{|\overline{m}|} \times 100$$

Siendo: (\bar{m}) la media de los valores individuales y

 (x_i) Las determinaciones/valores individuales de un mismo laboratorio

Cuando se desea hacer referencia a la relación entre el tamaño de la media y la variabilidad de la variable, se utiliza el coeficiente de variación. Es importante que todos los valores sean positivos y su media dé, por tanto, un valor positivo. A mayor valor del coeficiente de variación mayor heterogeneidad de los valores de la variable; y a menor C.V., mayor **homogeneidad en los valores de la variable.**

• **Diferencia** $\mathbf{Di} = (mArit-M)$ **Diferencia de porcentaje** $\mathbf{Di} \% = (m - M) * 100/M$

Siendo: (xi) el resultado del laboratorio participante;

 $(\mathbf{m}Arit)$ el resultado medio calculado a partir de las determinaciones individuales $(\mathbf{x}i)$ del laboratorio participante sin redondeos;

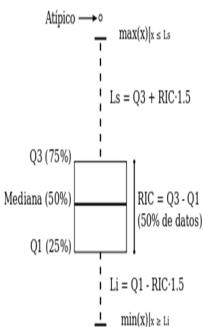
(<u>M) el valor medio asignado</u> para una misma muestra, resultado del conjunto de medias o valores individuales aportados por todos los laboratorios.

• Valores de z score: $z = \frac{mArit - M}{\sigma}$

Conforme a UNE-EN ISO /IEC 17043:2010 Anexo B (B3 y B4)

z ≤ 2	Resultado satisfactorio (S)
2 < z < 3	Resultado dudoso (D)
z ≥ 3	Resultado insatisfactorio (I)

CICE Comité de infraestructuras para la Calidad de la Edificación



11. DIAGRAMA DE CAJA-BIGOTES: ANALISIS PRE- ESTADÍSTICO Y ANALISIS ESTADÍSTICO

La gráfica de cajas y bigotes, representa un rectángulo (caja) definido por dos puntos Q_1 y Q_3 , cuya diferencia define el recorrido entre cuartiles (RIC) y, unas líneas que sobresalen de la caja que se llaman bigotes.

Estos bigotes tienen un límite de prolongación L superior y L inferior, de modo que cualquier dato que no se encuentre dentro de este rango, es un valor atípico que es marcado individualmente con un punto en la gráfica.

Los datos que se van a estudiar, se ordenan de mayor a menor y se dividen en 4 grupos. Cada cuarta parte se representa en este diagrama y se comienza con la caja de la siguiente forma:

RIC= (Q3 – Q1) el Recorrido entre cuartiles o longitud de la caja;

Q1= Primer cuartil. El valor extremo inferior de la caja representa el límite por debajo del cual se engloban el 25 % de los datos menores de la distribución.

Q2: Segundo cuartil o mediana, representa el valor medio de los datos agrupados en el centro de la distribución (25%-75%) o caja. No es la media de todos los datos a estudiar.

 \mathbf{Q}_{3} = Tercer cuartil. El valor extremo superior de la caja representa el límite que sobrepasa el 75% de los datos mayores de la distribución.

La longitud límite de los bigotes (Ls y Li) será desde la caja hasta el valor máximo y valor mínimo de los datos, respectivamente, siempre que esta longitud no supere un rango que es 1,5 veces el RIC de la caja.

En el caso de superarlo, el valor (máximo o mínimo) será un valor atípico y se identificará individualmente. Si este valor, superase en 3 veces el RIC, sería un valor extremadamente atípico. Y se expresan como a continuación se indica:

- Los valores atípicos: Lim inf= Q1 $(1.5 \times RIC)$ y Lim sup = Q3 + $(1.5 \times RIC)$
- Los **valores extremadamente atípicos** son aquellos valores atípicos que superan el doble del valor anterior: Lim inf= Q1 3(RIC) y Lim sup = Q3 + 3(RIC)

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

12. ANÁLISIS ESTADÍSTICO DE RESULTADOS: DETERMINACIÓN DE LOS CLORUROS SOLUBLES EN AGUA POR EL MÉTODO DE VOLHARD

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

INFORME DE ENSAYO MATERIALES

CLORUROS SOLUBLES EN AGUA

Comité de infraestructuras para la Calidad de la Edificación

Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Introducción

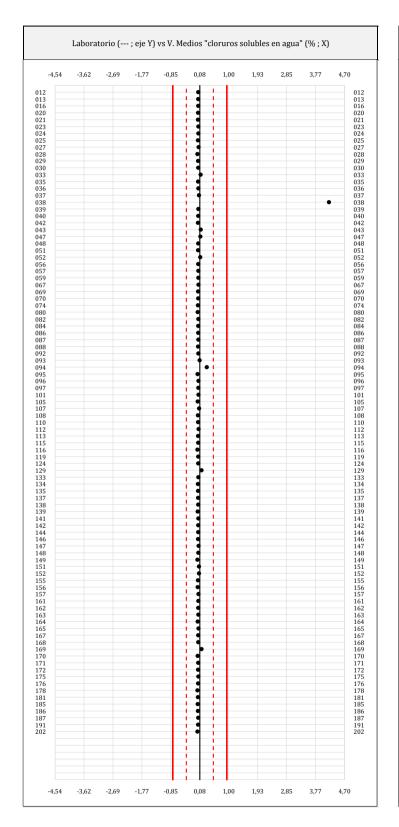
Criterios de análisis establecidos

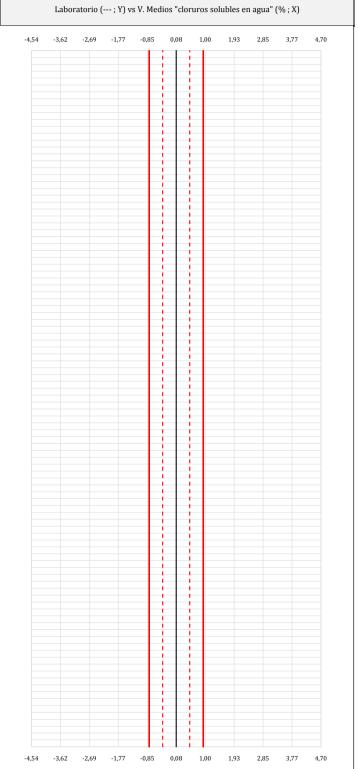
SACESubcomisión Administrativa para la

El procedimiento llevado a cabo para analizar los resultados del ensayo "cloruros solubles en agua", está basado en los protocolos EILA17 y las normas UNE 82009-2:1999 y UNE-EN ISO/IEC 17043:2010 y es, para cada laboratorio, el que sigue:

- 01. Análisis A: Estudio pre-estadístico. Antes de comenzar con los cálculos matemáticos, los datos son minuciosamente analizados para determinar si deben ser incluidos (√) o descartados (X) en función, de si cumplen o no, con unos criterios mínimos previamente establecidos y que pueden afectar a los resultados, tales como:
 - 01. No cumplir con el criterio de validación de la norma de ensayo, en caso de existir éste.
 - 02. No haber realizado el ensayo conforme a la norma de estudio, sin justificar los motivos por los cuales se ha hecho.
 - 03. No haber cumplido con las especificaciones particulares del ensayo descritas en los protocolos (pueden incluir aportar algún dato adicional no especificado en la norma).
 - 04. No haber especificado la fecha de verificación y/o de calibración de los equipos utilizados durante el ensayo (los resultados pueden verse afectados).
 - 05. No haber aportado, como mínimo, el resultado de dos determinaciones puesto que la desviación típica inter-laboratorio se ve afectada notablemente por ello.
 - 06. Expresiones erróneas de los resultados que no pudieran explicarse o no tuvieran sentido.
 - 07. No haber completado total y correctamente las hojas de ensayo, pues es posible que falte información para analizar parámetros importantes o que ayuden a explicar datos incorrectos.
 - 08. Cualquier otra incidencia o desviación de los resultados que afecte al conjunto de los datos analizados.
- 02. Análisis B: Mandel, Cochran y Grubbs. Los resultados aportados por los laboratorios que hayan superado el paso anterior, se verán sometidos al análisis estadístico compuesto por los métodos de Mandel, Cochran y Grubbs. Los criterios de análisis que se han seguido para considerar los resultados como aptos (✓) o no aptos (ズ) por éste procedimiento son:
 - O1. Para cada laboratorio se llevan a cabo los cálculos necesarios para determinar los estadísticos "h y k" de Mandel, "C" de Cochran y "G_{Simp} y G_{Dob}" de Grubbs, pudiendo salir un resultado correcto (X sobre fondo blanco), anómalo (X* sobre fondo rosa) o aberrante (X** sobre fondo morado), para todos o cada uno de ellos.
 - 02. Un laboratorio será considerado como apto, si el binomio Mandel-Cochran y el método de Grubbs no demuestran la presencia de resultados anómalos o aberrantes en comparación con los del resto de participantes. En caso contrario, el laboratorio afectado será excluido y por ende no tenido en cuenta para someterlo al análisis Z-Score.
 - Binomio Mandel-Cochran. Si el ensayo de Mandel justifica para algún laboratorio (en cualquiera de sus estadísticos) la presencia de un valor anómalo o aberrante, antes de considerarlo como no apto se analiza el parámetro de Cochran. En caso de que éste último sea correcto, los resultados del laboratorio se considerarán aceptables. En caso contrario, el laboratorio será descartado.
 - ^{04.} Método de Grubbs. Si el ensayo de Grubbs Simple demuestra que los resultados de algúno de los laboratorios son aberrantes o anómalos, finaliza el análisis y el laboratorio en cuestión deberá ser excluido. En caso de que éste método no demuestre la existencia de algún valor extraño, se lleva a cabo entonces el ensayo de Grubbs Doble aplicando los mismos criterios que para el método simple.
- 03. **Análisis C: Evaluación Z-Score.** La totalidad de los laboratorios que hayan superado el "Análisis B" serán estudiados por éste método. En él, se determina si los parámetros Z-Score obtenidos para cada participante son satisfactorios (S), dudosos (D) o insatisfactorios (I), en función de que estén o no dentro de unos límites críticos establecidos.
- 04. Análisis D: Estudios post-estadísticos. Una vez superados los tres análisis anteriores, haremos un último barrido de los datos para ver como quedan los resultados de los laboratorios implicados mediante los diagramas "Box-Plot" o de caja y bigotes antes y después de llevar a cabo los descartes.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis A. Estudio pre-estadístico

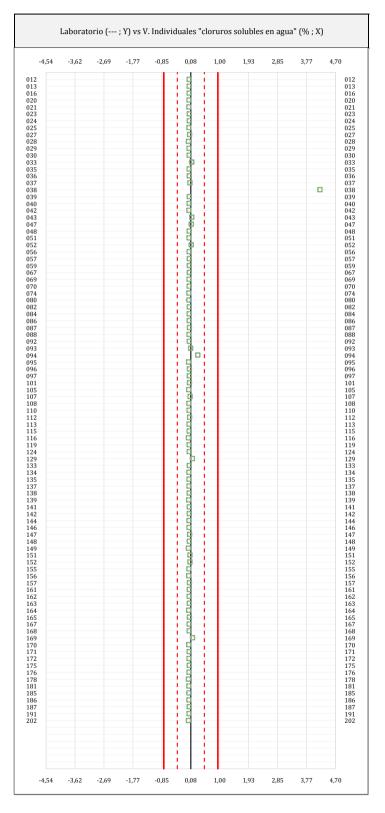
Apartado A.1. Gráficos de dispersión de valores medios

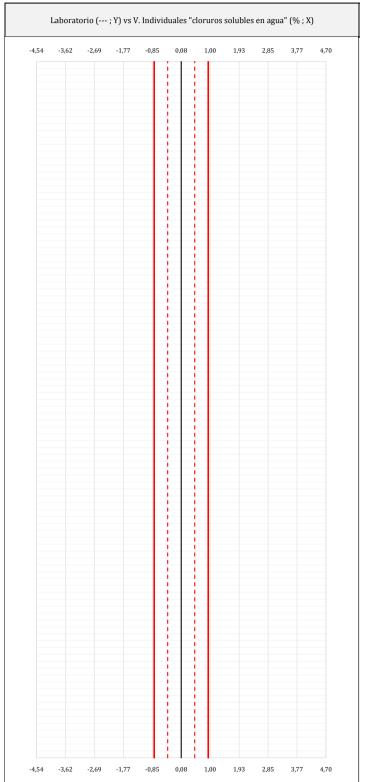
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (0,08; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (0,51/-0,35; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (0,94/-0,79; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro "•".

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (0,08; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (0,51/-0,35; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (0,94/-0,79; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{11}) se representa con un cuadrado azul " \square ", el segundo (X_{12}) con un círculo verde "0" y el tercero (X_{13}) con un triángulo grís " Δ ".

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

CC.AA	Lab	Х _{і 1}	X _{i 2}	Х _{і 3}	$\overline{X}_{i \; lab}$	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	¿Pasa A?	Observaciones
C05	012	0,02	0,02		0,02	0,02	0,000	-68,32	✓	
C05	013	0,03	0,03		0,03	0,03	0,000	-67,60	✓	
C05	016	0,03	0,02		0,03	0,02	0,001	-68,25	✓	
C09	020	0,02	0,02		0,02	0,02	0,000	-74,08	✓	
C16	021	0,02	0,02		0,02	0,02	0,000	-76,67	✓	
C05	023	0,03	0,03		0,03	0,03	0,000	-63,20	✓	
C05	024	0,03	0,03		0,03	0,03	0,000	-61,12	✓	
C09	025	0,02	0,02		0,02	0,02	0,000	-78,16	✓	
C04	027	0,04	0,04		0,04	0,04	0,001	-50,11	✓	
C10	028	0,00	0,00		0,00	0,00	0,000	-98,11	✓	
C04	029	0,02	0,02		0,02	0,02	0,000	-74,08	✓	
C04	030	0,03	0,03		0,03	0,03	0,001	-66,96	✓	
C06	033	0,11	0,10		0,10	0,10	0,009	33,41	✓	
C12	035	0,02	0,02		0,02	0,02	0,001	-69,55	✓	
C09	036	0,03	0,03		0,03	0,03	0,000	-61,12	✓	
C07	037	0,05	0,05		0,05	0,05	0,001	-37,15	✓	
C07	038	4,20	4,20		4,20	4,20	0,000	5.342,61	✓	
C06	039	0,03	0,03		0,03	0,03	0,000	-61,12	✓	
C10	040	0,03	0,03		0,03	0,03	0,000	-65,01	✓	
C15	042	0,02	0,02		0,02	0,02	0,000	-79,27	✓	
C02	043	0,11	0,11		0,11	0,11	0,001	40,60	✓	
C16	047	0,09	0,10		0,10	0,10	0,006	24,53	✓	
C05	048	0,03	0,03		0,03	0,03	0,000	-66,31	✓	
C12	051	0,02	0,02		0,02	0,02	0,000	-74,08	✓	
C07	052	0,09	0,09		0,09	0,09	0,000	16,63	✓	
C16	056	0,03	0,03		0,03	0,03	0,001	-66,22	✓	
C05	057	0,03	0,03		0,03	0,03	0,000	-63,72	✓	
C05	059	0,03	0,03		0,03	0,03	0,000	-63,72	✓	
C11	067	0,03	0,03		0,03	0,03	0,000	-58,34	✓	
C14	069	0,02	0,02		0,02	0,02	0,001	-72,79	✓	
C02	070	0,03	0,03		0,03	0,03	0,001	-66,96	✓	
C04	074	0,02	0,02		0,02	0,02	0,000	-77,97	✓	
C07	080	0,02	0,00		0,02	0,01	0,013	-85,75	✓	
C06	082	0,03	0,03		0,03	0,03	0,000	-63,33	✓	
C17	084	0,03	0,03		0,03	0,03	0,000	-66,31	✓	
C09	086	0,03	0,03		0,03	0,03	0,000	-67,32	✓	
C11	087	0,03	0,03		0,03	0,03	0,001	-59,18	✓	
C13	088	0,02	0,02		0,02	0,02	0,000	-74,08	✓	
C04	092	0,03	0,03		0,03	0,03	0,000	-61,12	✓	
C12	093	0,07	0,07		0,07	0,07	0,000	-9,29	✓	

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

 $^{^{01} \ &}quot;X_{ij} \ con \ j = 1, 2, 3" \ resultados \ individuales \ aportados \ por \ cada \ laboratorio, \\ "\overline{X}_{i \ lab}" \ media \ aritm\'etica \ intralaboratorio \ y \\ "\overline{X}_{i \ arit}" \ media \ aritm\'etica \ intralaboratorio \ calculada \ sin \ redondear.$

 $^{^{02}}$ "S_Li" es la desviación típica intralaboratorios y "D_{i arit}%" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	Х _{і 3}	$\overline{X}_{i lab}$	₹ i arit	S _{Li}	D _{i arit %}	¿Pasa A?	Observaciones
C02	094	0,30	0,30		0,30	0,30	0,000	288,76	✓	
C07	095	0,00	0,00		0,00	0,00	0,000	-95,21	✓	
C02	096	0,03	0,03		0,03	0,03	0,001	-57,24	✓	
C04	097	0,03	0,03		0,03	0,03	0,003	-59,31	✓	
C03	101	0,03	0,04		0,04	0,04	0,001	-54,64	✓	
C12	105	0,01	0,01		0,01	0,01	0,000	-87,04	✓	
C01	107	0,05	0,05		0,05	0,05	0,000	-30,02	✓	
C02	108	0,02	0,02		0,02	0,02	0,000	-75,15	✓	
C09	110	0,02	0,02		0,02	0,02	0,000	-74,08	✓	
C12	112	0,04	0,04		0,04	0,04	0,000	-51,92	✓	
C10	113	0,02	0,02		0,02	0,02	0,001	-73,24	✓	
C12	115	0,03	0,03		0,03	0,03	0,000	-65,08	✓	
C16	116	0,00	0,00		0,00	0,00	0,000	-100,00	✓	
C12	119	0,03	0,03		0,00	0,03	0,001	-65,06	✓	
C01	124	0,03	0,03		0,03	0,03	0,000	-66,31	✓	
C02	129	0,13	0,13		0,13	0,13	0,003	69,76	✓	
C08	133	0,03	0,03		0,03	0,03	0,000	-61,12	✓	
C16	134	0,02	0,02		0,02	0,02	0,000	-77,97	✓	
C14	135	0,02	0,02		0,02	0,02	0,000	-71,49	✓	
C08	137	0,02	0,02		0,02	0,02	0,000	-71,49	✓	
C12	138	0,03	0,03		0,03	0,03	0,000	-67,60	✓	
C02	139	0,01	0,01		0,01	0,01	0,000	-88,34	✓	
C14	141	0,03	0,03		0,03	0,03	0,000	-61,12	✓	
C12	142	0,03	0,03		0,03	0,03	0,000	-64,43	✓	
C13	144	0,02	0,02		0,02	0,02	0,001	-68,72	✓	
C01	146	0,02	0,02		0,02	0,02	0,000	-74,08	✓	
C03	147	0,04	0,04		0,04	0,04	0,004	-50,11	✓	
C08	148	0,03	0,03		0,03	0,03	0,000	-61,12	✓	
C12	149	0,00	0,00		0,00	0,00	0,000	-98,30	✓	
C14	151	0,05	0,05		0,05	0,05	0,000	-36,50	✓	
C14	152	0,05	0,05		0,05	0,05	0,001	-34,56	✓	
C16	155	0,02	0,02		0,02	0,02	0,001	-76,67	✓	
C02	156	0,01	0,01		0,01	0,01	0,001	-86,39	✓	
C02	157	0,03	0,03		0,04	0,03	0,000	-54,80	✓	
C14	161	0,03	0,03		0,03	0,03	0,000	-61,12	✓	
C01	162	0,03	0,03		0,03	0,03	0,000	-66,31	✓	
C01	163	0,03	0,03		0,03	0,03	0,000	-61,12	✓	
C03	164	0,01	0,01		0,01	0,01	0,000	-87,04	✓	
C02	165	0,03	0,03		0,03	0,03	0,001	-57,88	✓	
C03	167	0,02	0,02		0,02	0,02	0,000	-68,06	✓	

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

 $^{^{01} \ &}quot;X_{ij} \ con \ j = 1, 2, 3" \ resultados \ individuales \ aportados \ por \ cada \ laboratorio, \\ "\overline{X}_{i \ lab}" \ media \ aritm\'etica \ intralaboratorio \ y \\ "\overline{X}_{i \ arit}" \ media \ aritm\'etica \ intralaboratorio \ calculada \ sin \ redondear.$

 $^{^{02}}$ "S_Li" es la desviación típica intralaboratorios y "D_{i arit}%" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

CC.AA	Lab	$X_{i\ 1}$	$X_{i\ 2}$	$X_{i\ 3}$	$\overline{X}_{i\;lab}$	$\overline{X}_{i \; arit}$	S_{Li}	$D_{i\; arit \%}$	¿Pasa A?	Observaciones
C07	168	0,03	0,03		0,03	0,03	0,000	-66,70	✓	
C07	169	0,13	0,13		0,10	0,13	0,000	69,63	✓	
C14	170	0,01	0,01		0,01	0,01	0,001	-88,99	✓	
C08	171	0,03	0,03		0,03	0,03	0,000	-66,31	✓	
C13	172	0,02	0,02		0,02	0,02	0,000	-74,08	✓	
C12	175	0,03	0,03		0,03	0,03	0,000	-61,12	✓	
C16	176	0,02	0,02		0,02	0,02	0,000	-74,08	✓	
C09	178	0,00	0,00		0,00	0,00	0,000	-100,00	✓	
C07	181	0,02	0,02		0,02	0,02	0,000	-76,67	✓	
C02	185	0,02	0,00		0,00	0,01	0,015	-86,44	✓	
C02	186	0,02	0,02		0,02	0,02	0,000	-77,97	✓	
C01	187	0,03	0,03		0,03	0,03	0,001	-64,36	✓	
C07	191	0,02	0,02		0,02	0,02	0,001	-72,14	✓	
C13	202	0,00	0,00		0,00	0,00	0,000	-100,00	✓	

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

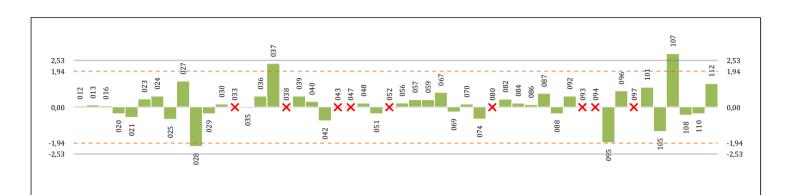
 $^{^{01}\ &}quot;X_{ij}\ con\ j=1,2,3"\ resultados\ individuales\ aportados\ por\ cada\ laboratorio,\\ "\overline{X}_{i\ lab}"\ media\ aritm\'etica\ intralaboratorio\ y\ "\overline{X}_{i\ arit}"\ media\ aritm\'etica\ intralaboratorio\ calculada\ sin\ redondear.$

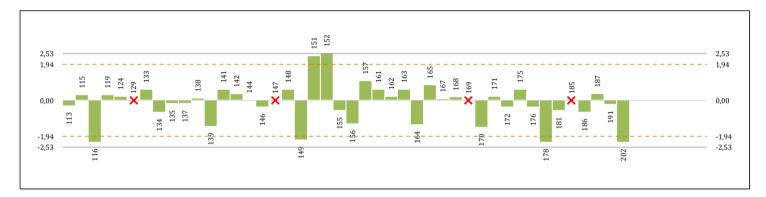
 $^{^{02}}$ "S_Li" es la desviación típica intralaboratorios y "D_{i arit}%" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

Comité de infraestructuras para la Calidad de la Edificación

SACESubcomisión Administrativa para la


Calidad de la Edificación



CLORUROS SOLUBLES EN AGUA (%)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Análisis gráfico de consistencia inter-laboratorios "h" de Mandel

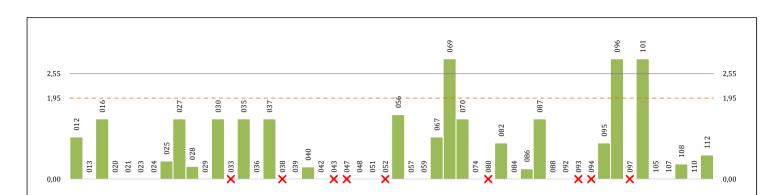
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

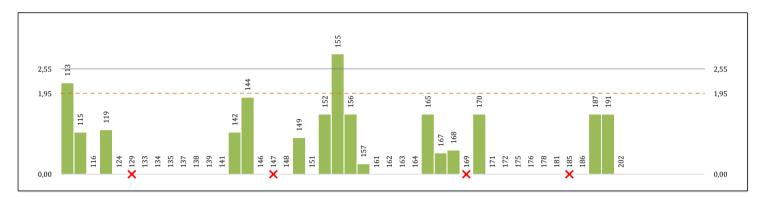
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

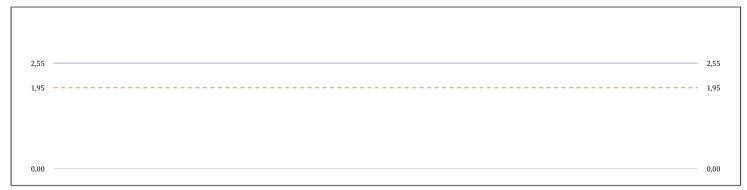
Comité de infraestructuras para la Calidad de la Edificación

SACESubcomisión Administrativa para la


Calidad de la Edificación



CLORUROS SOLUBLES EN AGUA (%)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Análisis gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	Х _{і 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S _{L i}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	G _{Sim Sup}	$G_{Dob\ Inf}$	G _{Dob Sup}	¿Pasa B?
C05	012	0,025	0,024		0,025	0,024	0,000	2,45	0,06	1,02						✓
C05	013	0,025	0,025		0,025	0,025	0,000	4,76	0,11	0,00						✓
C05	016	0,025	0,024		0,025	0,025	0,001	2,66	0,06	1,45						✓
C09	020	0,020	0,020		0,020	0,020	0,000	-16,20	-0,36	0,00						✓
C16	021	0,018	0,018		0,018	0,018	0,000	-24,58	-0,55	0,00						✓
C05	023	0,028	0,028		0,028	0,028	0,000	19,00	0,43	0,00						✓
C05	024	0,030	0,030		0,030	0,030	0,000	25,71	0,58	0,00						✓
C09	025	0,017	0,017		0,017	0,017	0,000	-29,39	-0,66	0,44						✓
C04	027	0,038	0,039		0,039	0,039	0,001	61,32	1,38	1,45						✓
C10	028	0,002	0,001		0,001	0,001	0,000	-93,89	-2,11*	0,31	0,104					✓
C04	029	0,020	0,020		0,020	0,020	0,000	-16,20	-0,36	0,00						✓
C04	030	0,025	0,026		0,026	0,026	0,001	6,85	0,15	1,45						✓
C06	033	0,109	0,097		0,103	0,103										X
C12	035	0,024	0,023		0,024	0,024	0,001	-1,53	-0,03	1,45						✓
C09	036	0,030	0,030		0,030	0,030	0,000	25,71	0,58	0,00						✓
C07	037	0,049	0,048		0,048	0,049	0,001	103,23	2,32*	1,45	0,104					✓
C07	038	4,200	4,200		4,200	4,200										X
C06	039	0,030	0,030		0,030	0,030	0,000	25,71	0,58	0,00						✓
C10	040	0,027	0,027		0,027	0,027	0,000	13,14	0,30	0,29						✓
C15	042	0,016	0,016		0,020	0,016	0,000	-32,96	-0,74	0,00						✓
C02	043	0,109	0,108		0,109	0,109										X
C16	047	0,092	0,100		0,100	0,096										X
C05	048	0,026	0,026		0,026	0,026	0,000	8,95	0,20	0,00						✓
C12	051	0,020	0,020		0,020	0,020	0,000	-16,20	-0,36	0,00						√
C07	052	0,090	0,090		0,090	0,090										X
C16	056	0,027	0,026		0,026	0,026	0,001	9,22	0,21	1,55						√
C05	057	0,028	0,028		0,028	0,028	0,000	17,33	0,39	0,00						✓
C05	059	0,028	0,028		0,028	0,028	0,000	17,33	0,39	0,00						✓
C11	067	0,032	0,033		0,032	0,032	0,000	34,72	0,78	1,02						✓
C14	069	0,020	0,022		0,022	0,021	0,001	-12,00	-0,27	2,90**	0,104					✓
C02	070	0,026	0,025		0,030	0,026	0,001	6,85	0,15	1,45						✓
C04	074	0,017	0,017		0,017	0,017	0,000	-28,77	-0,65	0,00						✓
C07	080	0,020	0,002		0,020	0,011										X
C06	082	0,029	0,028		0,028	0,028	0,000	18,58	0,42	0,87						✓
C17	084	0,026	0,026		0,026	0,026	0,000	8,95	0,20	0,00						√
C09	086	0,025	0,025		0,025	0,025	0,000	5,66	0,13	0,25						√
C11	087	0,032	0,031		0,030	0,032	0,001	31,99	0,72	1,45						√
C13	088	0,020	0,020		0,020	0,020	0,000	-16,20	-0,36	0,00						✓
C04	092	0,030	0,030		0,030	0,030	0,000	25,71	0,58	0,00						✓
C12	093	0,070	0,070		0,070	0,070										X

 $^{^{01}\ &}quot;X_{ij}\ con\ j=1,2,3"\ resultados\ individuales\ aportados\ por\ cada\ laboratorio,\\ "\overline{X}_{i\ lab}"\ media\ aritm\'etica\ intralaboratorio\ y\ "\overline{X}_{i\ arit}"\ media\ aritm\'etica\ intralaboratorio\ calculada\ sin\ redondear.$

⁰² "S_Lı" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h_i y k_i", "C_i", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S_{Li}	$D_{i\;arit\%}$	h _i	k _i	C _i	$G_{Sim\;Inf}$	$G_{Sim \; Sup}$	$G_{Dob\;Inf}$	$G_{Dob\;Sup}$	¿Pasa B?
602	004	0.200	0.200		0.200	0.200										
C02	094	0,300	0,300		0,300	0,300	0.000		1.00	0.07						X
C07	095	0,003	0,004		0,004	0,004	0,000	-84,50	-1,90	0,87	0.404					<u> </u>
C02	096	0,032	0,034		0,033	0,033	0,001	38,28	0,86	2,90**	0,104					√
C04	097	0,029	0,034		0,031	0,031										X
C03	101	0,034	0,036		0,035	0,035	0,001	46,66	1,05	2,90**	0,104					√
C12	105	0,010	0,010		0,010	0,010	0,000	-58,10	-1,31	0,00						√
C01	107	0,054	0,054		0,054	0,054	0,000	126,27	2,84**	0,00	0,104		2,841		0,8157	√
C02	108	0,019	0,019		0,019	0,019	0,000	-19,65	-0,44	0,36						✓
C09	110	0,020	0,020		0,020	0,020	0,000	-16,20	-0,36	0,00						✓
C12	112	0,037	0,037		0,037	0,037	0,000	55,46	1,25	0,58						✓
C10	113	0,020	0,021		0,021	0,021	0,001	-13,47	-0,30	2,21*	0,104					✓
C12	115	0,027	0,027		0,030	0,027	0,000	12,93	0,29	1,02						✓
C16	116	0,000	0,000		0,000	0,000	0,000	-100,00	-2,25*	0,00	0,104	2,250		0,8702		✓
C12	119	0,027	0,027		0,000	0,027	0,001	12,99	0,29	1,07						✓
C01	124	0,026	0,026		0,026	0,026	0,000	8,95	0,20	0,00						✓
C02	129	0,129	0,133		0,131	0,131										X
C08	133	0,030	0,030		0,030	0,030	0,000	25,71	0,58	0,00						✓
C16	134	0,017	0,017		0,020	0,017	0,000	-28,77	-0,65	0,00						✓
C14	135	0,022	0,022		0,022	0,022	0,000	-7,81	-0,18	0,00						✓
C08	137	0,022	0,022		0,022	0,022	0,000	-7,81	-0,18	0,00						✓
C12	138	0,025	0,025		0,025	0,025	0,000	4,76	0,11	0,00						✓
C02	139	0,009	0,009		0,009	0,009	0,000	-62,29	-1,40	0,00						✓
C14	141	0,030	0,030		0,030	0,030	0,000	25,71	0,58	0,00						✓
C12	142	0,028	0,027		0,028	0,027	0,000	15,02	0,34	1,02						✓
C13	144	0,024	0,025		0,024	0,024	0,001	1,15	0,03	1,86						✓
C01	146	0,020	0,020		0,017	0,020	0,000	-16,20	-0,36	0,00						✓
C03	147	0,036	0,041		0,039	0,039										Х
C08	148	0,030	0,030		0,030	0,030	0,000	25,71	0,58	0,00						√
C12	149	0,001	0,002		0,001	0,001	0,000	-94,49	-2,13*	0,89	0,104					√
C14	151	0,049	0,049		0,049	0,049	0,000	105,32	2,37*	0,00	0,104					√
C14	152	0,051	0,050		0,051	0,051	0,001	111,61	2,51*	1,45	0,104				0,8157	√
C16	155	0,019	0,017		0,018	0,018	0,001	-24,58	-0,55	2,90**	0,104					√
C02	156	0,011	0,010		0,011	0,011	0,001	-56,00	-1,26	1,45						√
C02	157	0,035	0,035		0,035	0,035	0,000	46,17	1,04	0,25						√
C14	161	0,030	0,030		0,030	0,030	0,000	25,71	0,58	0,00						√
C01	162	0,026	0,026		0,026	0,026	0,000	8,95	0,20	0,00						
C01	163	0,030	0,030		0,030	0,030	0,000	25,71	0,58	0,00						
C03	164	0,010	0,010		0,010	0,010	0,000	-58,10	-1,31	0,00						
C02	165	0,032	0,033		0,033	0,033	0,000	36,18	0,81	1,45						
C03	167	0,032	0,024		0,035	0,033	0,001	3,27	0,07	0,51						-
	107	0,023	0,024		0,023	0,023	0,000	3,47	0,07	0,31						

 $^{^{01}\ &}quot;X_{ij}\ con\ j=1,2,3"\ resultados\ individuales\ aportados\ por\ cada\ laboratorio,\\ "\overline{X}_{i\ lab}"\ media\ aritm\'etica\ intralaboratorio\ y\ "\overline{X}_{i\ arit}"\ media\ aritm\'etica\ intralaboratorio\ calculada\ sin\ redondear.$

⁰² "S_Lı" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h_i y k_i", "C_i", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S_{Li}	$D_{i\; arit \%}$	h _i	k_{i}	C_{i}	$G_{Sim\ Inf}$	$G_{Sim\;Sup}$	$G_{Dob\;Inf}$	$G_{Dob\;Sup}$	¿Pasa B?
C07	168	0,026	0,026		0,026	0,026	0,000	7,69	0,17	0,58						√
C07	169	0,020	0,026		0,026	0,026			0,17							X
C14	170	0,009	0,008		0,009	0,009	0,001	-64,38	-1,45	1,45						
C08	171	0,009	0,026		0,030	0,009	0,001	8,95	0,20	0,00						
C13	172	0,020	0,020		0,020	0,020	0,000	-16,20	-0,36	0,00						- ✓
C13	175	0,020	0,020		0,020	0,020	0,000	25,71	0,58	0,00						- ✓
					0,030											√
C16	176	0,020	0,020			0,020	0,000	-16,20	-0,36	0,00	0.104	2.250		0.0702		
C09	178	0,000	0,000		0,000	0,000	0,000	-100,00	-2,25*	0,00	0,104	2,250		0,8702		√
C07	181	0,018	0,018		0,020	0,018	0,000	-24,58	-0,55	0,00						√
C02	185	0,021	0,000		0,000	0,010										X
C02	186	0,017	0,017		0,017	0,017	0,000	-28,77	-0,65	0,00						√
C01	187	0,027	0,028		0,027	0,028	0,001	15,23	0,34	1,45						√
C07	191	0,022	0,021		0,022	0,022	0,001	-9,91	-0,22	1,45						√
C13	202	0,000	0,000		0,000	0,000	0,000	-100,00	-2,25*	0,00	0,104	2,250		0,8702		✓

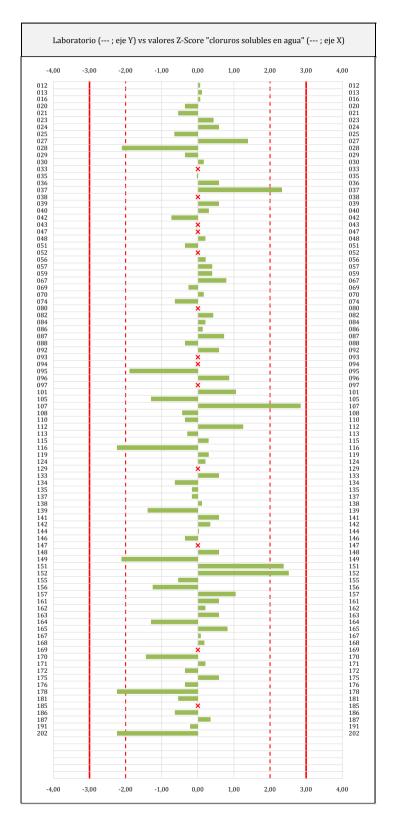
 $^{^{01}\ &}quot;X_{ij}\ con\ j=1,2,3"\ resultados\ individuales\ aportados\ por\ cada\ laboratorio,\\ "\overline{X}_{i\ lab}"\ media\ aritm\'etica\ intralaboratorio\ y\ "\overline{X}_{i\ arit}"\ media\ aritm\'etica\ intralaboratorio\ calculada\ sin\ redondear.$

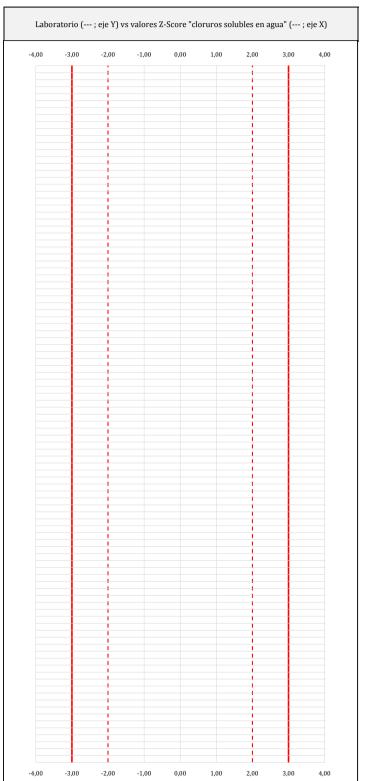
⁰² "S_Lı" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h_i y k_i", "C_i", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S_{Li}	$D_{iarit\%}$	¿Pasa A?	¿Pasa B?	Total	Causa	Iteración	Z-Score	Evaluación
005	040	0.00	0.00				1 0000	0.45						0.055	
C05	012	0,02	0,02		0,02	0,02	0,000	2,45	√	<u> </u>				0,055	S
C05	013	0,03	0,03		0,03	0,03	0,000	4,76	√	<u> </u>	<u> </u>			0,107	S
C05	016	0,03	0,02		0,03	0,02	0,001	2,66	√	<u> </u>	√			0,060	S
C09	020	0,02	0,02		0,02	0,02	0,000	-16,20			√			-0,364	S
C16	021	0,02	0,02		0,02	0,02	0,000	-24,58	√	<u> </u>	√			-0,553	S
C05	023	0,03	0,03		0,03	0,03	0,000	19,00	√	<u> </u>	√			0,428	S
C05	024	0,03	0,03		0,03	0,03	0,000	25,71	√	√	√			0,578	S
C09	025	0,02	0,02		0,02	0,02	0,000	-29,39	√	√	√			-0,661	S
C04	027	0,04	0,04		0,04	0,04	0,001	61,32	√	√	√			1,380	S
C10	028	0,00	0,00		0,00	0,00	0,000	-93,89	√	√	√			-2,113	D
C04	029	0,02	0,02		0,02	0,02	0,000	-16,20	√	√	✓			-0,364	S
C04	030	0,03	0,03		0,03	0,03	0,001	6,85	√	√	✓			0,154	S
C06	033	0,11	0,10		0,10	0,10			✓	X	X	AB	0		
C12	035	0,02	0,02		0,02	0,02	0,001	-1,53	✓	✓	✓			-0,034	S
C09	036	0,03	0,03		0,03	0,03	0,000	25,71	✓	✓	√			0,578	S
C07	037	0,05	0,05		0,05	0,05	0,001	103,23	✓	✓	✓			2,323	D
C07	038	4,20	4,20		4,20	4,20			✓	X	X	AB	0		
C06	039	0,03	0,03		0,03	0,03	0,000	25,71	✓	✓	✓			0,578	S
C10	040	0,03	0,03		0,03	0,03	0,000	13,14	✓	✓	✓			0,296	S
C15	042	0,02	0,02		0,02	0,02	0,000	-32,96	✓	✓	✓			-0,742	S
C02	043	0,11	0,11		0,11	0,11	ļ		✓	X	X	AN	1		
C16	047	0,09	0,10		0,10	0,10			✓	X	X	AB	0		
C05	048	0,03	0,03		0,03	0,03	0,000	8,95	✓	✓	✓			0,201	S
C12	051	0,02	0,02		0,02	0,02	0,000	-16,20	✓	✓	✓			-0,364	S
C07	052	0,09	0,09		0,09	0,09			✓	X	X	AB	2		
C16	056	0,03	0,03		0,03	0,03	0,001	9,22	✓	✓	✓			0,207	S
C05	057	0,03	0,03		0,03	0,03	0,000	17,33	✓	√	√			0,390	S
C05	059	0,03	0,03		0,03	0,03	0,000	17,33	✓	√	√			0,390	S
C11	067	0,03	0,03		0,03	0,03	0,000	34,72	✓	✓	√			0,781	S
C14	069	0,02	0,02		0,02	0,02	0,001	-12,00	✓	✓	√			-0,270	S
C02	070	0,03	0,03		0,03	0,03	0,001	6,85	✓	✓	✓			0,154	S
C04	074	0,02	0,02		0,02	0,02	0,000	-28,77	✓	✓	✓			-0,647	S
C07	080	0,02	0,00		0,02	0,01			✓	Х	Х	AB	0		
C06	082	0,03	0,03		0,03	0,03	0,000	18,58	√	√	√			0,418	S
C17	084	0,03	0,03		0,03	0,03	0,000	8,95	√	√	√			0,201	S
C09	086	0,03	0,03		0,03	0,03	0,000	5,66	√	√	√			0,127	S
C11	087	0,03	0,03		0,03	0,03	0,001	31,99	√	√	√			0,720	S
C13	088	0,02	0,02		0,02	0,02	0,000	-16,20	√	√	√			-0,364	S
C04	092	0,03	0,03		0,03	0,03	0,000	25,71	√	√	√			0,578	S
C12	093	0,07	0,07		0,07	0,07			√	X	X	AB	3		

 $^{^{01}\ &}quot;X_{ij}\ con\ j=1,2,3"\ resultados\ individuales\ aportados\ por\ cada\ laboratorio,\\ "\overline{X}_{i\ lab}"\ media\ aritm\'etica\ intralaboratorio\ y\ "\overline{X}_{i\ arit}"\ media\ aritm\'etica\ intralaboratorio\ calculada\ sin\ redondear.$

 $^{^{02}}$ "S_Li" es la desviación típica intralaboratorios y "D_{i arit}%" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03} \}text{ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].}$

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i \; lab}$	X _{i arit}	S _{Li}	D _{i arit %}	¿Pasa A?	¿Pasa B?	Total	Causa	Iteración	Z-Score	Evaluación
C02	094	0,30	0,30		0,30	0,30			√	X	X	AB	1		
C07	095	0,00	0,00		0,00	0,00	0,000	-84,50	√	√	√			-1,901	S
C02	096	0,03	0,03		0,03	0,03	0,001	38,28	√	√	√			0,861	S
C04	097	0,03	0,03		0,03	0,03			✓	X	X	AN	1		
C03	101	0,03	0,04		0,04	0,04	0,001	46,66	✓	√	√			1,050	S
C12	105	0,01	0,01		0,01	0,01	0,000	-58,10	✓	✓	√			-1,307	S
C01	107	0,05	0,05		0,05	0,05	0,000	126,27	✓	✓	√			2,841	D
C02	108	0,02	0,02		0,02	0,02	0,000	-19,65	✓	✓	√			-0,442	S
C09	110	0,02	0,02		0,02	0,02	0,000	-16,20	✓	✓	√			-0,364	S
C12	112	0,04	0,04		0,04	0,04	0,000	55,46	✓	✓	√			1,248	S
C10	113	0,02	0,02		0,02	0,02	0,001	-13,47	✓	✓	√			-0,303	S
C12	115	0,03	0,03		0,03	0,03	0,000	12,93	✓	✓	✓			0,291	S
C16	116	0,00	0,00		0,00	0,00	0,000	-100,00	✓	✓	√			-2,250	D
C12	119	0,03	0,03	!	0,00	0,03	0,001	12,99	✓	✓	√		,	0,292	S
C01	124	0,03	0,03		0,03	0,03	0,000	8,95	✓	✓	✓			0,201	S
C02	129	0,13	0,13		0,13	0,13			✓	X	X	AN	1		
C08	133	0,03	0,03		0,03	0,03	0,000	25,71	✓	✓	√			0,578	S
C16	134	0,02	0,02		0,02	0,02	0,000	-28,77	✓	✓	√			-0,647	S
C14	135	0,02	0,02		0,02	0,02	0,000	-7,81	✓	✓	√			-0,176	S
C08	137	0,02	0,02		0,02	0,02	0,000	-7,81	✓	✓	√			-0,176	S
C12	138	0,03	0,03		0,03	0,03	0,000	4,76	✓	✓	√			0,107	S
C02	139	0,01	0,01		0,01	0,01	0,000	-62,29	✓	✓	√			-1,402	S
C14	141	0,03	0,03		0,03	0,03	0,000	25,71	✓	✓	√			0,578	S
C12	142	0,03	0,03	i	0,03	0,03	0,000	15,02	✓	✓	✓			0,338	S
C13	144	0,02	0,02		0,02	0,02	0,001	1,15	✓	✓	✓			0,026	S
C01	146	0,02	0,02		0,02	0,02	0,000	-16,20	✓	✓	✓			-0,364	S
C03	147	0,04	0,04		0,04	0,04			✓	X	X	AN	1		
C08	148	0,03	0,03		0,03	0,03	0,000	25,71	✓	✓	1			0,578	S
C12	149	0,00	0,00		0,00	0,00	0,000	-94,49	✓	✓	✓			-2,126	D
C14	151	0,05	0,05		0,05	0,05	0,000	105,32	✓	✓	✓			2,370	D
C14	152	0,05	0,05		0,05	0,05	0,001	111,61	✓	✓	√			2,511	D
C16	155	0,02	0,02		0,02	0,02	0,001	-24,58	✓	✓	√			-0,553	S
C02	156	0,01	0,01		0,01	0,01	0,001	-56,00	✓	✓	√			-1,260	S
C02	157	0,03	0,03		0,04	0,03	0,000	46,17	✓	✓	√			1,039	S
C14	161	0,03	0,03		0,03	0,03	0,000	25,71	✓	✓	√			0,578	S
C01	162	0,03	0,03		0,03	0,03	0,000	8,95	✓	✓	√			0,201	S
C01	163	0,03	0,03		0,03	0,03	0,000	25,71	✓	✓	√			0,578	S
C03	164	0,01	0,01		0,01	0,01	0,000	-58,10	✓	✓	√			-1,307	S
C02	165	0,03	0,03		0,03	0,03	0,001	36,18	✓	✓	√			0,814	S
C03	167	0,02	0,02		0,02	0,02	0,000	3,27	√	√	√			0,074	S

 $^{^{01}\ &}quot;X_{ij}\ con\ j=1,2,3"\ resultados\ individuales\ aportados\ por\ cada\ laboratorio,\\ "\overline{X}_{i\ lab}"\ media\ aritm\'etica\ intralaboratorio\ y\ "\overline{X}_{i\ arit}"\ media\ aritm\'etica\ intralaboratorio\ calculada\ sin\ redondear.$

 $^{^{02}}$ "S_Li" es la desviación típica intralaboratorios y "D_{i arit}%" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03} \}text{ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].}$

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i \; lab}$	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	:Paca Δ?	¿Pasa B?	Total	Causa	Iteración	7-Score	Evaluación
CC.AA	Lau	Ai 1	Ai 2	Ai 3	Ai lab	Ai arit	JL1	Di arit %	¿r asa n:	¿r asa D:	Total	Causa	iteracion	2-30016	Evaluacion
C07	168	0,03	0,03		0,03	0,03	0,000	7,69	√	√	√			0,173	S
C07	169	0,13	0,13		0,10	0,13			√	Х	Χ	AN	1		
C14	170	0,01	0,01		0,01	0,01	0,001	-64,38	√	√	√			-1,449	S
C08	171	0,03	0,03		0,03	0,03	0,000	8,95	√	√	√			0,201	S
C13	172	0,02	0,02		0,02	0,02	0,000	-16,20	✓	✓	✓			-0,364	S
C12	175	0,03	0,03		0,03	0,03	0,000	25,71	✓	✓	✓			0,578	S
C16	176	0,02	0,02		0,02	0,02	0,000	-16,20	✓	✓	✓			-0,364	S
C09	178	0,00	0,00		0,00	0,00	0,000	-100,00	✓	✓	✓			-2,250	D
C07	181	0,02	0,02		0,02	0,02	0,000	-24,58	✓	✓	✓			-0,553	S
C02	185	0,02	0,00		0,00	0,01			✓	X	X	AB	0		
C02	186	0,02	0,02		0,02	0,02	0,000	-28,77	✓	✓	✓			-0,647	S
C01	187	0,03	0,03		0,03	0,03	0,001	15,23	✓	✓	✓			0,343	S
C07	191	0,02	0,02		0,02	0,02	0,001	-9,91	✓	✓	✓			-0,223	S
C13	202	0,00	0,00		0,00	0,00	0,000	-100,00	✓	✓	✓			-2,250	D

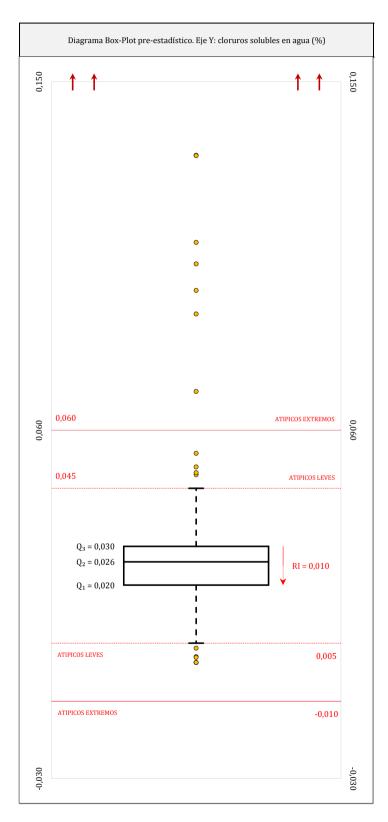
 $^{^{01} \}text{ "$X_{ij}$ con $j=1,2,3$" resultados individuales aportados por cada laboratorio, "$\overline{X}_{i\,lab}$" media aritmética intralaboratorio y "$\overline{X}_{i\,arit}$" media aritmética intralaboratorio calculada sin redondear.}$

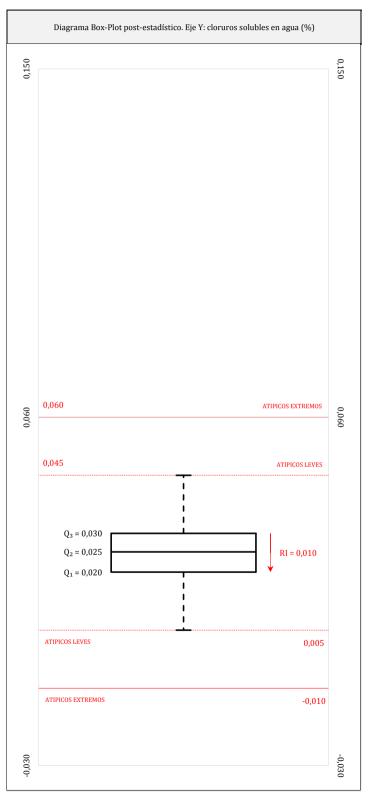
 $^{^{02}}$ "S_Li" es la desviación típica intralaboratorios y "D_{i arit}%" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03} \}text{ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].}$

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil $(Q_1; 25\%)$ de los datos), el segundo cuartil o la mediana $(Q_2; 50\%)$ de los datos), el tercer cuartil $(Q_3; 75\%)$ de los datos), el rango intercuartilico (RI; $cuartil\ tres\ menos\ cuartil\ uno)\ y\ los\ l\'imites\ de\ valores\ at\'ipicos\ leves\ (f_3\ y\ f_1\ para\ el\ m\'aximo\ y\ m\'inimo\ respectivamente\ ; l\'ineas\ discontinuas\ de\ color\ rojo)\ y\ extremos\ (f_3\ y\ f_1\ para\ el\ m\'aximo\ y\ m\'nimo\ respectivamente\ ; l\'ineas\ discontinuas\ de\ color\ rojo)\ y\ extremos\ (f_3\ y\ f_1\ para\ el\ m\'aximo\ y\ m\'nimo\ respectivamente\ ; l\'ineas\ discontinuas\ de\ color\ rojo)\ y\ extremos\ (f_3\ y\ f_1\ para\ el\ m\'aximo\ y\ m\'nimo\ respectivamente\ ; l\'ineas\ discontinuas\ de\ color\ rojo)\ y\ extremos\ (f_3\ y\ f_1\ para\ el\ m\'aximo\ y\ m\'nimo\ y\ m\'nimo\ y\ m\'nimo\ respectivamente\ rojo)\ portion (f_3\ rojo)\ portion\ rojo)\ po$ respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

CLORUROS SOLUBLES EN AGUA (%)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA17 para el ensayo "CLORUROS SOLUBLES EN AGUA", ha contado con la participación de un total de 94 laboratorios, debiendo haber aportado cada uno de ellos, un total de 2 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 13 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 13 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 5 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

Tipo de análisis		PRE	E-ESTADIST	CICO		ESTADISTICO						
Variables	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	\overline{X}_{iarit}	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$		
Valor Máximo (max; %)	4,20	4,20		4,20	4,20	0,05	0,05		0,05	0,05		
Valor Mínimo (min; %)	0,00	0,00		0,00	0,00	0,00	0,00		0,00	0,00		
Valor Promedio (M; %)	0,08	0,08		0,08	0,08	0,02	0,02		0,02	0,02		
Desviación Típica (SDL;)	0,43	0,43		0,43	0,43	0,01	0,01		0,01	0,01		
Coeficiente Variación (CV;)	5,58	5,60		5,62	5,59	0,44	0,45		0,46	0,44		
Variables	S_r^2	r (%)	$S_L^{\ 2}$	S_R^2	R (%)	S_r^2	r (%)	$S_L^{\ 2}$	$S_R^{\ 2}$	R (%)		
Valor Calculado	0,000	0,007	0,186	0,186	1,196	0,000	0,001	0,000	0,000	0,029		
Valor Referencia		0,023			0,011		0,019			0,003		

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{Sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

Tipo de análisis		PRI	E-ESTADIST	'ICO		ESTADISTICO						
Variables	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}		
Nivel de Significación 1%	2,53	2,55	0,294	3,381	0,5862	2,53	2,55	0,294	3,381	0,5862		
Nivel de Significación 5%	1,94	1,95	0,237	3,036	0,6445	1,94	1,95	0,237	3,036	0,6445		

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 72 resultados satisfactorios, 9 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

13. ANÁLISIS ESTADÍSTICO DE RESULTADOS: DETERMINACIÓN DE LOS SULFATOS SOLUBLES EN ÁCIDO

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

INFORME DE ENSAYO MATERIALES

SULFATOS SOLUBLES EN ACIDO

Comité de infraestructuras para la Calidad de la Edificación

Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Introducción

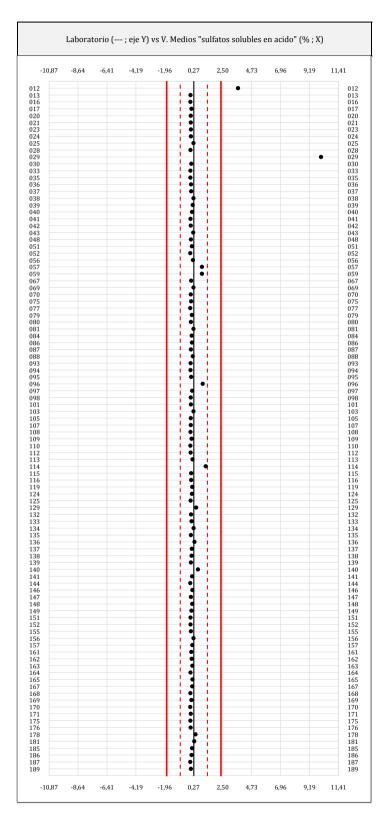
Criterios de análisis establecidos

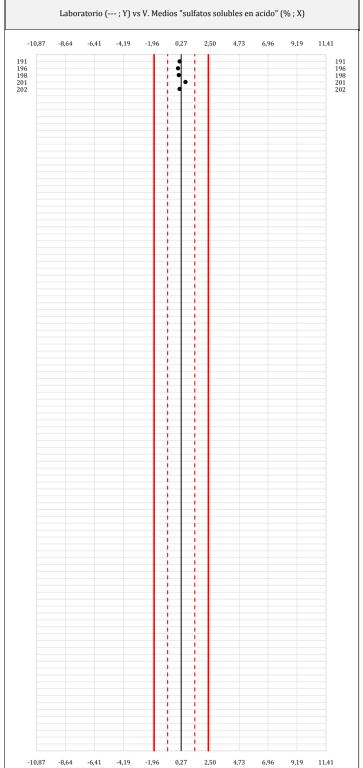
SACESubcomisión Administrativa para la

El procedimiento llevado a cabo para analizar los resultados del ensayo "sulfatos solubles en acido", está basado en los protocolos EILA17 y las normas UNE 82009-2:1999 y UNE-EN ISO/IEC 17043:2010 y es, para cada laboratorio, el que sigue:

- O1. Análisis A: Estudio pre-estadístico. Antes de comenzar con los cálculos matemáticos, los datos son minuciosamente analizados para determinar si deben ser incluidos (√) o descartados (X) en función, de si cumplen o no, con unos criterios mínimos previamente establecidos y que pueden afectar a los resultados, tales como:
 - 01. No cumplir con el criterio de validación de la norma de ensayo, en caso de existir éste.
 - 02. No haber realizado el ensayo conforme a la norma de estudio, sin justificar los motivos por los cuales se ha hecho.
 - 03. No haber cumplido con las especificaciones particulares del ensayo descritas en los protocolos (pueden incluir aportar algún dato adicional no especificado en la norma).
 - 04. No haber especificado la fecha de verificación y/o de calibración de los equipos utilizados durante el ensayo (los resultados pueden verse afectados).
 - 05. No haber aportado, como mínimo, el resultado de dos determinaciones puesto que la desviación típica inter-laboratorio se ve afectada notablemente por ello.
 - 06. Expresiones erróneas de los resultados que no pudieran explicarse o no tuvieran sentido.
 - 07. No haber completado total y correctamente las hojas de ensayo, pues es posible que falte información para analizar parámetros importantes o que ayuden a explicar datos incorrectos.
 - 08. Cualquier otra incidencia o desviación de los resultados que afecte al conjunto de los datos analizados.
- 02. Análisis B: Mandel, Cochran y Grubbs. Los resultados aportados por los laboratorios que hayan superado el paso anterior, se verán sometidos al análisis estadístico compuesto por los métodos de Mandel, Cochran y Grubbs. Los criterios de análisis que se han seguido para considerar los resultados como aptos (✓) o no aptos (ズ) por éste procedimiento son:
 - O1. Para cada laboratorio se llevan a cabo los cálculos necesarios para determinar los estadísticos "h y k" de Mandel, "C" de Cochran y "G_{Simp} y G_{Dob}" de Grubbs, pudiendo salir un resultado correcto (X sobre fondo blanco), anómalo (X* sobre fondo rosa) o aberrante (X** sobre fondo morado), para todos o cada uno de ellos.
 - 02. Un laboratorio será considerado como apto, si el binomio Mandel-Cochran y el método de Grubbs no demuestran la presencia de resultados anómalos o aberrantes en comparación con los del resto de participantes. En caso contrario, el laboratorio afectado será excluido y por ende no tenido en cuenta para someterlo al análisis Z-Score.
 - O3.
 Binomio Mandel-Cochran. Si el ensayo de Mandel justifica para algún laboratorio (en cualquiera de sus estadísticos) la presencia de un valor anómalo o aberrante, antes de considerarlo como no apto se analiza el parámetro de Cochran. En caso de que éste último sea correcto, los resultados del laboratorio se considerarán aceptables. En caso contrario, el laboratorio será descartado.
 - 04. Método de Grubbs. Si el ensayo de Grubbs Simple demuestra que los resultados de algúno de los laboratorios son aberrantes o anómalos, finaliza el análisis y el laboratorio en cuestión deberá ser excluido. En caso de que éste método no demuestre la existencia de algún valor extraño, se lleva a cabo entonces el ensayo de Grubbs Doble aplicando los mismos criterios que para el método simple.
- 03. **Análisis C: Evaluación Z-Score.** La totalidad de los laboratorios que hayan superado el "Análisis B" serán estudiados por éste método. En él, se determina si los parámetros Z-Score obtenidos para cada participante son satisfactorios (S), dudosos (D) o insatisfactorios (I), en función de que estén o no dentro de unos límites críticos establecidos.
- 04. Análisis D: Estudios post-estadísticos. Una vez superados los tres análisis anteriores, haremos un último barrido de los datos para ver como quedan los resultados de los laboratorios implicados mediante los diagramas "Box-Plot" o de caja y bigotes antes y después de llevar a cabo los descartes.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Análisis A. Estudio pre-estadístico

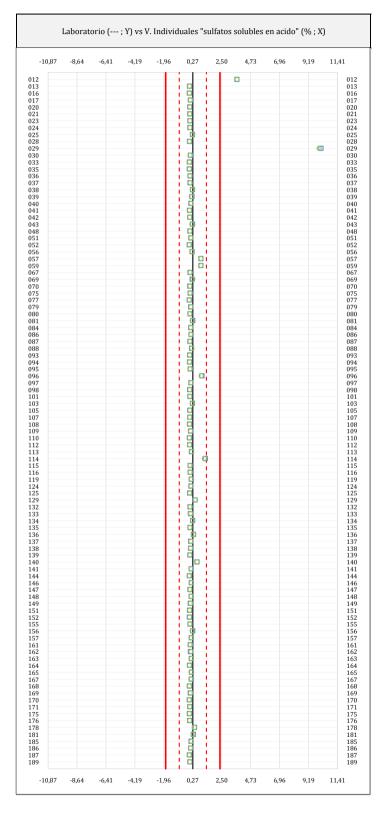
Apartado A.1. Gráficos de dispersión de valores medios

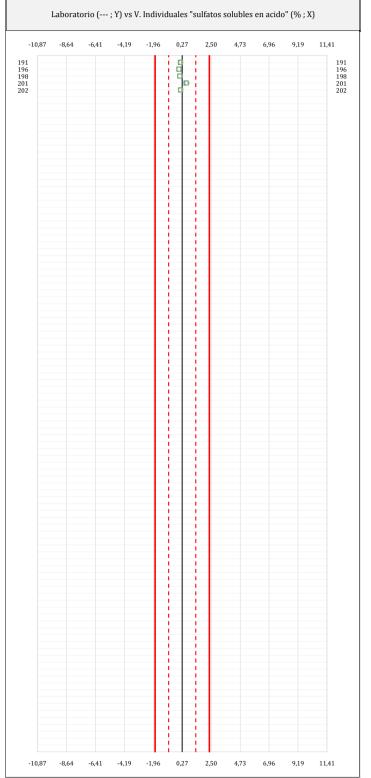
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (0,27 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (1,32/-0,77 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (2,36/-1,82 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro "•".

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (0,27; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (1,32/-0,77; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (2,36/-1,82; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{11}) se representa con un cuadrado azul " \square ", el segundo (X_{12}) con un círculo verde "0" y el tercero (X_{13}) con un triángulo grís " Δ ".

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	Х _{і 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	¿Pasa A?	Observaciones
C05	012	3,67	3,68		3,68	3,68	0,007	1.251,32	√	
C05	013	0,02	0,02		0,02	0,02	0,000	-92,65	√	
C05	016	0,01	0,01		0,01	0,01	0,003	-97,43	√	
C10	017	0,09	0,08		0,09	0,09	0,007	-68,74	√	
C09	020	0,04	0,04		0,04	0,04	0,000	-85,29	√	
C16	021	0,04	0,04		0,04	0,04	0,000	-85,29	√	
C05	023	0,05	0,05		0,05	0,05	0,000	-80,88	√	
C05	024	0,05	0,05		0,05	0,05	0,000	-81,32	√	
C09	025	0,24	0,26		0,25	0,25	0,008	-8,07	√	
C10	028	0,02	0,02		0,02	0,02	0,001	-94,01	√	
C04	029	10,13	10,00		10,07	10,07	0,092	3.600,97	✓	
C04	030	0,09	0,07		0,08	0,08	0,014	-70,58	√	
C06	033	0,01	0,01		0,01	0,01	0,001	-95,66	√	
C12	035	0,01	0,01		0,01	0,01	0,000	-96,32	√	
C09	036	0,06	0,06		0,06	0,06	0,000	-77,94	√	
C07	037	0,06	0,07		0,06	0,07	0,007	-76,10	✓	
C07	038	0,24	0,24		0,24	0,24	0,002	-11,12	✓	
C06	039	0,21	0,17		0,19	0,19	0,028	-30,14	√	
C10	040	0,13	0,14		0,14	0,14	0,007	-50,36	✓	
C04	041	0,02	0,02		0,02	0,02	0,000	-92,65	✓	
C15	042	0,04	0,03		0,04	0,04	0,007	-87,13	✓	
C02	043	0,25	0,21		0,23	0,23	0,028	-15,43	✓	
C05	048	0,05	0,05		0,05	0,05	0,000	-81,61	✓	
C12	051	0,12	0,12		0,12	0,12	0,000	-55,88	✓	
C07	052	0,00	0,00		0,00	0,00	0,000	-100,00	✓	
C16	056	0,22	0,19		0,21	0,21	0,017	-23,98	✓	
C05	057	0,90	0,90		0,90	0,90	0,000	230,94	✓	
C05	059	0,90	0,90		0,90	0,90	0,000	230,94	✓	
C11	067	0,06	0,07		0,07	0,07	0,007	-76,10	✓	
C14	069	0,23	0,27		0,25	0,25	0,028	-8,07	✓	
C02	070	0,04	0,05		0,04	0,04	0,006	-84,56	✓	
C04	075	0,07	0,07		0,07	0,07	0,000	-74,26	✓	
C16	077	0,00	0,00		0,00	0,00	0,000	-100,00	✓	
C07	079	0,11	0,12		0,12	0,12	0,007	-57,71	✓	
C07	080	0,06	0,04		0,05	0,05	0,014	-81,61	✓	
C10	081	0,27	0,23		0,25	0,25	0,028	-8,07	✓	
C17	084	0,11	0,11		0,11	0,11	0,000	-59,55	✓	
C09	086	0,14	0,12		0,13	0,13	0,014	-52,20	✓	
C11	087	0,05	0,05		0,05	0,05	0,001	-81,61	✓	
C13	088	0,18	0,19		0,19	0,19	0,007	-31,97	✓	

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

 $^{^{01}\ &}quot;X_{ij}\ con\ j=1,2,3"\ resultados\ individuales\ aportados\ por\ cada\ laboratorio,\\ "\overline{X}_{i\ lab}"\ media\ aritm\'etica\ intralaboratorio\ y\ "\overline{X}_{i\ arit}"\ media\ aritm\'etica\ intralaboratorio\ calculada\ sin\ redondear.$

 $^{^{02}}$ "S_Li" es la desviación típica intralaboratorios y "D_{i arit}%" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S_{Li}	$D_{i\;arit\%}$	¿Pasa A?	Observaciones
C12	093	0,03	0,03		0,03	0,03	0,000	-88,97	✓	
C02	094	0,02	0,02			0,02	0,000	-92,65	✓	No aporta datos para comprobar el criterio de repetibilidad de la norma
C07	095	0,08	0,06		0,07	0,07	0,014	-74,26	✓	
C02	096	0,98	0,93		0,96	0,96	0,035	251,16	✓	
C04	097	0,13	0,14		0,14	0,14	0,007	-50,36	✓	
C04	098	0,03	0,04		0,04	0,04	0,008	-86,01	✓	
C03	101	0,05	0,05		0,05	0,05	0,003	-81,98	✓	
C10	103	0,25	0,24		0,25	0,25	0,007	-9,91	✓	
C12	105	0,04	0,04		0,04	0,04	0,000	-85,29	✓	
C01	107	0,04	0,03		0,04	0,04	0,007	-87,13	✓	
C02	108	0,02	0,02		0,02	0,02	0,000	-91,94	✓	
C09	109	0,10	0,10		0,10	0,10	0,000	-63,23	✓	
C09	110	0,01	0,01		0,01	0,01	0,000	-96,32	✓	
C12	112	0,03	0,02		0,03	0,03	0,006	-90,81	✓	
C10	113	0,17	0,18		0,17	0,17	0,010	-36,75	√	
C07	114	1,23	1,16		1,20	1,20	0,049	339,41	✓	
C12	115	0,07	0,06		0,06	0,07	0,007	-76,10	✓	
C16	116	0,07	0,07		0,07	0,07	0,000	-74,26	✓	
C12	119	0,15	0,14		0,15	0,15	0,012	-46,41	✓	
C01	124	0,13	0,13		0,13	0,13	0,000	-52,20	✓	
C03	125	0,03	0,03		0,03	0,03	0,000	-89,70	✓	
C02	129	0,44	0,47		0,45	0,46	0,024	68,04	✓	
C13	132	0,06	0,07		0,06	0,06	0,007	-77,94	✓	
C08	133	0,09	0,10		0,09	0,10	0,007	-65,07	✓	
C16	134	0,25	0,26		0,26	0,26	0,005	-5,39	√	
C14	135	0,06	0,05		0,05	0,05	0,011	-80,14	√	
C01	136	0,33	0,33		0,33	0,33	0,000	21,34	√	
C08	137	0,11	0,12		0,12	0,12	0,007	-57,71	√	
C12	138	0,10	0,10		0,10	0,10	0,000	-63,23	√	
C02	139	0,05	0,05		0,05	0,05	0,000	-81,98	√	
C01	140	0,59	0,60		0,60	0,60	0,007	118,79	√	
C14	141	0,15	0,13		0,14	0,14	0,014	-48,52	√	
C13	144	0,01	0,00		0,00	0,00	0,002	-98,42	√	
C01	146	0,15	0,15		0,15	0,15	0,000	-43,37	√	
C03	147	0,05	0,05		0,05	0,05	0,005	-81,80	<u> </u>	
C08	148	0,15	0,14		0,14	0,15	0,007	-46,68	√	
C12	149	0,08	0,10		0,09	0,09	0,015	-66,01	→	
C14	151	0,02	0,03		0,02	0,02	0,001	-91,18	→	
C14	152	0,01	0,02		0,02	0,02	0,004	-93,75	→	
C16	155	0,06	0,02		0,02	0,02	0,009	-81,06	→	

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

 $^{^{01} \ &}quot;X_{ij} \ con \ j = 1, 2, 3" \ resultados \ individuales \ aportados \ por \ cada \ laboratorio, \\ "\overline{X}_{i \ lab}" \ media \ aritm\'etica \ intralaboratorio \ y \\ "\overline{X}_{i \ arit}" \ media \ aritm\'etica \ intralaboratorio \ calculada \ sin \ redondear.$

 $^{^{02}}$ "S_Li" es la desviación típica intralaboratorios y "D_{i arit}%" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	Х _{і 3}	$\overline{X}_{i \; lab}$	$\overline{X}_{i \text{ arit}}$	S_{Li}	$D_{i\; arit \%}$	¿Pasa A?	Observaciones
C02	156	0,27	0,23		0,25	0,25	0,028	-8,07	√	
C02	157	0,16	0,16		0,16	0,16	0,020	-42,03	→	
C14	161	0,08	0,07		0,07	0,08	0,007	-72,42	→	
C01	162	0,09	0,13		0,11	0,11	0,028	-59,55	→	
C01	163	0,16	0,16		0,11	0,16	0,000	-41,17		
C03	164	0,02	0,01		0,02	0,02	0,007	-94,48	√	
C02	165	0,17	0,15		0,16	0,16	0,012	-40,21		
C03	167	0,15	0,13		0,14	0,14	0,015	-47,47	<u>√</u>	
C07	168	0,01	0,01		0,01	0,01	0,001	-95,92	<u>√</u>	
C07	169	0,08	0,10		0,10	0,09	0,015	-67,13	<u>√</u>	
C14	170	0,00	0,00		0,00	0,00	0,000	-99,63		
C08	171	0,04	0,04		0,04	0,04	0,000	-85,29	→	
C12	175	0,01	0,01		0,01	0,01	0,000	-96,32		
C16	176	0,01	0,03		0,03	0,03	0,000	-88,97	→	
C09	178	0,40	0,40		0,40	0,40	0,000	47,08	→	
C07	181	0,31	0,30		0,31	0,31	0,011	12,52	→	
C02	185	0,14	0,14		0,10	0,14	0,005	-48,30	√	
C02	186	0,11	0,09		0,08	0,10	0,014	-63,23	√	
C01	187	0,01	0,00		0,00	0,00	0,001	-98,44	√	
C07	189	0,05	0,05		0,05	0,05	0,000	-80,42	√	
C07	191	0,15	0,17		0,16	0,16	0,013	-42,64	√	
C16	196	0,03	0,04		0,04	0,04	0,007	-87,13	√	
C02	198	0,10	0,09		0,09	0,09	0,008	-65,99		
C01	201	0,58	0,64		0,61	0,61	0,042	124,30		
C13	202	0,16	0,16		0,16	0,16	0,000	-41,17	<u>√</u>	
013	202	0,10	0,10		0,10	0,10	0,000	11,17		

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

 $^{^{01} \ &}quot;X_{ij} \ con \ j = 1, 2, 3" \ resultados \ individuales \ aportados \ por \ cada \ laboratorio, \\ "\overline{X}_{i \ lab}" \ media \ aritm\'etica \ intralaboratorio \ y \\ "\overline{X}_{i \ arit}" \ media \ aritm\'etica \ intralaboratorio \ calculada \ sin \ redondear.$

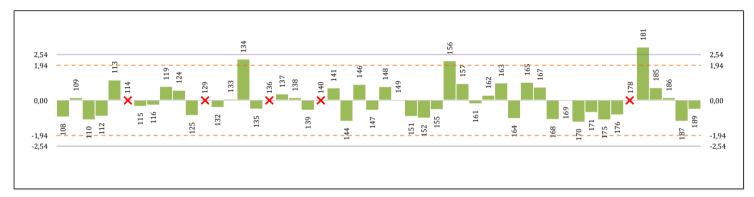
 $^{^{02}}$ "S_Li" es la desviación típica intralaboratorios y "D_{i arit}%" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

Comité de infraestructuras para la Calidad de la Edificación

SACESubcomisión Administrativa para la

Calidad de la Edificación


SULFATOS SOLUBLES EN ACIDO (%)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Análisis gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

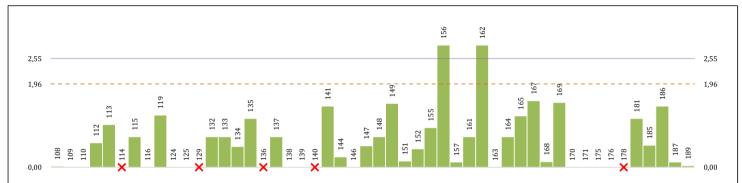
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

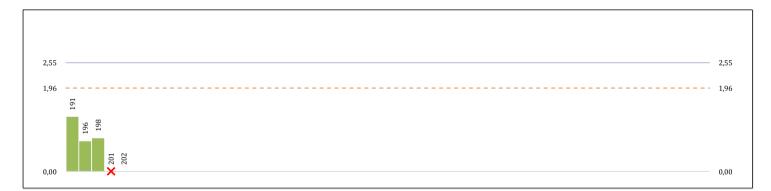
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

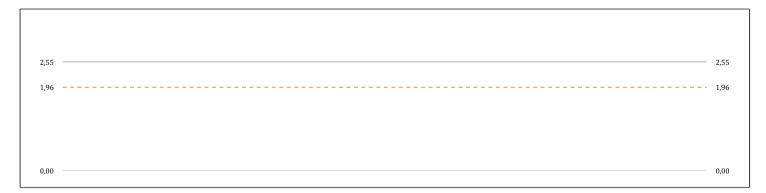
Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la


Calidad de la Edificación




SULFATOS SOLUBLES EN ACIDO (%)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Análisis gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i \; lab}$	$\overline{X}_{i \text{ arit}}$	S_{Li}	$D_{i\; arit\; \%}$	h _i	\mathbf{k}_{i}	C _i	$G_{Sim\;Inf}$	$G_{Sim\;Sup}$	$G_{Dob\;Inf}$	$G_{Dob\;Sup}$	¿Pasa B?
COF	012	2 (70	2 (00		2.000	2.675										
C05	012	3,670	3,680		3,680	3,675	0.000									X
C05	013	0,020	0,020		0,020	0,020	0,000	-77,81	-0,94	0,00						√
C05	016	0,005	0,009		0,007	0,007	0,003	-92,23	-1,12	0,29						√
C10	017	0,090	0,080		0,085	0,085	0,007	-5,70	-0,07	0,72						√
C09	020	0,040	0,040		0,040	0,040	0,000	-55,63	-0,67	0,00						√
C16	021	0,040	0,040		0,040	0,040	0,000	-55,63	-0,67	0,00						√
C05	023	0,052	0,052		0,052	0,052	0,000	-42,31	-0,51	0,00						√
C05	024	0,051	0,051		0,050	0,051	0,000	-43,64	-0,53	0,03						√
C09	025	0,244	0,256		0,250	0,250	0,008	177,34	2,15*	0,86	0,087					√
C10	028	0,015	0,017		0,016	0,016	0,001	-81,93	-0,99	0,12						√
C04	029	10,130	10,000		10,065	10,065										Х
C04	030	0,090	0,070		0,080	0,080	0,014	-11,25	-0,14	1,43						√
C06	033	0,013	0,011		0,012	0,012	0,001	-86,91	-1,05	0,13						√
C12	035	0,010	0,010		0,010	0,010	0,000	-88,91	-1,08	0,00						√
C09	036	0,060	0,060		0,060	0,060	0,000	-33,44	-0,41	0,00						√
C07	037	0,060	0,070		0,060	0,065	0,007	-27,89	-0,34	0,72						√
C07	038	0,243	0,241		0,242	0,242	0,002	168,13	2,04*	0,16	0,087					√
C06	039	0,210	0,170		0,190	0,190	0,028	110,78	1,34	2,86**	0,087					√
C10	040	0,130	0,140		0,140	0,135	0,007	49,76	0,60	0,72						✓
C04	041	0,020	0,020		0,020	0,020	0,000	-77,81	-0,94	0,00						✓
C15	042	0,040	0,030		0,040	0,035	0,007	-61,17	-0,74	0,72						✓
C02	043	0,250	0,210		0,230	0,230	0,028	155,15	1,88	2,86**	0,087					✓
C05	048	0,050	0,050		0,050	0,050	0,000	-44,53	-0,54	0,00						✓
C12	051	0,120	0,120		0,120	0,120	0,000	33,12	0,40	0,00						✓
C07	052	0,000	0,000		0,000	0,000	0,000	-100,00	-1,21	0,00		1,212		0,9677		✓
C16	056	0,219	0,194		0,207	0,207	0,017	129,36	1,57	1,77						✓
C05	057	0,900	0,900		0,900	0,900										Х
C05	059	0,900	0,900		0,900	0,900										Х
C11	067	0,060	0,070		0,065	0,065	0,007	-27,89	-0,34	0,72						✓
C14	069	0,230	0,270		0,250	0,250	0,028	177,34	2,15*	2,86**	0,087					✓
C02	070	0,038	0,046		0,040	0,042	0,006	-53,41	-0,65	0,57						✓
C04	075	0,070	0,070		0,070	0,070	0,000	-22,34	-0,27	0,00						✓
C16	077	0,000	0,000		0,000	0,000	0,000	-100,00	-1,21	0,00		1,212		0,9677		✓
C07	079	0,110	0,120		0,120	0,115	0,007	27,58	0,33	0,72						✓
C07	080	0,060	0,040		0,050	0,050	0,014	-44,53	-0,54	1,43						✓
C10	081	0,270	0,230		0,250	0,250	0,028	177,34	2,15*	2,86**	0,087					✓
C17	084	0,110	0,110		0,110	0,110	0,000	22,03	0,27	0,00						✓
C09	086	0,140	0,120		0,130	0,130	0,014	44,22	0,54	1,43						✓
C11	087	0,051	0,049		0,050	0,050	0,001	-44,53	-0,54	0,14						✓
C13	088	0,180	0,190		0,190	0,185	0,007	105,23	1,28	0,72						✓

 $^{^{01} \}text{ "$X_{ij}$ con $j=1,2,3$" resultados individuales aportados por cada laboratorio, "$\overline{X}_{i\,lab}$" media aritmética intralaboratorio y "$\overline{X}_{i\,arit}$" media aritmética intralaboratorio calculada sin redondear.}$

⁰² "S_Lı" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h_i y k_i", "C_i", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i \; lab}$	$\overline{X}_{i arit}$	S_{Li}	$D_{i\;arit\%}$	h _i	\mathbf{k}_{i}	C_{i}	$G_{Sim\ Inf}$	$G_{Sim\;Sup}$	$G_{Dob\;Inf}$	$G_{Dob\;Sup}$	¿Pasa B?
C12	093	0,030	0,030		0,030	0,030	0,000	-66,72	-0,81	0,00						√
C02	094	0,020	0,020			0,020	0,000	-77,81	-0,94	0,00						√
C07	095	0,080	0,060		0,070	0,070	0,014	-22,34	-0,27	1,43						√
C02	096	0,980	0,930		0,960	0,955										X
C04	097	0,130	0,140		0,140	0,135	0,007	49,76	0,60	0,72						√
C04	098	0,032	0,044		0,040	0,038	0,008	-57,79	-0,70	0,84						√
C03	101	0,051	0,047		0,049	0,049	0,003	-45,64	-0,55	0,29						√
C10	103	0,250	0,240		0,250	0,245	0,007	171,79	2,08*	0,72	0,087					✓
C12	105	0,040	0,040		0,040	0,040	0,000	-55,63	-0,67	0,00						√
C01	107	0,040	0,030		0,040	0,035	0,007	-61,17	-0,74	0,72						√
C02	108	0,022	0,022		0,022	0,022	0,000	-75,67	-0,92	0,02						√
C09	109	0,100	0,100		0,100	0,100	0,000	10,94	0,13	0,00						√
C09	110	0,010	0,010		0,010	0,010	0,000	-88,91	-1,08	0,00						✓
C12	112	0,029	0,021		0,025	0,025	0,006	-72,27	-0,88	0,57						✓
C10	113	0,165	0,179		0,172	0,172	0,010	90,81	1,10	1,00						✓
C07	114	1,230	1,160		1,200	1,195										X
C12	115	0,070	0,060		0,060	0,065	0,007	-27,89	-0,34	0,72						✓
C16	116	0,070	0,070		0,070	0,070	0,000	-22,34	-0,27	0,00						✓
C12	119	0,154	0,137		0,150	0,146	0,012	61,69	0,75	1,22						✓
C01	124	0,130	0,130		0,130	0,130	0,000	44,22	0,54	0,00						✓
C03	125	0,028	0,028		0,028	0,028	0,000	-68,94	-0,84	0,00						✓
C02	129	0,440	0,474		0,450	0,457										X
C13	132	0,055	0,065		0,060	0,060	0,007	-33,44	-0,41	0,72						✓
C08	133	0,090	0,100		0,090	0,095	0,007	5,39	0,07	0,72						✓
C16	134	0,254	0,261		0,257	0,257	0,005	185,44	2,25*	0,49	0,087				0,8520	√
C14	135	0,062	0,046		0,054	0,054	0,011	-40,09	-0,49	1,15						√
C01	136	0,330	0,330		0,330	0,330										X
C08	137	0,110	0,120		0,115	0,115	0,007	27,58	0,33	0,72						✓
C12	138	0,100	0,100		0,100	0,100	0,000	10,94	0,13	0,00						√
C02	139	0,049	0,049		0,050	0,049	0,000	-45,64	-0,55	0,00						√
C01	140	0,590	0,600		0,600	0,595										Х
C14	141	0,150	0,130		0,140	0,140	0,014	55,31	0,67	1,43						√
C13	144	0,006	0,003		0,004	0,004	0,002	-95,23	-1,15	0,24						√
C01	146	0,154	0,154		0,154	0,154	0,000	70,84	0,86	0,00						√
C03	147	0,053	0,046		0,050	0,050	0,005	-45,09	-0,55	0,50						√
C08	148	0,150	0,140		0,140	0,145	0,007	60,86	0,74	0,72						
C12	149	0,082	0,103		0,092	0,092	0,015	2,56	0,03	1,50						<u> </u>
C14	151	0,023	0,025		0,024	0,024	0,001	-73,38	-0,89	0,14						<u> </u>
C14	152	0,014	0,020		0,017	0,017	0,004	-81,14	-0,98	0,43						<u> </u>
C16	155	0,058	0,045		0,052	0,017	0,009	-42,87	-0,52	0,93						<u> </u>
	133	0,030	0,043			0,032	0,009	-72,07	-0,32	0,53						

 $^{^{01}\ &}quot;X_{ij}\ con\ j=1,2,3"\ resultados\ individuales\ aportados\ por\ cada\ laboratorio,\\ "\overline{X}_{i\ lab}"\ media\ aritm\'etica\ intralaboratorio\ y\ "\overline{X}_{i\ arit}"\ media\ aritm\'etica\ intralaboratorio\ calculada\ sin\ redondear.$

⁰² "S_Lı" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h_i y k_i", "C_i", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

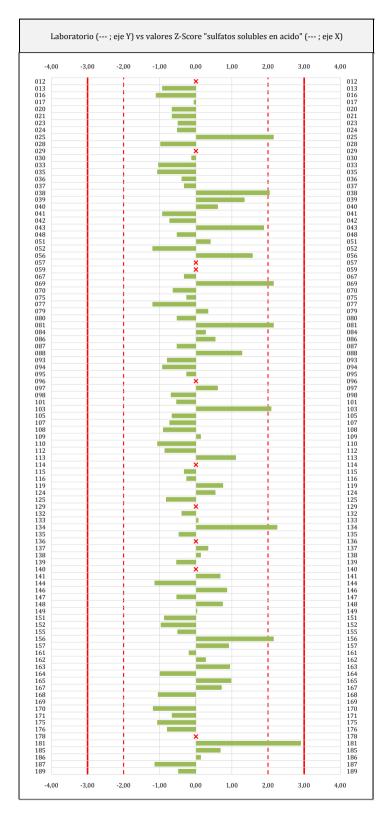
C02 C14 C01 C01 C03 C02 C03 C07	156 157 161 162 163 164 165 167 168 169	0,270 0,157 0,080 0,090 0,160 0,020 0,171 0,154 0,010	0,230 0,159 0,070 0,130 0,160 0,010 0,154 0,132 0,012		0,250 0,158 0,070 0,110 0,160 0,020 0,163	0,250 0,158 0,075 0,110 0,160 0,015	0,028 0,001 0,007 0,028 0,000	177,34 74,89 -16,80 22,03	2,15* 0,91 -0,20	2,86** 0,12 0,72	0,087			√ √ √
C02 C14 C01 C01 C03 C02 C03 C07	157 161 162 163 164 165 167 168	0,157 0,080 0,090 0,160 0,020 0,171 0,154 0,010	0,159 0,070 0,130 0,160 0,010 0,154 0,132		0,158 0,070 0,110 0,160 0,020	0,158 0,075 0,110 0,160	0,001 0,007 0,028	74,89 -16,80	0,91 -0,20	0,12	0,087			✓
C14 C01 C01 C03 C02 C03 C07	161 162 163 164 165 167 168	0,080 0,090 0,160 0,020 0,171 0,154 0,010	0,070 0,130 0,160 0,010 0,154 0,132		0,070 0,110 0,160 0,020	0,075 0,110 0,160	0,007 0,028	-16,80	-0,20					
C01 C03 C02 C03 C07 C07	162 163 164 165 167 168	0,090 0,160 0,020 0,171 0,154 0,010	0,130 0,160 0,010 0,154 0,132		0,110 0,160 0,020	0,110 0,160	0,028			0,72				
C01 C03 C02 C03 C07	163 164 165 167 168 169	0,160 0,020 0,171 0,154 0,010	0,160 0,010 0,154 0,132		0,160	0,160		22,03	0,27	2,86**	0,087			
C03 C02 C03 C07	164 165 167 168 169	0,020 0,171 0,154 0,010	0,010 0,154 0,132		0,020		0,000	77,50	0,94	0,00	0,007			
C02 C03 C07 C07	165 167 168 169	0,171 0,154 0,010	0,154 0,132		· — - —	0,013	0,007	-83,36	-1,01	0,72				
C03 C07 C07	167 168 169	0,154 0,010	0,132		0,103	0,163	0,007	80,38	0,97	1,20				
C07	168 169	0,010			0,143	0,103	0,012	58,48	0,77	1,56				
C07	169		0,012		0,010	0,143	0,013	-87,69	-1,06	0,13				
		0,077	0,100		0,010	0,011	0,001	-0,82	-0,01	1,52				
CIT	170	0,001	0,001		0,001	0,009	0,000	-98,89	-1,20	0,00				
C08	171	0,001	0,001		0,001	0,040	0,000	-55,63	-0,67	0,00				
	175	0,040	0,040		0,040	0,040	0,000	-88,91	-1,08	0,00				- ✓
	176	0,010	0,030		0,010	0,030	0,000	-66,72	-0,81	0,00				
	178	0,400	0,400		0,400	0,400		-00,72				 	 	X
	181	0,314	0,298		0,310	0,306	0,011	239,47	2,90**	1,15	0,087	2,902	0,8520	
	185	0,137	0,144		0,100	0,141	0,005	55,98	0,68	0,52	0,007	2,702	0,0320	<u> </u>
	186	0,110	0,090		0,080	0,100	0,014	10,94	0,13	1,43				
	187	0,005	0,003		0,004	0,004	0,001	-95,29	-1,15	0,12				
	189	0,054	0,053		0,053	0,053	0,000	-40,93	-0,50	0,04				
	191	0,147	0,165		0,156	0,156	0,013	73,06	0,89	1,29				
	196	0,030	0,040		0,040	0,035	0,007	-61,17	-0,74	0,72				
	198	0,098	0,087	ı	0,093	0,093	0,008	2,62	0,03	0,79				
	201	0,580	0,640		0,610	0,610		-,				 	 	Х
	202	0,160	0,160		0,160	0,160	0,000	77,50	0,94	0,00				
010	202	0,100	0,100		0,100	0,100	0,000	.,,,,,	0,51	0,00				

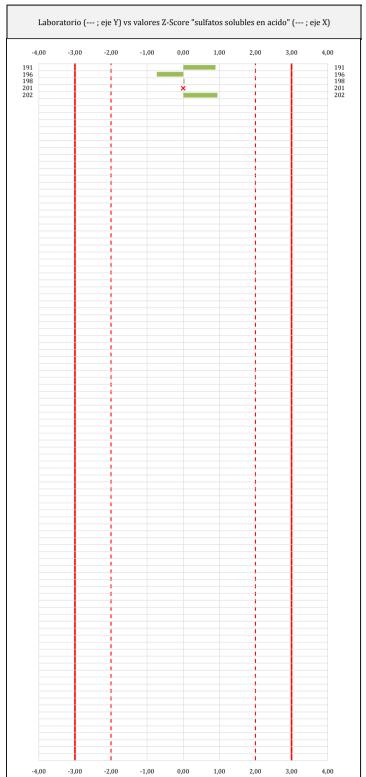
 $^{^{01}\ &}quot;X_{ij}\ con\ j=1,2,3"\ resultados\ individuales\ aportados\ por\ cada\ laboratorio,\\ "\overline{X}_{i\ lab}"\ media\ aritm\'etica\ intralaboratorio\ y\ "\overline{X}_{i\ arit}"\ media\ aritm\'etica\ intralaboratorio\ calculada\ sin\ redondear.$

⁰² "S_Lı" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h_i y k_i", "C_i", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	Х _{і 3}	$\overline{X}_{i \; lab}$	$\overline{X}_{i \text{ arit}}$	S_{Li}	$D_{iarit\%}$	¿Pasa A?	¿Pasa B?	Total	Causa	Iteración	Z-Score	Evaluación
225	040	2.67	2.60				I				.,	4.0			
C05	012	3,67	3,68		3,68	3,68			√	X	X	AB	0		
C05	013	0,02	0,02		0,02	0,02	0,000	-77,81	√	√	√			-0,943	S
C05	016	0,01	0,01		0,01	0,01	0,003	-92,23	√	√	√			-1,118	S
C10	017	0,09	0,08		0,09	0,09	0,007	-5,70	√	√	√			-0,069	S
C09	020	0,04	0,04		0,04	0,04	0,000	-55,63	√	√	√			-0,674	S
C16	021	0,04	0,04		0,04	0,04	0,000	-55,63	√	√	√			-0,674	S
C05	023	0,05	0,05		0,05	0,05	0,000	-42,31	√	√	√			-0,513	S
C05	024	0,05	0,05		0,05	0,05	0,000	-43,64	√	✓	✓			-0,529	S
C09	025	0,24	0,26		0,25	0,25	0,008	177,34	√	✓	✓			2,149	D
C10	028	0,02	0,02		0,02	0,02	0,001	-81,93	✓	✓	✓			-0,993	S
C04	029	10,13	10,00		10,07	10,07			√	X	Х	AB	0		
C04	030	0,09	0,07		0,08	0,08	0,014	-11,25	√	√	√			-0,136	S
C06	033	0,01	0,01		0,01	0,01	0,001	-86,91	√	✓	√			-1,053	S
C12	035	0,01	0,01		0,01	0,01	0,000	-88,91	√	✓	✓			-1,077	S
C09	036	0,06	0,06		0,06	0,06	0,000	-33,44	√	✓	✓			-0,405	S
C07	037	0,06	0,07		0,06	0,07	0,007	-27,89	√	√	√			-0,338	S
C07	038	0,24	0,24		0,24	0,24	0,002	168,13	✓	✓	✓			2,038	D
C06	039	0,21	0,17		0,19	0,19	0,028	110,78	✓	✓	✓			1,343	S
C10	040	0,13	0,14		0,14	0,14	0,007	49,76	✓	✓	✓			0,603	S
C04	041	0,02	0,02		0,02	0,02	0,000	-77,81	✓	✓	✓			-0,943	S
C15	042	0,04	0,03		0,04	0,04	0,007	-61,17	✓	✓	✓			-0,741	S
C02	043	0,25	0,21		0,23	0,23	0,028	155,15	✓	✓	✓			1,880	S
C05	048	0,05	0,05		0,05	0,05	0,000	-44,53	✓	✓	✓			-0,540	S
C12	051	0,12	0,12		0,12	0,12	0,000	33,12	✓	✓	✓			0,401	S
C07	052	0,00	0,00		0,00	0,00	0,000	-100,00	✓	✓	✓			-1,212	S
C16	056	0,22	0,19		0,21	0,21	0,017	129,36	✓	✓	✓			1,568	S
C05	057	0,90	0,90		0,90	0,90			✓	X	X	AB	1		
C05	059	0,90	0,90		0,90	0,90			✓	X	X	AB	1		
C11	067	0,06	0,07		0,07	0,07	0,007	-27,89	✓	✓	✓			-0,338	S
C14	069	0,23	0,27		0,25	0,25	0,028	177,34	✓	✓	✓			2,149	D
C02	070	0,04	0,05		0,04	0,04	0,006	-53,41	✓	✓	✓			-0,647	S
C04	075	0,07	0,07		0,07	0,07	0,000	-22,34	✓	✓	√			-0,271	S
C16	077	0,00	0,00		0,00	0,00	0,000	-100,00	✓	✓	✓			-1,212	S
C07	079	0,11	0,12		0,12	0,12	0,007	27,58	✓	✓	√			0,334	S
C07	080	0,06	0,04		0,05	0,05	0,014	-44,53	✓	✓	√			-0,540	S
C10	081	0,27	0,23		0,25	0,25	0,028	177,34	✓	✓	√			2,149	D
C17	084	0,11	0,11		0,11	0,11	0,000	22,03	√	✓	✓			0,267	S
C09	086	0,14	0,12		0,13	0,13	0,014	44,22	✓	✓	√			0,536	S
C11	087	0,05	0,05		0,05	0,05	0,001	-44,53	✓	√	✓			-0,540	S
C13	088	0,18	0,19		0,19	0,19	0,007	105,23	√	√	√			1,275	S

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

 $^{^{01}\ &}quot;X_{ij}\ con\ j=1,2,3"\ resultados\ individuales\ aportados\ por\ cada\ laboratorio,\\ "\overline{X}_{i\ lab}"\ media\ aritm\'etica\ intralaboratorio\ y\ "\overline{X}_{i\ arit}"\ media\ aritm\'etica\ intralaboratorio\ calculada\ sin\ redondear.$

 $^{^{02}}$ "S_Li" es la desviación típica intralaboratorios y "D_{i arit}%" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03} \}text{ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].}$

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

CC.AA	Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i lab}	X _{i arit}	S_{Li}	D _{i arit %}	¿Pasa A?	¿Pasa B?	Total	Causa	Iteración	Z-Score	Evaluación
C12	093	0,03	0,03		0,03	0,03	0,000	-66,72		-				-0,809	S
C02	093		0,03		0,03	0,03	0,000	-77,81						-0,943	S
C02	094	0,02			0.07	0,02	0,000								S
			0,06		0,07		0,014	-22,34				AD	0	-0,271	
C02	096	0,98	0,93		0,96	0,96		40.76	√	X	X	AB	0		 C
C04	097	0,13	0,14		0,14	0,14	0,007	49,76						0,603	S
C04	098	0,03	0,04		0,04	0,04	0,008	-57,79	√					-0,700	S
C03	101	0,05	0,05		0,05	0,05	0,003	-45,64	√	√	√			-0,553	S
C10	103	0,25	0,24		0,25	0,25	0,007	171,79	√	√	√			2,082	D
C12	105	0,04	0,04		0,04		0,000	-55,63	√	√	<u> </u>			-0,674	S
C01	107	0,04	0,03		0,04		0,007	-61,17	<u> </u>	√				-0,741	S
C02	108	0,02	0,02		0,02		0,000	-75,67	<u> </u>	√	√			-0,917	S
C09	109	0,10	0,10		0,10	0,10	0,000	10,94	<u> </u>	√				0,133	S
C09	110	0,01	0,01		0,01	0,01	0,000	-88,91	<u> </u>	√				-1,077	S
C12	112	0,03	0,02		0,03	0,03	0,006	-72,27	√	✓	√			-0,876	S
C10	113	0,17	0,18		0,17	0,17	0,010	90,81	√	✓	√			1,101	S
C07	114	1,23	1,16		1,20	1,20			√	X	Х	AB	0		
C12	115	0,07	0,06		0,06	0,07	0,007	-27,89	✓	√	✓			-0,338	S
C16	116	0,07	0,07		0,07	0,07	0,000	-22,34	✓	✓	✓			-0,271	S
C12	119	0,15	0,14		0,15	0,15	0,012	61,69	✓	✓	✓			0,748	S
C01	124	0,13	0,13		0,13	0,13	0,000	44,22	✓	✓	✓			0,536	S
C03	125	0,03	0,03		0,03	0,03	0,000	-68,94	✓	✓	✓			-0,835	S
C02	129	0,44	0,47		0,45	0,46			✓	X	X	AB	3		
C13	132	0,06	0,07		0,06	0,06	0,007	-33,44	✓	✓	✓			-0,405	S
C08	133	0,09	0,10		0,09	0,10	0,007	5,39	✓	✓	✓			0,065	S
C16	134	0,25	0,26		0,26	0,26	0,005	185,44	✓	✓	✓			2,247	D
C14	135	0,06	0,05		0,05	0,05	0,011	-40,09	✓	✓	✓			-0,486	S
C01	136	0,33	0,33		0,33	0,33			✓	X	X	AN	5		
C08	137	0,11	0,12		0,12	0,12	0,007	27,58	✓	✓	✓			0,334	S
C12	138	0,10	0,10		0,10	0,10	0,000	10,94	✓	✓	✓			0,133	S
C02	139	0,05	0,05		0,05	0,05	0,000	-45,64	✓	✓	√			-0,553	S
C01	140	0,59	0,60		0,60	0,60			√	X	X	AB	2		
C14	141	0,15	0,13		0,14	0,14	0,014	55,31	✓	✓	√			0,670	S
C13	144	0,01	0,00		0,00	0,00	0,002	-95,23	√	√	√			-1,154	S
C01	146	0,15	0,15		0,15	0,15	0,000	70,84	√	√	√			0,859	S
C03	147	0,05	0,05		0,05	0,05	0,005	-45,09	√	√	√			-0,546	S
C08	148	0,15	0,14		0,14	0,15	0,007	60,86	√	√	√			0,738	S
C12	149	0,08	0,10		0,09	0,09	0,015	2,56	√	√	√			0,031	S
C14	151	0,02	0,03		0,02	0,02	0,001	-73,38	√	√	√			-0,889	S
C14	152	0,01	0,02		0,02	0,02	0,004	-81,14	√	√	√			-0,983	S
C16	155	0,06	0,05		0,05	0,05	0,009	-42,87	√	√	√			-0,520	S

 $^{^{01}\ &}quot;X_{ij}\ con\ j=1,2,3"\ resultados\ individuales\ aportados\ por\ cada\ laboratorio,\\ "\overline{X}_{i\ lab}"\ media\ aritm\'etica\ intralaboratorio\ y\ "\overline{X}_{i\ arit}"\ media\ aritm\'etica\ intralaboratorio\ calculada\ sin\ redondear.$

 $^{^{02}}$ "S_Li" es la desviación típica intralaboratorios y "D_{i arit}%" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03} \}text{ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].}$

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

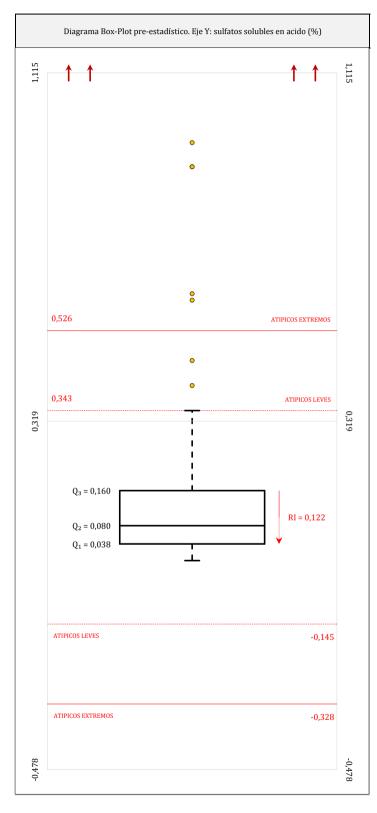
 $^{^{01} \}text{ "$X_{ij}$ con $j=1,2,3$" resultados individuales aportados por cada laboratorio, "$\overline{X}_{i\,lab}$" media aritmética intralaboratorio y "$\overline{X}_{i\,arit}$" media aritmética intralaboratorio calculada sin redondear.}$

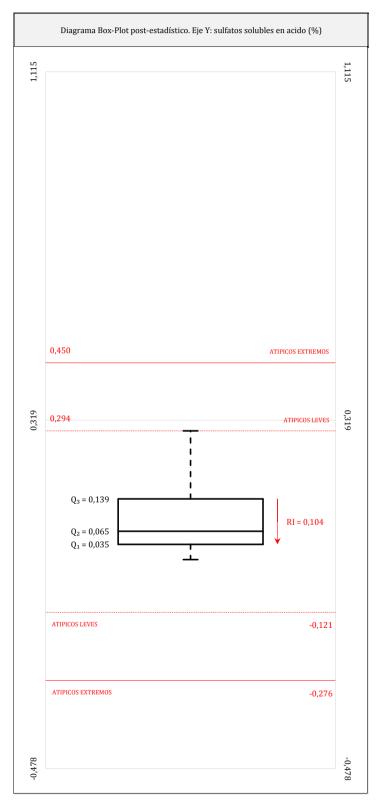
 $^{^{02}}$ "S_Li" es la desviación típica intralaboratorios y "D_{i arit}%" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03} \}text{ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].}$

 $^{^{04}\,}$ El código colorimétrico empleado para el valor de las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación


SACE Subcomisión Administrativa para la Calidad de la Edificación



SULFATOS SOLUBLES EN ACIDO (%)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil $(Q_1; 25\%)$ de los datos), el segundo cuartil o la mediana $(Q_2; 50\%)$ de los datos), el tercer cuartil $(Q_3; 75\%)$ de los datos), el rango intercuartilico (RI; $cuartil\ tres\ menos\ cuartil\ uno)\ y\ los\ l\'imites\ de\ valores\ at\'ipicos\ leves\ (f_3\ y\ f_1\ para\ el\ m\'aximo\ y\ m\'inimo\ respectivamente\ ; l\'ineas\ discontinuas\ de\ color\ rojo)\ y\ extremos\ (f_3\ y\ f_1\ para\ el\ m\'aximo\ y\ m\'nimo\ respectivamente\ ; l\'ineas\ discontinuas\ de\ color\ rojo)\ y\ extremos\ (f_3\ y\ f_1\ para\ el\ m\'aximo\ y\ m\'nimo\ respectivamente\ ; l\'ineas\ discontinuas\ de\ color\ rojo)\ y\ extremos\ (f_3\ y\ f_1\ para\ el\ m\'aximo\ y\ m\'nimo\ respectivamente\ ; l\'ineas\ discontinuas\ de\ color\ rojo)\ y\ extremos\ (f_3\ y\ f_1\ para\ el\ m\'aximo\ y\ m\'nimo\ y\ m\'nimo\ y\ m\'nimo\ respectivamente\ rojo)\ portion (f_3\ rojo)\ portion\ rojo)\ po$ respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

SULFATOS SOLUBLES EN ACIDO (%)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA17 para el ensayo "SULFATOS SOLUBLES EN ACIDO", ha contado con la participación de un total de 105 laboratorios, debiendo haber aportado cada uno de ellos, un total de 2 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 11 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 11 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 7 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

Tipo de análisis		PRE	-ESTADIST	TICO			E	STADISTIC	0	
Variables	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$
Valor Máximo (max; %)	10,13	10,00		10,07	10,07	0,31	0,30		0,31	0,31
Valor Mínimo (min; %)	0,00	0,00		0,00	0,00	0,00	0,00		0,00	0,00
Valor Promedio (M; %)	0,27	0,27		0,27	0,27	0,09	0,09		0,09	0,09
Desviación Típica (SDL;)	1,05	1,04		1,05	1,04	0,08	0,07		0,07	0,07
Coeficiente Variación (CV;)	3,84	3,84		3,83	3,84	0,83	0,82		0,82	0,83
Variables	S_r^2	r (%)	$S_L^{\ 2}$	S_R^2	R (%)	S_r^2	r (%)	$S_L^{\ 2}$	S_R^{2}	R (%)
Valor Calculado	0,000	0,042	1,091	1,091	2,896	0,000	0,027	0,005	0,006	0,207
Valor Referencia		0,075			0,219		0,039			0,073

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{Sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

Tipo de análisis		PRI	E-ESTADIST	'ICO			E	ESTADISTIC	0	
Variables	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,54	2,55	0,294	3,381	0,5862	2,54	2,55	0,294	3,381	0,5862
Nivel de Significación 5%	1,94	1,96	0,237	3,036	0,6445	1,94	1,96	0,237	3,036	0,6445

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 86 resultados satisfactorios, 8 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

14. DOCUMENTACIÓN GRÁFICA DE LA EJECUCIÓN DE LOS ENSAYOS

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Arena - Determinación sulfatos solubles en ácidos Análisis fotográfico

CODIGO DE LA CENTRAL
CODIGO DEL LABORATORIO
102
CODIGO DE LA IMAGEN
2A
OBSERVACIONES

CODIGO DE LA CENTRALC03CODIGO DEL LABORATORIO102CODIGO DE LA IMAGEN2B

CODIGO DE LA CENTRALC03CODIGO DEL LABORATORIO102CODIGO DE LA IMAGEN2C

OBSERVACIONES

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

Arena - Determinación sulfatos solubles en ácidos Análisis fotográfico

CODIGO DE LA CENTRAL
CODIGO DEL LABORATORIO
122
CODIGO DE LA IMAGEN
2A
OBSERVACIONES

CODIGO DE LA CENTRAL

CODIGO DEL LABORATORIO

CODIGO DE LA IMAGEN

2B

OBSERVACIONES

CODIGO DE LA CENTRAL

CODIGO DEL LABORATORIO

CODIGO DE LA IMAGEN

2C

OBSERVACIONES

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Arena - Determinación sulfatos solubles en ácidos Análisis fotográfico

CODIGO DE LA CENTRALC04CODIGO DEL LABORATORIO122CODIGO DE LA IMAGEN2D

OBSERVACIONES

CODIGO DE LA CENTRAL

CODIGO DEL LABORATORIO

CODIGO DE LA IMAGEN

2E

OBSERVACIONES

CODIGO DE LA CENTRAL

CODIGO DEL LABORATORIO

CODIGO DE LA IMAGEN

2F

OBSERVACIONES

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Arena - Determinación sulfatos solubles en ácidos Análisis fotográfico

CODIGO DE LA CENTRALC14CODIGO DEL LABORATORIO170CODIGO DE LA IMAGEN2A

OBSERVACIONES

OBSERVACIONES

OBSERVACIONES

CODIGO DE LA CENTRALC14CODIGO DEL LABORATORIO170CODIGO DE LA IMAGEN2B

CODIGO DE LA CENTRALC14CODIGO DEL LABORATORIO170CODIGO DE LA IMAGEN2C

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Arena - Determinación sulfatos solubles en ácidos Análisis fotográfico

CODIGO DE LA CENTRAL
CODIGO DEL LABORATORIO
CODIGO DE LA IMAGEN
2D
OBSERVACIONES

CODIGO DE LA CENTRAL
CODIGO DEL LABORATORIO
CODIGO DE LA IMAGEN

C14

170

2E

CODIGO DE LA CENTRAL CODIGO DEL LABORATORIO CODIGO DE LA IMAGEN

OBSERVACIONES

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Arena - Determinación de cloruros (Volhard) Análisis fotográfico

CODIGO DE LA CENTRALC16CODIGO DEL LABORATORIO155CODIGO DE LA IMAGEN1A

OBSERVACIONES

OBSERVACIONES

CODIGO DE LA CENTRALC16CODIGO DEL LABORATORIO155CODIGO DE LA IMAGEN1B

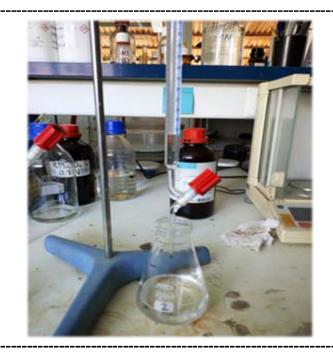
CODIGO DE LA CENTRAL
CODIGO DEL LABORATORIO
155
CODIGO DE LA IMAGEN
1C
OBSERVACIONES

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Arena - Determinación de cloruros (Volhard) Análisis fotográfico



CODIGO DE LA CENTRALC16CODIGO DEL LABORATORIO155CODIGO DE LA IMAGEN1D

OBSERVACIONES

CODIGO DE LA CENTRAL
CODIGO DEL LABORATORIO
155
CODIGO DE LA IMAGEN
1E
OBSERVACIONES

CODIGO DE LA CENTRAL
CODIGO DEL LABORATORIO
155
CODIGO DE LA IMAGEN
1F
OBSERVACIONES

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

Arena - Determinación sulfatos solubles en ácidos Análisis fotográfico

CODIGO DE LA CENTRALC16CODIGO DEL LABORATORIO155CODIGO DE LA IMAGEN2A

OBSERVACIONES

CODIGO DE LA CENTRAL
CODIGO DEL LABORATORIO
155
CODIGO DE LA IMAGEN
2B
OBSERVACIONES

CODIGO DE LA CENTRAL
CODIGO DEL LABORATORIO
155
CODIGO DE LA IMAGEN
2C
OBSERVACIONES

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Arena - Determinación sulfatos solubles en ácidos Análisis fotográfico

CODIGO DE LA CENTRALC16CODIGO DEL LABORATORIO155CODIGO DE LA IMAGEN2D

OBSERVACIONES

CODIGO DE LA CENTRAL
CODIGO DEL LABORATORIO
155
CODIGO DE LA IMAGEN
2E
OBSERVACIONES

CODIGO DE LA CENTRAL
CODIGO DEL LABORATORIO
155
CODIGO DE LA IMAGEN
2F
OBSERVACIONES

Comité de infraestructuras para la Calidad de la Edificación

15. 16 EVALUACIÓN GLOBAL DE LOS LABORATORIOS PARA LOS ENSAYOS DE MATERIALES

Se recoge en las siguientes tablas la evaluación global de los resultados aportados para todos los ensayos de materiales, a nivel nacional. Estas tablas se dividen por **Comunidad Autónoma** indicando: el código del laboratorio y su evaluación, según el análisis estadístico realizado, con la sigla que corresponda.

Tabla 16.1A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C01

	SOLUBI ÁRI	-				В	ARRA	AS D	E ACEI	RO SON	ИЕТI	DAS	A EN	IDERE	ZADO		S	SUELO	
CÓDIGO	Cloruros	Sulfatos		t (Caract rans. y corrug áreas	/ long. ga y fla	(1 y nco	' 2);), se	ángul eparac	los inc ión co	lina rruį	ciór gas ː	ı y	tota	argam. al /Lim ástico	Sales solubles	Mater. organ.	Proctor Humedad	
100			S	S	DES	DES	S	S	DES	DES	S	S		S	**/at	*/at	S	S	S
107	D/at	S														S	S	S	S
124	S	S														S	S	S	S
131			**	**	S	S	S	S	DES	DES	D			S	**/atex				
136		*														S	S	S	**/at
140		**/at														S	S	S	S
146	S	S														S	S	S	D/at
162	S	S	S	S	S	S	S	S	S	S	S	S		S	S	S	S	S	S
163	S	S	S	S	S	S	S	S	S	S	S			S	S	D	S	S	S
180																S	S	S	D/at
187	S	S	S	S	S	D	S	S	DES	DES	S			S	S	S	S	D	S
201		**/at	S	S	S	S	S	S	S	S	S			S	S	S	S	S	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.1B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma CO1

	AF	RIDOS (FIL	LER)		МВС						BALD(OSAS			
CÓDIGO	Gran	ulometría	a fillers]	Resba	aladic	idad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	09	<u> </u>	18	80º	Prom	edio	inicial (rción (grupos v02)	final (rción grupos v 02)
100						S		S	S	S	S				
107				S											
124				S	S	S	S	S	S	S	S	S	**	S	*
131															
136															
140						S	S	S	S	S	S				
146															
162				S	S	S	S	S	S	S	S	S	**	S	S
163	S	S	S									S	S	S	S
180															
187					S	S	S	S	S	S	S				
201						S	S	S	S	S	S				

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

^(*) Debido a que todos los laboratorios obtienen el mismo resultado en el ensayo, la desviación típica resulta nula, y el z-score no se puede calcular.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.2A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma CO2

	SOLUBLES	EN ÁRIDO]	BARRA	AS DE A	CERO	SOME	TID	AS A	A ENI	DEREZAI	00			SUELO	
CÓDIGO	Cloruros	Sulfatos			trai (co	acterí is. y lo rruga	ng. (1 y flan	y 2); co),se	ángul paraci	os inc ión co	lina rru	ació gas	n y	Alarş total	gam. /Lim	Sales	Mat.	Proctor	normal
	Gioraros	Sunutos			áre	eas pro	oyecta	idas (d	corrug	gas y g	graf	ilas)	Elás		solubles	organ.	Humedad	Densidad
026			S	S	S	S	S	S	S	S	S			AN/at	S				
043	*/at	S	S	S	S	S	S	S	S	S	S			S	S	S	S	S	S
045																		S	S
050			S	S	D	D	S	S	S	S	S								
066																S	D	S	S
070	S	S														S	S	S	S
091			**	**	S	S	S	S	S	S	S	S				S	S	S	S
094	**/at	S	S	S	DES	DES	S	S	S	S	S	S		S	D	S	S	S	S
096	S	**/at	**	**	D	D	DES	DES	S	DES	S			*/at	D/at	S	S	S	S
108	S	S		S	S	S	S	S	S	S	S			D	S	S	S	S	S
129	*/at	**/at	S	S	S	S	S	S	S	S	S			S	S	S	S	S	S
139	S	S	S	**	S	S	S	S	S	S	S			*	**/at	S	S	S	S
153																		S	S
154																S		S	S
156	S	D	S	S	S	S	S	S	S	S	S	S		S	S	S	S	S	S
157	S	S	S	S	S	S	S	S	DES	DES	S	*		S	D/at	S	S	S	S
165	S	S	D	D	S	S	S	S	S	S	S	**		S	S	S	S	S	S
179																	S	S	S
185	**	S														S	S	S	S
186	S	S	S	S	S	S	S	S	S	S	S	S		S	S	S	S	S	S
190																		S	S
195																S	S	S	S
198		S	S	S	DES	DES	S	S	DES	DES	S			S	S	S	S	S	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Calidad de la Edificación

Tabla 16.2B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma CO2

	AR	IDOS (FIL	LER)	M	1BC					E	SALDOS	SAS			
CÓDIGO	Gran	ulometría	a fillers				R	esbal	adicio	lad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	0	<u>o</u>	18	80∘	Prom	edio	inicial	rción (grupos v 02)		
026															
043				S		DES	DES	DES	DES	DES	DES				
045															
050						**	DES	**	DES	**	DES				
066															
070															
091															
094															
096	S	S	*	S/at	*	*	DES	**	DES	**	DES				
108				S	S	S	S	S	S	S	S	**	D	S	S
129				D/at	D/at	**	**	**	**	**	**				
139				S		S	*	S	S	S	S	S	S	S	S
153						S	S	S	S	S	S				
154				S											
156				S	S										
157				S	**/at										
165				S	S										
179															
185															
186	**	S	S	S	S	S	S	S	S	S	S	D	S	S	S
190				S		S	S	S	S	S	S				
195				S	S	S	S	S	S	S	S				
198	S	**/at	S	S	S										

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.3A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C03

		LES EN IDO								В	ARRAS I	E ACER		TIDAS	A			SUELO	
CÓDIGO	Cloru ros	Sulfa tos				tra (c	ans. y orrug	lon ga y	g. (1 y flanco	2);),se	nétricas ; ángulc eparació corruga	s inclir ón corr	nación ugas y		gam. /Lim stico	Sales solubles	Mat. organ.	Proctor Humedad	normal Densidad
015			S	S	S	S	S	S	S	S	DES	**	*	S	S				
053			S	S	S	S	S	S	S	S	S			S	S	*/at	S	S	D/at
073			S	S	S	S	S	S	**	S	S	*	**	S	S				
101	S	S	S	S	S	S	S		S	S	S	S	S	D	D	*/at	S	S	S
102			**	**	**	**	S	S	DES	D	DES			S	S	*/at	S	S	S
125		S	S	S	S	S	D	S	**	S	S	S		S	S	*/at	S	S	S
147	*	S	S	S	S	S	S	S	S	S	S	S	S			*/at	S	S	S
164	S	S														**/at	S	*/atex	D/at
167	S	S														*/at	S	S	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensavo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.3B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma CO3

	ARII	OOS (FILLE	ER)	N	ИВС					В	SALDO	SAS			
CÓDIGO	Granul	ometría f	fillers				F	Resbal	adici	dad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	0	<u>o</u>	18	80º	Prom	edio	inicial (rción (grupos , 02)	final (rción grupos v 02)
015		_	_	_											
053															
073						S	S	S	S	S	S				
101						S	S	S	S	S	S	S	S	S	S
102						S	S	S	S	S	S				
125	S	S	S	*/at	S										
147												S	S	S	S
164	S	**/at	D			S	S	S	S	S	S	*	S	S	S
167															

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.4A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma CO4

		LES EN IDO					В	ARR	AS DE A	CERO S	SOME	TIDAS A	ENDER	EZAD()			SUELO	
CÓDIGO	Cloru	Sulfa				ong.	(1)	y 2);	geomé ángulo paracio	s incli	nació	ón (cor	ruga y		gam. tal	Sales	Mat.	Proctor	normal
	ros	tos							adas (co					'	im stico	solubles	organ.	Humedad	Densidad
027	S															S	S	S	S
029	S	**/at														S	S	S	S
030	S	S	**	S	S	S	S	S	S	S	D	S					S	S	S
041		S	S	S	S	S	S	S	DES	DES	S	S		S	S			S	S
074	S		S	S	S	S	S	S	DES	DES	S	S				S			
075		S	S	D	S	S	S	S	S	S	S	D	S	S	S	S	S		
089														D	**/a	S	S	**/at	*/at
092	S															S	S	S	S
097	*	S														*/at	S	S	S
098		S	**	S	S	S	S	S	DES	DES	S	*						S	S
122														S	S	*/at			
126																S	S	S	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.4B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma CO4

	AR	RIDOS (FIL	LER)	M	1BC					В	BALDO	SAS			
CÓDIGO	Gran	ulometría	a fillers				F	lesbal	adici	dad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	0	ō	18	80º	Prom	edio	inicial	rción (grupos v 02)	final (rción grupos v 02)
027						S	S	S	S	S	S				
029					S	D	D	D	D	D	D				
030												S	S	S	S
041				S											
074															
075						S	S	S	S	S	S				
089															
092												**	S	*	*
097				*											
098				S	S										
122				S	S	S	S	S	S	S	S				
126					S	S	S	S	S	S	S	*	**	**	*

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.5A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma CO5

		LES EN IDO				BARR	AS DE	ACER	O SOM	ETIDA	S A EN	IDEF	REZA	DO				SUELO	
CÓDIGO	Cloru	Sulfa tos			tr	aracter ans. y l orruga	ong. (1 y 2)	; ángu	ılos in	clina	ción		Alarg	'Lim	Sales solubl	Mat. organ.	Proctor	normal
						eas pr								Elást	ico	es		Humedad	Densidad
012	S	**/at	S	S	S	S	S	S	DES	S	S	S		*	S	S	S	S	S
013	S	S	S	S	S	S	S	S	DES	DES	S			S	S	S	S	S	S
016	S	S	S	S	D	D	S	S	DES	DES	S			S	S	D	S	S	S
023	S	S	S	S	S	S	D	D	S	S	**			**/at	S	D/at	S	S	D/at
024	S	S	S	S	S	S	D	D	S	S	**			**/at	S	**/at	S	S	D
031																S		**/at	S
032																S		S	S
048	S	S	S	S	S	S	S	S	S	S	S			S	S	S	S	S	S
057	S	**/at	DES	DES	DES	DES	DES	DES	DES	DES	DES					S	S		
059	S	**/at														S	S	D	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.5B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma CO5

	AR	RIDOS (FIL	LER)	N	ивс					E	BALDO:	SAS			
CÓDIGO	Gran	ulometría	a fillers				R	esbal	ladicio	lad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	C) <u>o</u>	18	80º	Prom	edio	inicial (rción (grupos [,] 02)	final (rción grupos v 02)
012				S	S							*	**	**	*
013	S	S	S	S	S	S	DES	S	DES	S	DES				
016	S	D	S	S	S	S	S	S	S	S	S				
023				S											
024				S								DES	DES	DES	DES
031															
032															
048						S	S	S	S	S	S	S	S	S	S
057				S											
059				S											

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.6A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C06

		LES EN IDO				BA	RRA	S DE A	CERO SO	OMETI	DAS	A E	NDER	EZADO)			SUELO	
CÓDIGO	Cloru	Sulfa			y long.	(1 y 2	2); á	ngulo	tricas: s inclin on corri	ación	(co	rrug		Alar		Sales	Mat.	Proctor	normal
	ros	tos			proyectadas (corrugas y grafilas) total /Lim solubles organ.													Densidad	
033	**/at	S																	
039	S	S	S	S	DES	DES	S	S	S	S	S	S		S	S	S	S	S	S
082	S		D	D	S	S	S	S	DES	DES	S	S		S	S			S	D/at

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.6B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C06

	AR	RIDOS (FIL	LER)	N	1ВС					В	SALDO:	SAS			
CÓDIGO	Gran	ulometría	a fillers				F	esbal	adici	dad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	0	<u>o</u>	18	80º	Prom	edio	inicial	rción (grupos v 02)	final (rción grupos , 02)
033															
039					S	S	S	S	S	S	S				
082															

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.7A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma CO7

	SOLUB ÁR	LES EN IDO]	BARRA	AS DE A	ACERC	SOMI	ETIDA	S A EN	DER	EZAD)				SUELO	
CÓDIGO	Cloru ros	Sulfa tos	y 2	2); á	erística ngulos ugas y	inclin	ación	(corr	uga y	flanc	o),sep	ara	ción	Alarg total / Elást	/Lim	Sales solubles	Mat. organ.		normal
							1 ,		`		, ,			Elasi	lico		_	Humedad	Densidad
037	D/at	S	**	**	S	S	S		DES	DES	S	S				S	S		
038	**/at	D	S	S	S	S	S	S	S	S	S			S	S	S	D	S	S
052	**/at	S	S	S	S	S	S	S	DES	DES	S	S		S	S	S	S	S	S
054			**	**	**/ atex	**	DES	S	DES	DES	DES					*/at	S	S	S
079		S	S	S	S	S	S	S	S	S	S	S		S	S	S	S	S	S
080	**	S	S	S	S	S	S	S	DES	DES	S			S	S	S		S	S
085																		S	S
095	S/at	S	S	S	S	S	S	S	**	D	S				S	S	S	S	S
114		**/at	S	S	S	S	S	DES	S	S	S			**/ atex	S	S	D	S	D/at
168	S	S																	
169	*/at	S														S	S	S	S
174																S	S	S	S
181	S	D	S	S	**	DES	DES	S	DES	DES	DES					S	S	**/at	S
189		S														S	S		
191	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
192																S	S	S	S
203																S	S	S	D

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.7B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C07

	AR	RIDOS (FIL	LER)	N	1BC					BA	LDOSA	S			
,	Gran	ulometría	fillers				R	lesbal	adicio	lad			Heladicio	dad	
CÓDIGO	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	0	ıΩ	18	80∘	Prom	edio	inicial (rción (grupos '02)	Absor n fin (grup 01 y (al oos
037				S		S	DES	S	DES	S	DES				
038						**	*	**	**	**	**				
052	**	S/at	*	S	S	S	S	S	S	S	S	S	S	S	S
054				S	S	DES		DES	DES	DES	DES				
079				S	S	S	*	S	S	S	S				
080	S	S	S	S	S	S	*	S	S	S	S				
085						S	S	S	S	S	S				
095				*/at	D/at	S	*	S	S	S	S				
114						**	*	**	DES	**	DES	**	**	**	**
168	**	S	**/at			S	S	S	S	S	S	S	S	S	S
169															
174															
181				**/at		DES	DES	DES	DES	DES	DES				
189						S	DES	S	DES	S	DES				
191						D	S	D	S	D	S				
192															
203															

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.8A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma CO8

	SOLUB ÁR	LES EN IDO				BAR	RAS D	E ACE	RO SO	METID	AS A EN	NDEF	REZADO	0				SUELO	
CÓDIGO	Cloru ros	Sulfa tos	y 2	2); á	ingulo	s incl	inacić	in (co	rruga	y flan	trans. ¡ .co),se¡ as y gr	para	ción	to	largam. tal /Lim Elástico	Sales solubles	Mat. organ.	Proctor	normal
									`						lastico			Humedad	Densidad
104													*/at	S	S	S			
123													S	**/at	S	S	D	S	
133	S	S	S	S	DES	DES	S	S	DES	DES	S	S		S	S	S	S	S	S
137	S	S	S	S	DES	DES	S	S	S	S	S			S	S	S	S	S	S
148	S	S	S	S	S	S	S	S	S	S	S			S	**/atex	S	S	S	S
171	S	S	S	S	S	S	S	S	DES	DES	S	S		S	S			S	S
173			S	S	S	S	S	S	S	S	S	S		S	**/atex	S	S	S	S
182																S	S	S	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.8B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C08

	AR	RIDOS (FIL	LER)	N	ИВС					В	ALDO	SAS			
CÓDIGO	Gran	ulometría	a fillers				R	esbal	ladicio	lad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	O) <u>o</u>	18	80º	Prom	edio		rción (grupos v 02)		rción grupos (02)
104					S	S	DES	S	DES	DES	DES				
123															
133															
137															
148				S	*/at										
171						S	*	S	S	S	S				
173						S	S	S	S	S	S				
182															

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.9A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C09

	SOLUB ÁR	LES EN IDO						BARRA	S DE ACI	ERO SON	ИЕТI	DAS A	END:	EREZA	DO			SUELO	
CÓDIGO	Cloru	Sulfa tos			С	ma: orrug	x tra a y i	ísticas g ans. y lo flanco; :	ng. ; án separac	gulos ir ión cor	ıclir ruga	iaciór is y ái	ı	tot	argam. al /Lim lástico	Sales solu bles	Mat. organ.	Proctor	
						I	oroy	zectada:	s (corru	ıgas y g	rafil	as)		E.	iastico	bies		Humedad	Densidad
010			S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
014			S	S															S
020	S	S	S	S	S	S	S	DES	DES	DES	S			S	S	D/at	S	S	S
025	S	D	S	S	S	S	S	S	DES	DES	S	**	**	S	S	*/at	D/at	S	S
036	S	S	D	D	S	S	S	S	DES	DES	S			S	D	S	S	D	S
086	S	S	S	S	S	S	S	S	DES	DES	S			S	**/ at	D	S	S	S
109		S	S	S	S	S	S	S	S	S	S			S	S	D	S	S	S
110	S	S	S	S	S	S	S	S	DES	DES	S			D	D	D	S	S	S
121																			
178	D/at	**/at														*/at	*	S	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.9B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C09

	AF	RIDOS (FIL	LER)	N	1ВС					В	SALDO	SAS			
CÓDIGO	Gran	ulometría	a fillers				R	lesbal	adici	dad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	0) <u>o</u>	18	80º	Prom	edio	inicial	rción (grupos v 02)	final (rción grupos v 02)
010						S	S	S	S	S	S				
014															
020						S	S	S	S	S	S				
025				S	S	S	D	D	D	D	D				
036				S		S	S	S	S	S	S				
086	S	S	S	**/at		S	S	S	S	S	S	**	**	S	S
109															
110				S	S	S	S	S	S	S	S				
121						S	S	S	S	S	S	S	S	S	S
178					S										

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

^(*) Debido a que todos los laboratorios obtienen el mismo resultado en el ensayo, la desviación típica resulta nula, y el z-score no se puede calcular.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.10A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C10

	SOLUB ÁR					BARR	AS E	E ACE	ERO SO	METII	DAS.	A END	EREZ	ADO				SUELO	
CÓDIGO	Cloru	Sulfa			tra (co	ns. y orruga	long a y fl	g. (1 y lanco]	eomét 2); án),sepa	igulos raciói	inc inco	linaci rruga	ón s y		am. total	Sales solub	Mat.	Proctor	normal
	ros	tos			ár	eas p	roye	ectada	as (coi	rugas	s у g	rafila	s)	/Lim	Elástico	les	organ.	Humedad	Densidad
017		S	S	S	S	S	S	S	S	S	D	S	S	S	S	S	S		
028	D/at	S	D	D	D/ at	*	S	S	S	S	S	**/atex	S	S	S	D			
040	S	S	S	at														S	S
046			S	S	S	S	S	S	DES	DES	S	*		S	S			S	S
047														S	S			S	S
055			S	S	S	S	S	S	S	S	S	S	S	S	S	S	S		
062			S	S	S	S	S	S	**	D	S	S		*	S	S		S	S
072			S	S	S	S	S	S	S	S	S	S	S	S	S	S			
081		D														S	S	S	S
103		D														S	S	S	S
113	S	S																	
117																S	S		

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.10B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C10

	AR	IDOS (FIL	LER)	N	1BC					E	BALDO	SAS			
CÓDIGO	Gran	ulometría	a fillers				F	Resbal	ladici	dad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	0	<u>o</u>	18	80º	Prom	edio	inicial	rción (grupos v 02)	final (orción grupos y 02)
017	**/at	S	S	S											
028	**/at	*	S	S											
040	S	S/at	S	S	S	S	S	S	S	S	S				
046				S		S	S	S	S	S	S				
047															
055					*/at										
062															
072															
081				S	S										
103															
113															
117															

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.11A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C11

	SOLUB ÁR	LES EN IDO					BA	RRA	S DE A	CERO :	SOMET	DAS A	A ENDEF	REZADO	١		S	SUELO	
CÓDIGO	Cloru	Sulfa			lo	ng. (1	y 2);	áng	gulos i	nclina	ltura m ción (c áreas p	orru	ga y	Alarg total		Sales	Mat.	Proctor	normal
	ros	tos					(cori	ugas	y grafi	las)			Elás		solubles	organ.	Humedad	Densidad
067	S	S	**	D	DES	DES	S	S	DES	DES	S			**/at	S	S	S	S	S
087	S	S															S		
128																*	S	S	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

^(*) Debido a que todos los laboratorios obtienen el mismo resultado en el ensayo, la desviación típica resulta nula, y el z-score no se puede calcular.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.11B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C11

	AR	RIDOS (FIL	LER)	N	ИВС			BALDO	SAS	
CÓDIGO	Gran	anulometría fillers 0.125 0.063]	Resbaladici	dad	Heladi	cidad
	2 mm			Densid apar.	Punto de resbland	05	180º	Promedio	Absorción inicial (grupos 01 y 02)	Absorción final (grupos 01 y 02)
067				*						
087										
128	S	*	S		S					

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

^(*) Debido a que todos los laboratorios obtienen el mismo resultado en el ensayo, la desviación típica resulta nula, y el z-score no se puede calcular.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.12A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C12

	SOLUBLI ÁRID						BA	RRA	S DE A	CERO S	SOMETI	DAS A	ENDER	REZAI	00			SUELO	
CÓDIGO	Clorur	Sul fat			t (rans corr	s. y l uga	ong y fl	. (1 y anco)	2); áng ,separ	icas: a gulos ir ación c	nclina corrug	ción gas y		ırgam. ıl /Lim	Sales soluble	Mat.	Proctor	normal
	os	os				área	ıs pı	oye	ctada	s (cori	rugas y	grafi	las)		ástico	S	organ.	Humedad	Densidad
035	S	S	S	S	S	S	S	S	DES	*	S	**		S	S	S	S	S	S
051	S	S			S S														
063																			
093	**/at	S		S S														S	S
105	S	S	S															S	S
112	S	S														S	S	S	S
115	S	S														S		S	S
119	S	S														S	S	S	D
138	S	S	S	S	S	S	S	S	DES	DES	S			S	**/at	S	S	S	S
142	S		S	S	S	S	S	S	DES	DES	S			S	S	S	S	S	S
143																S			
149	D/at	S	S	S	S	S	S	S	D	S	S	*	**	S	D	S	S	D	S
175	S	S	**	**	S	S	D	D	**	D	S	S	S	S	S	S	S	S	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.12B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C12

	AR	RIDOS (FIL	LER)	N	1BC					Е	BALDO:	SAS			
CÓDIGO	Gran	ulometría	a fillers				R	lesba	ladicio	dad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	()º	18	80º	Prom	edio	inicial	rción (grupos 702)	final (rción grupos v 02)
035					S	S	S	S	S	S	S				
051					S	S	S	S	S	S	S				
063	**	S	S			S	S	S	S	S	S	S	S	S	S
093						S	S	S	S	S	S				
105						S	S	S	S	S	S	S	S	S	S
112												S	S	S	S
115					S										
119															
138				S	S										
142						S	DES	S	DES	S	DES				
143															
149				I/at	*	S	S	S	S	S	S	S	S	S	S
175					D/at	S	S	S	S	S	S				

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.13A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C13

		LES EN IDO			В	BARF	RAS D	E AC	ERO SO	METID	AS A	ENDER	EZAD()			SUELO		
CÓDIGO	Cloru	Sulfa		ong.	(1)	y 2)	; áng	ulos	inclina	ıltura r ación (gas y á	corr			gam. /Lim	Sales	Mat.	Proctor	normal	
	ros	tos]	proy	Humedad	Densidad												
088	S	S	S	S	S S S S S S S S S S S S S S S S S S S														
132		S													S	*/at			
144	S	S	S	S	S	S	S	S	DES	DES	S	S	S	S	S	S	S	S	
172	S		S	**	S	S	S	S	DES	DES	S		S	S					
202	D/at	S	S	S	S	S	S	S	DES	DES	S				S	S	S	S	

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Calidad de la Edificación

Tabla 16.13B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C13

	AR	RIDOS (FIL	LER)	N	1ВС					В	ALDO:	SAS			
CÓDIGO	Gran	ulometría	a fillers				F	lesba	ladicio	dad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	0	<u>o</u>	18	80º	Prom	edio	inicial	rción (grupos v 02)	final (rción grupos (02)
088				*	S	S	S	S	S	S	S				
132					S										
144				S	S										
172	**/at	**/at	**/at	S		S	S	S	DES	S	S				
202				S	S	S	S	S	S	S	S				

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.14A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C14

	SOLUB ÁR							BARI	RAS DE	E ACER	O SOME	TIDAS	S A ENDE	EREZA	DO			SUELO	
CÓDIGO	Cloru	Sulfa				ng.	(1)	/ 2); á	ingulo	s incli	: altura nación rugas y	(corı	ruga y		argam.	Sales solu	Mat.	Proctor	normal
	ros	tos		flanco), separación corrugas y áreas proyectadas (corrugas y grafilas) S S S S DES S DES S S S S S S S S S S S							•	bles	organ.	Humedad	Densidad				
069	S	D	**	S	S	S	S	S	DES	S	DES			S	S	S	S	S	S
111																		S	S
118																S	*/at	S	S
135	S	S	S	S	S	S	S	S	S	S	S	S		S	S	S	S	S	S
141	S	S														S	S	S	S
151	D/at	S														S	S	S	S
152	D/at	S														S	S	S	S
161	S	S	S	S	S	S	S	S	DES	DES	S	S		S	S	S	S	S	S
170	S	S	S	S	S	S	S	S	S	S	S			S	S	S	S	S	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.14B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C14

	AR	RIDOS (FIL	LER)	N	1BC					F	BALDO:	SAS			
CÓDIGO	Gran	ulometría	a fillers				F	Resbal	ladicio	dad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	0	<u>o</u>	18	80º	Prom	edio	inicial	orción (grupos 7 02)	final (orción grupos 7 02)
069															
111															
118															
135	S	S	**	D/at											
141				S	*	DES	DES	DES	DES	DES	DES				
151															
152															
161					S										
170				*											

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.15A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C15

	SOLUB ÁR	LES EN IDO					В	BARR	RAS DE .	ACER	O SOMETI	DAS A	ENDI	EREZAI	00			SUELO	
CÓDIGO	Cloru	Sulfa			Características geométricas: altura y long. (1 y 2); ángulos inclinación flanco),separación corrugas y proyectadas (corrugas y gra										ırgam. ıl /Lim	Sales solu	Mat.	Proctor	normal
	ros	tos													ástico	bles	organ.	Humedad	Densidad
042	S	S														S	S	S	S
127																S	S	S	S
177			S	S	DES	DES	S	S	DES	S	DES			S	**/atex	S	S	S	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

^(*) Debido a que todos los laboratorios obtienen el mismo resultado en el ensayo, la desviación típica resulta nula, y el z-score no se puede calcular.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.15B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C15

	AR	IDOS (FIL	LER)	N	ИВС					В	ALDO:	SAS		
CÓDIGO	Gran	ulometría	a fillers				R	lesbal	adicio	dad			Heladi	cidad
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	05		18	80º	Prom	edio	inicial	orción (grupos y 02)	Absorción final (grupos 01 y 02)
042	**/at	*/at	S	D/at		S	S	S	S	S	S			
127					D/at									
177														

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

^(*) Debido a que todos los laboratorios obtienen el mismo resultado en el ensayo, la desviación típica resulta nula, y el z-score no se puede calcular.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.16A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C16

		LES EN IDO				В	SARRA	S DE A	.CERO	SOME	TIDAS	A E	NDER	EZAD()			SUELO	
CÓDIGO	Cloru	Sulfa			y lon	cteríst ig. (1 y flanco	y 2); á ɔ),sep	ngulo aracio	s incl ón cor	inacić rugas	n (co y áre	rrug as			gam. /Lim	Sales	Mat.	Proctor	normal
	ros	tos		S S S			ectad	las (co	orruga	as y gi	rafilas	s)			stico	solubles	organ.	Humedad	Densidad
011			S	S	S	S	S	S	**	S	S	S		S	S	S	S	S	S
021	S	S														S	S	S	S
056	S	S														S	S	S	S
077		S	**	**	S	S	S	S	DES	DES	S	S				S	S	S	S
106																S	S	S	S
116	D/at	S	**	D	DES	DES	DES	DES	DES	DES	DES			S	S	S	S	S	S
134	S	D														S	S	S	S
155	S	S														S	S	S	S
176	S	S	S	S	S	S	S	S	DES	DES	S	S		S	S	S	S	S	S
196		S														S	S	S	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.16B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C16

	AR	RIDOS (FIL	LER)	N	1ВС					В	ALDO	SAS			
CÓDIGO	Gran	ulometría	a fillers				R	lesbal	adicio	dad			Heladi	cidad	
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	0	<u>) O</u>	18	80∘	Prom	edio	inicial (rción (grupos [,] 02)	final (rción grupos , 02)
011															
021						S	S	S	S	S	S	S	S	S	S
056															
077				S/at											
106							DES	DES	DES	DES	DES				
116	S	**/at	*/at	S	S	S	S	D	D	S	D				
134															
155				S	S										
176	**	S	S	S	S	S	*	S	S	S	S				
196															

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.17A. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C17

	SOLUB ÁR	LES EN IDO				BAI	RRAS I	DE A	CERO	SOME	TIDAS	A El	NDER	EZADO)			SUELO	
CÓDIGO	Cloru	Sulfa			Características geométricas: altura max trar y long. (1 y 2); ángulos inclinación (corruga flanco), separación corrugas y áreas proyectadas (corrugas y grafilas)								Alar		Sales	Mat.	Proctor	normal	
	ros	tos			flanco),separación corrugas y áreas proyectadas (corrugas y grafilas)							tico	solubles	organ.	Humedad	Densidad			
084	S	S	S	S DES DES S DES DES S							S	S	S	S	S	S			
188																S	S	S	S

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Tabla 16.17B. Evaluación global a nivel NACIONAL de la Comunidad Autónoma C17

	AR	RIDOS (FIL	LER)	N	ИВС					В	SALDO	SAS		
CÓDIGO	Gran	ulometría	a fillers				F	Resbal	adicio	dad			Heladi	cidad
	2 mm	0.125 mm	0.063 mm	Densid apar.	Punto de resbland	0	0º 180º Promedi		edio	inicial	orción (grupos y 02)	Absorción final (grupos 01 y 02)		
084					S	S	S	S	S	S	S			
188														

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); ** Aberrante; * Anómalo; atípico (at); extremadamente atípico (atex); – sin resultado z-score (*); Descartado (DES). En amarillo indica la no participación en el ensayo.

Los laboratorios que recogen las siglas de "sosp." son códigos que han dado mediciones calificadas como valores sospechosos por no expresarlas correctamente. Y si las siglas son "desc", es que han sido descartados para el análisis estadístico por una ejecución inadecuada de la norma de ensayo o por no cumplir el criterio de Validación recogido en la norma, en su caso. Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

16.AGRADECIMIENTOS

Este ejercicio interlaboratorios en el área de MATERIALES, ha cubierto los objetivos y expectativas previstas, debido fundamentalmente, a la buena predisposición, trabajo, y esfuerzo, de todas las personas y entidades participantes en el mismo, para los cuales, sirva el presente recordatorio, y el más sincero agradecimiento.

COORDINADORES GENERALES

Emilio

Meseguer Peña

Región de Murcia

Región de Murcia

Victoria de los Ángeles

Viedma Peláez

Junta de Comunidades de

Castilla La Mancha

Elvira Salazar Martínez Gobierno Vasco

COORDINADORES AUTONÓMICOS

Miguel Ángel Junta de Andalucía

Santos Amaya

Mª Teresa

Ramos Martín

Junta de Andalucía

Ana

Gobierno de Aragón López Álvaro

Ana Rico Oliván

Gobierno de Aragón

Juan Carlos Cortina Villar

Principado de Asturias



Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Israel López García	Comunidad Autónoma de La Rioja	Gobierno de La Rioja
Salud García López	Comunidad Autónoma de Madrid	consejeria de transportes, vivienda e infraestructuras Comunidad de Madrid
Antonio Azcona Sanz	Comunidad Autónoma de Madrid	consejeria de transportes, vivienda e infraestructuras Comunidad de Madrid
Emilio Meseguer Peña	Comunidad Autónoma de la Región de Murcia	Región de Murcia
Teresa Barceló Clemares	Comunidad Autónoma de la Región de Murcia	Región de Murcia
Mª Carmen Mazkiarán López de Goikoetxea	Gobierno de Navarra	Nafarroako Gobernua Gobierno de Navarra
Juan José Palencia Guillén	Generalitat Valenciana	GENERALITAT VALENCIANA CONSELIERIA DE VIVIENDA, OBRAS PÚBLICAS Y VERTEBRACIÓN DEL TERRITORIO
Elvira Salazar Martínez	Gobierno Vasco	EUSKO JAURIARITZA GOBIERNO VASCO
Lourdes González Garrido	Gobierno Vasco	EUSKO JAURIARITZA GOBIERNO VASCO
Alberto Apaolaza Sáez de Viteri	Gobierno Vasco	EUSKO JAURLARITZA GOBIERNO VASCO

Comité de infraestructuras para la Calidad de la Edificación

TRATAMIENTO Y GESTIÓN DE MUESTRAS

 CTCON, Centro Tecnológico de la Construcción. Región de Murcia.

EMPRESAS COLABORADORAS

- ARIMESA-ÁRIDOS DEL MEDITERRANEO, S.A
- PORFIDOS DEL MEDITERRANEO, S.A
- CHM OBRAS Y SERVICOS
- EL PINAL DE BULLAS, S.L.
- ETOSA OBRAS Y SERVICIOS S.A.
- KERABEN GRUPO

ELABORACIÓN Y GESTIÓN DE LAS FICHAS DE RESULTADOS. ANÁLISIS ESTADÍSTICO.

- Fernando Meseguer Serrano
- Victoria de los Ángeles Viedma Peláez
- IETCC, Instituto de Ciencias de la Construcción Eduardo Torroja:

LABORATORIOS PARTICIPANTES POR COMUNIDADES AUTÓNOMAS EN EILA 2017

JUNTA DE ANDALUCIA

1. Laboratorio Andaluz de Ensayos de Construcción, SRL (LAENSA)	AND-L-002
2. Centro de estudio de materiales y control de obra S.A. (CEMOSA) –	AND-L-003
Córdoba	
3. Cementos portland Valderrivas S.A Sevilla	AND-L-010
4. Centro de estudio de materiales y control de obra S.A. (CEMOSA) – Jaén	AND-L-013
5. Centro de estudio de materiales y control de obra S.A. (CEMOSA) –	AND-L-018
Málaga	
6. Geolen ingeniería S.L Málaga	AND-L-020
7. Codexsa Ingeniería y Control, SL - Sevilla	AND-L-031
8. Sergeyco Andalucia, SL Cádiz	AND-L-046
9. LABSON, Geotécnia y Sondeos, SL - Córdoba	AND-L-054
10. Geotécnica del sur, S.A Granada	AND-L-059
11. Centro de estudio de materiales y control de obra S.A. (CEMOSA) –	AND-L-074
Delegación Sevilla	

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

12. Centro de estudio de materiales y control de obra S.A. (CEMOSA) –	AND-L-076
Delegación Granada	
13. Laboratorio Tcal S.L Córdoba	AND-L-108
14. Control de calidad Cádiz S.L.L. (CONCADIZ) – Cádiz	AND-L-125
15. Laboratorio de Tecnología Estructural, SL - Granada	AND-L-149
16. Elabora, Agencia para la calidad en la construcción, S.L Sevilla	AND-L-155
17. Inecca, ingeniería y control S.L Málaga	AND-L-164
18. Ingeniería, Asistencia y Control, SL (INACON) - Almería	AND-L-179
19. Evintes calidad S.L.L Almería	AND-L-186
20. SGS Tecnos S.A. – Delegación Granada	AND-L-191
21. María Jesús Navarro Parrilla (Técnico)- Granada	AND-L-214
22. Servicios Integrados de Geotecnia y Materiales de construcción, SL (SIGMAC)	AND-L-221
23. Laboratorio control de calidad- Delegación territorial de fomento y vivienda de Córdoba	(oficial)
24. Laboratorio control de calidad- Delegación territorial de fomento y vivienda de Granada	(oficial)

GOBIERNO DE ARAGÓN

1. TPF GETINSA-EUROESTUDIOS, SL - Zaragoza	ARA-L-001
2. Igeo-2, S.LDelegación de Huesca	ARA-L-002
3. Laboratorio de Ensayos Técnicos, SA (ENSAYA) - Zaragoza	ARA-L-005
4. Control 7, SAU - Zaragoza	ARA-L-006
5. Inversiones Payaruelos, SL - Zaragoza	ARA-L-015
6. PHI 2011 S.L.L - Huesca	ARA-L-018
7. ANALIZA 4 SLL - Huesca	ARA-L-019
8. Geoteruel Laboratorio, SL - Teruel	ARA-L-020
9. Igeo-2, S.L Delegación de Zaragoza	ARA-L-021
10. Laboratorio para la Calidad de la Edificación del Gobierno de Aragón	(oficial)

PRINCIPADO DE ASTURIAS

1. Estabisol S.A	AST-L-012
2. Laboratorio Asturiano de Control Técnico, SAL (LACOTEC)	AST-L-020
3. Laboratorio Asturiano Calidad Edificación del Principado de Asturias	s (oficial)

GOBIERNO DE LES ILLES BALEARS

1. Federación de Empresarios de Petita y Mitjana Empresa de Menorca -	BAL-L-001
PIMELAB - Centro Tecnológico	
2. Laboratorio Balear de la Calidad, SLU	BAL-L-002

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

3. LABARTEC, SLu	BAL-L-005
4. Control BLAU-Q, SLu	BAL-L-007
5. Instituto de la Gestión Técnica de Calidad, SL (IGETEC)	BAL-L-009
6. Intercontrol Levante SA	BAL-L-013
7. SGS Tecnos, SA - Delegación Menorca	BAL-L-014
8. Laboratori de Carreteres del Consell de Mallorca	(oficial)

GOBIERNO DE CANARIAS

1. Instituto Canario de Investigaciones en la Construcción, SA (ICINCO,	CNR-L-001
SA)	
2. Controles Externos de la Calidad Canarias, SL	CNR-L-003
3. Laboratorio Canario de Calidad , SL (LCC)	CNR-L-009
4. Alliroz, S.L.	CNR-L-010
5. Terragua Ingenieros, SLNE	CNR-L-026
6. Labetec Ensayos Técnicos Canarios, S.A.	CNR-L-027
7. Estudios de Suelos y Obras Canarias SL (ESOCAN)	CNR-L-030
8. Consultores y Ensayos entre Islas, SLU (Consultores Control Tres)	CNR-L-031
9. Ian Love Garcia	CNR-L-039
10. ECA, Entidad colaboradora de la Administración, S.L.	CNR-L-040
11. Servicio de Laboratorios y Calidad de la Construcción - Delegación	(oficial)
Tenerife	
12. Laboratorio y Calidad de la construcción- Delegación Gran Canaria del	(oficial)
Gobierno Canarias	

COMUNIDAD AUTÓNOMA DE CANTABRIA

	1.	ICINSA, SA	CTB-L-003
Γ	2.	GEOTEK Cantabria, SLP	CTB-L-008

GENERALITAT DE CATALUNYA

1. EPTISA, Enginyeria I Serveis SAU	CAT-L-002
2. APPLUS Norcontrol, SL	CAT-L-012
3. Laboratori del Vallès de Control de Qualitat, SL	CAT-L-025
4. Centre d'estudis de la construcció i anàlisi de materials, SLU (CECAM)	CAT-L-027
5. Lostec, SA	CAT-L-028
6. FSQ Qualitat i medi ambient, SL	CAT-L-041
7. Labocat Calidad, SL	CAT-L-054
8. Geotècnia i control de qualitat, SA	CAT-L-056
9. LGAI Technological Center, SA	CAT-L-068
10. Instituto de Auscultación Estructural y Medioambiente, SL (INEMA)	CAT-L-102
11. BAC Engineering Consultancy Group, SL	CAT-L-104

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

12. TPF GETINSA-EUROESTUDIOS, SL - Delegación de Barberà del Vallès	CAT-L-109
13. TPF GETINSA-EUROESTUDIOS, SL - Delegación de Vila-Seca	CAT-L-111

JUNTA DE COMUNIDADES DE CASTILLA - LA MANCHA

1. Laboratorio y consultoría Carring S.L.	CLM-L-005
2. SGS Tecnos, SA-Delegación Ciudad Real	CLM-L-019
3. Sergeyco Castilla-La Mancha, SL	CLM-L-024
4. Unicontrol Ingeniería de Calidad y Arquitectura Aplicada, SL	CLM-L-029
5. Fernández- Pacheco Ingenieros SL- Delegación Albacete	CLM-L-030
6. Servicios Externos y Aprovisionamiento SL (SEA SL)- Delegación	CLM-L-032
Ciudad Real	
7. Servicios Externos y Aprovisionamiento SL. (SEA SL) - Delegación	CLM-L-033
Albacete	
8. SGS Tecnos, SA-Delegación Guadalajara	CLM-L-038
9. TÜV SÜD IBERIA, SAU	CLM-L-039
10. Ibérica de Ensayos, Asistencia Técnica y Control JJCE, SL (IBENSA)	CLM-L-040

JUNTA DE CASTILLA Y LEÓN

1. Euroconsult, S.A.	CYL-L-001
2. Centro de Estudios y Control de Obras, S.A (CESECO)	CYL-L-003
3. EPTISA, Servicios de Ingeniería, SL - Delegación de Valladolid	CYL-L-005
4. Investigaciones Geotécnicas y Medioambientales S. L. (INGEMA)	CYL-L-014
5. Centro de Estudio de Materiales y Control de Obra, SA (CEMOSA)	CYL-L-017
6. EPTISA Servicios de Ingeniería SL - Delegación de León	CYL-L-025
7. Investigación y Control de Calidad SA (INCOSA)	CYL-L-030
8. Cenilesa Ingeniería y Calidad SL	CYL-L-044
9. TPF Getinsa-Euroestudios SL (Getynsa Payma- Delegación Valladolid)	CYL-L-047
10. Inzamac Desarrollo e Innovaciones constructivas, SL	CYL-L-052
11. Centro de Control de Calidad de la Junta de Castilla-León. S.T. Fomento de Valladolid	(oficial)

JUNTA DE EXTREMADURA

1.	INTROMAC	EXT-L-007
2.	Elaborex, Calidad en la Construcción SL-Delegación Badajoz	EXT-L-014
3.	TPF GETINSA-EUROESTUDIOS, SL	EXT-L-029

XUNTA DE GALICIA

1. Control y Estudios, SL (CYE)	GAL-L-005
2. Applus Norcontrol, SL –Delegación de Sada	GAL-L-018
3. EPTISA, Servicios de Ingeniería, SL-Delegación de Vilaboa	GAL-L-034

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

4. SONDANOR SL	GAL-L-038
5. 3C Calidad y Control, SCOOP Galega	GAL-L-044
6. Enmacosa Consultoría Técnica SA	GAL-L-056

COMUNIDAD AUTÓNOMA DE LA RIOJA

1. ENTECSA Rioja, SL	LRJ-L-005
2. TÜV SÜD IBERIA, SAU	LRJ-L-009
3. Laboratorio de Obras Públicas y Edificaciones -Consejería de Fomento	(oficial)
y Política Territorial de La Rioja	

COMUNIDAD AUTÓNOMA DE MADRID

1. Geotecnia y Medio Ambiente 2000 SL (GMD 2000)	MAD-L-002
2. Euroconsult SA	MAD-L-004
3. Cepasa Ensayos Geotécnicos SA	MAD-L-005
4. Geotecnia y Cimentos, S.A. (GEOCISA)	MAD-L-007
5. Instituto Técnico de control S.A. (ITC)	MAD-L-027
6. Instituto Técnico de Materiales y Construcciones SA (INTEMAC)	MAD-L-030
7. Centro de Estudios de Materiales y Control de Obra S.A (CEMOSA)	MAD-L-036
8. Geotecnia 2000 SL	MAD-L-039
9. Control Obras Públicas y Edificación SL (COPYE)	MAD-L-046
10. Esgeyco, S.L.	MAD-L-053
11. (LABINGE) Laboratorio de Ingenieros del ejército "GENERAL MARVÁ"	MAD-L-058
12. Control de Estructuras y Geotecnia SL (CEyGE)	MAD-L-061
13. Laboratorio De Control De Calidad E Ingeniería, S.L. (LCCI)	MAD-L-064
14. Control de estructuras y suelos SA (CONES)	MAD-L-065
15. Adamas Control y Geotecnia S.L.L	MAD-L-066
16. Asesoría, Rehabilitación, Proyectos y Análisis Técnicos, SL (ARPA, SL)	MAD-L-075
17. Laboratorio Oficial para Ensayo de Materiales de Construcción - LOEMCO	MAD-L-077

COMUNIDAD AUTÓNOMA DE LA REGIÓN DE MURCIA

1. Laboratorios del Sureste, S.L.	MUR-L-003
Centro de Estudios, Investigaciones y Control de Obras, S.L. (CEICO, SL)	MUR-L-005
3. Inversiones de Murcia, S.L., laboratorios HORYSU- Delegación de Cartagena	MUR-L-006
4. Inversiones de Murcia, S.L., laboratorios HORYSU-Delegación de Espinardo	MUR-L-007
5. FORTE Ingeniería Técnica, S.L	MUR-L-010
6. Centro de Ensayos y Medio Ambiente, S. L. (CEMA SL)	MUR-L-011
7. ITC laboratorio de ensayos, S.L.L.	MUR-L-018
8. Massalia Ingenieros, S.L.	MUR-L-019
9. Técnica y Calidad de Proyectos Industriales, S.L (TYC PROYECTOS)	MUR-L-021
10. INGEOLAB	MUR-L-022

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

GOBIERNO DE NAVARRA

1. Laboratorios Entecsa, SA	NAV-L-001
2. Igeo-2 SL	NAV-L-002
3. Laboratorio de Ensayos Navarra SA (LABENSA)	NAV-L-003
4. Laboratorio de Edificación del Instituto Científico y Tecnológico de la E.T.S. Arquitectura e Ingeniería de Edificación de Navarra	NAV-L-004
5. GEEA Geólogos S.L- Delegación Estella	NAV-L-005
6. GEEA Geólogos S.L- Delegación Pamplona	NAV-L-008
7. CECTECO Centro de Control y Técnicas especiales, SL	NAV-L-011
8. Laboratorio de Control de Calidad del Gobierno de Navarra	(oficial)

GENERALITAT VALENCIANA

1. Intercontrol Levante, SA- Delegación de Carlet	VAL-L-001
2. Comaypa, S.A.	VAL-L-006
3. Gandiacontrol, S.L.	VAL-L-010
4. Laboratorio y Entidad de Control, SL	VAL-L-070
5. Consulteco, S.L.	VAL-L-013
6. Geotecnia y cimientos, S.A. (GEOCISA)	VAL-L-017
7. Entecsa Valencia SL	VAL-L-036
8. ASVER Verificaciones, SLU	VAL-L-047
9. Laboratorio de Ingeniería y Medio Ambiente S.A (IMASALAB)	VAL-L-051
10. Laboratorio de Calidad y Tecnología de los Materiales, S. L. (CyTEM)-	VAL-L-053
Delegación de Ribarroja de Turia (VALENCIA)	
11. Laboratorio de Calidad y Tecnología de los Materiales, S. L. (CyTEM)-	VAL-L-054
Delegación de Alicante	
12. LESIN Levante, SL	VAL-L-056
13. C2C Servicios Técnicos de Inspección S.L Delegación de Albaida	VAL-L-058
14. C2C Servicios Técnicos de Inspección S.L Delegación de Manises	VAL-L-059
15. Levatec Control de Calidad SL	VAL-L-060
16. TPF GETINSA-EUROESTUDIOS, SL - Valencia	VAL-L-066

GOBIERNO DEL PAÍS VASCO

1. EPTISA-CINSA Ingeniería y Calidad, SA - Grupo EP	PVS-L-002
2. SAIO TEGI, SA	PVS-L-004
3. GIKE, SA	PVS-L-005
4. LABIKER Ingeniería y Control de Calidad, SL	PVS-L-006
5. Serinko – Euskadi, S.L.	PVS-L-007
6. Euskontrol, S.A.	PVS-L-009
7. Fundación Tecnalia Research and Innovation	PVS-L-013
8. EUROCONSULT NORTE, SA	PVS-L-015
9. ASTER, SA	PVS-L-021
10. Laboratorio Control de Calidad de la Edificación del País Vasco (LCCE)	(oficial)