Introducción

I. MATERIAL FORESTAL DE REPRODUCCION

El conocimiento del material forestal de reproducción (MFR) que va a ser utilizado en la producción de nuevas plantas es un paso esencial, sin el cual es imposible esperar resultados satisfactorios, tanto en el proceso productivo como en las características de la futura masa forestal. El adecuado conocimiento del MFR requiere un amplio grado de control sobre las condiciones en las cuales se realiza su recogida, almacenamiento y posterior empleo en investigación y producción.

Entendemos por material forestal de reproducción el conjunto de estructuras, órganos o tejidos mediante los cuales una especie forestal garantiza la reproducción de nuevos individuos.

La gran diversidad de especies vegetales y de estrategias reproductoras asociadas a cada una de ellas ofrece un amplio abanico de adaptaciones (Strasburguer, 1985), pero en el campo forestal son dos las que tienen una aplicación generalizada: reproducción sexual a través de semillas, y reproducción asexual a través de órganos de reproducción vegetativa.

1.1. Propagación sexual

Las plantas superiores se reproducen en su mayor parte mediante semillas, recurriendo a éste método de reproducción para su dispersión y perpetuación. Mediante la reproducción sexual las plantas dan lugar a individuos que comparten características genéticas procedentes de ambos progenitores. Esto suministra la variabilidad genética necesaria para la adaptación continua de una especie a su medio ambiente. Dentro del Reino Vegetal interesan dos órdenes, en los cuales están la casi totalidad de las especies de interés forestal:

1. Gimnospermas. Agrupa aquellas especies con las semillas al descubierto, sin presentar flores verdaderas, y con los órganos reproductores dispuestos en conos o estróbilos. En la actualidad existen unas 600 especies distribuidas por todo el mundo y con gran importancia como árboles forestales.

2. Angiospermas. Comprende las especies con órganos reproductores dispuestos en flores verdaderas, las cuales se convierten en frutos al llegar a la madurez. Están descritas actualmente unas 235.000 especies, siendo el grupo más grande e importante de plantas vasculares, ocupando la práctica totalidad de hábitat, y superando en diversidad a todos los demás grupos de plantas existentes.

El desarrollo de las semillas se produce de forma diferente en cada uno de los órdenes anteriores, pero en ambos casos, con las salvedades botánicas ya mencionadas, presentan numerosos aspectos comunes, siendo el resultado de un proceso que comprende: la floración, la polinización, la fertilización y embriogénesis, y termina con el desarrollo, crecimiento y maduración del fruto.

A) La floración. Constituye la primera etapa del proceso reproductivo de las plantas superiores, siendo un requisito fundamental para que se realice la formación y desarrollo de las semillas.

Las plantas atraviesan una fase de desarrollo, caracterizado por un crecimiento vegetativo, llamado periodo juvenil, durante el cual presentan características morfológicas y fisiológicas diferen-
tes del estado adulto. Durante este periodo la planta no ha alcanzado la madurez sexual. La duración de este periodo depende tanto de su genotipo como de las condiciones ambientales de la estación en la que vegeta.

En función de la duración del periodo juvenil pueden clasificarse las especies forestales en tres grandes grupos:

1. Árboles que producen flores a temprana edad, entre los 10 y los 20 años, e incluso antes (Salix spp., Populus spp., Alnus spp., Pinus spp.).

2. Árboles que producen flores a mediana edad, entre los 20 y los 40 años (Fraxinus spp., Ulmus spp.).

3. Arboles que florecen tardíamente entre los 40 y los 60 años (Quercus spp., Abies spp.).

La transición hacia la madurez sexual se produce a través de una fase de cambio, la cual está regulada por factores internos y por las condiciones culturales. Durante esta fase transitoria se producen cambios en las características morfológicas (ej. forma de la hoja), hábito de crecimiento, pérdida de la capacidad de reproducción asexual, etc.

Los pies aislados tienden a reducir los periodos juveniles, en contraposición a los individuos que crecen en espesura, los cuales pueden permanecer durante muchos años sin producir flores o sin que estas sean viables. Los adecuados tratamientos selvícolas pueden favorecer el proceso de desarrollo y maduración sexual de las plantaciones forestales, garantizando, por tanto, su regeneración.

Una vez alcanzada la madurez sexual la planta producirá flores anualmente.

especies cadañegas, (Pinus pinea), o por el contrario presentará variaciones en la floración, **especies veceras** (Castanea spp.), con años de gran abundancia y otros de nula o escasa producción.

B) Polinización y fertilización. Una vez que las flores masculinas y femeninas han alcanzado la madurez están en condiciones de que se produzca la fertilización o fecundación. Esto requiere la llegada del polen al estigma (angiospermas) o macrosporangio (gimnospermas). Esta polinización puede producirse como resultado de la:

a) Autopolinización, como consecuencia de la fecundación producida por polen procedente de la misma flor, de flores del mismo individuo o de diferentes plantas del mismo clon.

b) Polinización cruzada, en la cual el polen procede de una planta diferente.

Las gimnospermas presentan una mayor tendencia a la autopolinización como una adaptación evolutiva en condiciones extremas y aislamientos prolongados. Por el contrario, las angiospermas han desarrollado mecanismos orientados a favorecer la polinización cruzada, e incluso haciéndola obligatoria como resultado de su carácter dioico, o de la incompatibilidad genética de un mismo individuo.

La polinización, que se produce al azar, utiliza diferentes medios en función de los cuales las especies se clasifican en:

1. **Zoófilas**: Transferencia de polen mediante la acción de animales, tales como Entomófila (por acción de insectos) Ornitófila (por acción de las aves) Quirópterófila (polinización por murciélagos).
2. **Anemófilas**: Utiliza como agente de dispersión el aire, produciendo cantidades muy grandes de polen que es distribuido de forma rápida y regular incluso a grandes distancias. Es el mecanismo de dispersión propio de las gimnospermas (*Cupressus* spp.), aunque también lo presentan gran cantidad de angiospermas (*Alinus* spp.).

3. **Hidrófilas**: Supone la polinización por acción del agua, siendo el agente de dispersión menos generalizado.

C) Embriogénesis. Una vez producida la fecundación, comienza el desarrollo del embrión, que es un proceso bastante complejo. En la mayor parte de las especies el embrión adquiere su tamaño definitivo antes de que la semilla sea dispersada. Sin embargo, en algunas especies (*Ilex* spp. o *Fraxinus* spp.), el embrión es inmaduro en el momento de la dispersión, adquiriendo su tamaño y forma definitivos posteriormente, requiriendo de un proceso de postmaduración que condiciona el tratamiento de estas semillas previo a su utilización. La duración del desarrollo completo del embrión es variable según cada especie, produciéndose en general en una sola estación (*Ulmus* spp.), o prolongándose durante dos (*Quercus* spp.) o tres estaciones (*Pinus* spp.).

D) Maduración. La maduración del fruto y la semilla constituye la última fase del proceso de reproducción sexual y se caracteriza por la presencia de profundos cambios físicos y químicos en ambas estructuras, hacia aspectos, formas y tamaños diferentes, los cuales son utilizados como criterios para su identificación.

1.2. **Frutos de interés forestal**

Los frutos y conos representan en la mayor parte de las especies forestales, el material recogido en campo, previo a la extracción de la semilla. La estructura de los frutos y conos está relacionada con su modo de diseminación, existiendo numerosos trabajos para especies mediterráneas que estudian la relación existente entre tipos de frutos y agentes de dispersión (*Herrera*, 1984, 1989; *Jordan*, 1984, 1993; *Herrera* y *Jordan*, 1983). La clasificación de los frutos es compleja, dado que estos órganos son muy plásticos, y es difícil encontrar unos criterios claros de división. En el caso de los frutos de especies mediterráneas la clasificación más completa es la propuesta por Allué y Mesón (1972), aunque en una primera aproximación se puede establecer un esquema basado en caracteres anatómico-morfológicos (*Strasburguer*, 1986; *Niembro*, 1988) de los frutos de mayor importancia en especies forestales:

A) Frutos carnosos

- **Drupas.**- Son frutos simples con el endocarpo endurecido a modo de hueso, el cual recibe el nombre de «pitreño» y en cuyo interior se encuentran una o varias semillas. En algunos géneros como *Prunus* el endocarpo está formado por una sola pieza, mientras que en otros como *Arctostaphylos* se encuentra fragmentado en varias porciones cada una de las cuales contiene una semilla.

- **Bayas.**- Son frutos simples con el pericarpo succulento (semillas inmersas en la pulpa). Dependiendo de la especie las bayas presentan una o varias semillas (*Arbutus unedo, Myrthus communis*).

- **Pomos.**- Son los frutos de las rosáceas y están constituidos por receptáculos carnosos que rodean el pericarpio. En *Pyrus* y en *Malus*, por ejemplo, el pericarpio es entero y papiráceo, mientras que en *Crataegus* es duro y leñoso, estando fragmentado en varias porcio-
nes cada una de las cuales contiene una semilla (ej. Sorbus, Crataegus, Malus, Cotoneaster, Amelanchier, Pyrus).

B) Frutos secos

Los frutos secos, por su parte, se dividen en dehiscentes e indehiscentes. Los primeros se caracterizan porque su pericarpo abre en la madurez y deja en libertad a las semillas. Los segundos, por el contrario, permanecen sin abrir conservando las semillas por tiempo indefinido. Los principales tipos de frutos **secos dehiscentes** son:

Vainas o legumbres.- Son frutos simples derivados de un solo carpelo que se abre a lo largo de dos suturas y son características de las leguminosas (aunque los frutos de algunas leguminosas son indehiscentes). Dependiendo de la especie las legumbres contienen una o varias semillas (Cytisus spp.).

Folículo.- Es un fruto simple, seco y dehiscente derivado de un solo carpelo que se abre a lo largo de la sutura. Dependiendo de la especie los folículos contienen una o varias semillas (Magnolia grandiflora).

Cápsula.- Es un fruto simple, seco, dehiscente (ocasionalmente indehiscente) derivado de dos o más carpelos. Dependiendo de la especie las cápsulas contienen una, varias o numerosas semillas (Buxus spp.).

En cuanto a los frutos **secos indehiscentes** tenemos:

Aqueenio.- Es un fruto simple, seco, indehiscente y monopérmico derivado de un solo carpelo caracterizado porque la semilla se encuentra unida a la pared del pericarpo en un solo punto (Atriplex, Castanea, Quercus, Platanus).

Nuez.- Es un fruto simple, seco, indehiscente y monospermo parecido al aqueenio pero generalmente de mayor tamaño y provisto de un pericarpo de consistencia leñososa o coriácea (Alnus glutinosa, Juglans regia).

Sámara.- Es un fruto seco, simple, indehiscente y monospermico con el pericarpo expandido y modificado en forma de ala (Ulms, Acer, Fraxinus, Ailanthus).

Tabla 1. Clave para la identificación de tipos de frutos y conos

(Allue y Mesón, 1972).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Frutos procedentes fundamentalmente de ovarios (Angiospermas).</td>
</tr>
<tr>
<td>2.</td>
<td>Procedentes de una sola flor.</td>
</tr>
<tr>
<td>3.</td>
<td>Procedentes solamente de ovarios.</td>
</tr>
<tr>
<td>FRUTOS SENCILLOS.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Pericarpo no carnoso. FRUTOS SECOS.</td>
</tr>
<tr>
<td>5.</td>
<td>Frutos procedentes de un gineceo monocarpelar. F. SIMPLES.</td>
</tr>
<tr>
<td>6.</td>
<td>Frutos incapaces de abrirse por sí mismos. F. SIMPLES.</td>
</tr>
<tr>
<td>7.</td>
<td>Monospermos (con una sola semilla por fruto).</td>
</tr>
</tbody>
</table>

8. Pericarpo no soldado a la semilla. AQUENIO
10. Fruto sin vesícula, cúpula ni brácteas. AQUENIO
10. Fruto total o parcialmente recubierto por vesículas, cúpulas o brácteas.

11. Pericarpo membranoso muy delgado y cubierto por una vesícula terminada por dos prófilos con crescentes. UTRÍCULO
11. Pericarpo coriáceo y con cúpula acrecente de origen axial recubriendo parcial o totalmente al fruto. GLANDE NUECES AQUENIOS
11. Pericarpo leñoso y con brácteas recubriendo parcialmente al fruto.
12. Fruto grande. NUEZ
12. Fruto pequeño. NUCULA

9. Fruto alado. SAMARA

8. Pericarpo soldado a la semilla (ovario súpero). CARIOPSIDE
7. Polispermos (varias semillas sin soldar al pericarpo).

6. Frutos capaces de abrirse por sí mismos. F. DEHISCENTES
7. Con apertura simultánea por sutura ventral y nervio central del carpelo.

7. Con apertura por la sutura ventral solamente. FOLICULO

5. Frutos procedentes de la transformación de varios carpelos. FRUTOS COMPUESTOS O POLICARPICOS.

6. Frutos procedentes de un gineceo sincarpico. FRUTOS COLECTIVOS, CONCRESCENTES O SINCARPICOS.

7. Con dehiscencia no placentifraga. CAPSULA
8. Dehiscencia transversal (ópércula, urma). PIXIDIO
8. Dehiscencia por agujeros o poros. OPECARPO
8. Dehiscencia irregular. SACCEOLO
8. Dehiscencia longitudinal (ovario súpero o ínfero). CAPSULA LOCULICIDA CAPSULAS
9. Dehiscencia a lo largo del nervio medio de cada carpelo. CAPSULA SEPTICIDA
9. Dehiscencia a lo largo de las suturas por separación.
9. Dehiscencia loculicida y con rotura de disecciones en sentido paralelo al eje del fruto. CAPSULA SEPTIFRAGA

7. Con dehiscencia placentífraga, dando origen a dos valvas entre las que queda un diseimiento con semillas alojadas en él. SILICUA
8. Dos veces más larga que ancha. SILICUA BILOMENTO
8. Menos de dos veces más larga que ancha. SILICUA
7. No dehiscente. Con ceñiduras o con artejos desarticulándose en la madurez (mesocarpo pulposo). BILOMENTO

6. Frutos procedentes de un gineceo apocarpico. FRUTOS MULTIPLES, AGREGADOS O APOCARPICOS. POLIAQUENIO, SAMARA, FOLICULO, etc.

4. Pericarpo carnoso. FRUTOS CARNOSOS.

5. Frutos procedentes de un gineceo mono o sincárpico.

6. Con endocarpo duro. DRUPA
7. Sin que el pericarpo se despegue. DRUPA DRUPAS
8. Ovario súpero con un solo carpelo. DRUPA
8. Ovario sincárpico, varios carpelos o uno dividido. NUCULANIO
7. Con el pericarpo que se despega (mesocarpo coriáceo y fibroso). TRIMA

7. En general. BAYA
7. Casos particulares.
8. Diez carpelos cerrados, sincárpicos, epicarpio delgado y con esencias, mesocarpo fungoso y endocarpo membranoso (ovario súpero). HESPERIDIO BAYAS
8. De tres a cinco carpelos, placentas que llegan desde el eje a la pared carpelar (el pericarpo se endurece más o menos). PEPONIDE
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Frutos procedentes de un gineceo apocárpico. FRUTOS MULTIPLESO AGREGADOS.</td>
</tr>
<tr>
<td></td>
<td>PLURI O POLIDRUPA, BAYA, etc.</td>
</tr>
<tr>
<td>3.</td>
<td>Procedentes de ovarios y otras partes de la flor. F. COMPLEJOS.</td>
</tr>
<tr>
<td>4.</td>
<td>Frutos múltiples o agregados procedentes de un gineceo apocárpico.</td>
</tr>
<tr>
<td>5.</td>
<td>Conteniendo aquenios con un talamo convexo y carnoso.</td>
</tr>
<tr>
<td>5.</td>
<td>Conteniendo núculas con un talamo acopado y acrecido.</td>
</tr>
<tr>
<td>4.</td>
<td>Frutos no procedentes de un gineceo apocárpico.</td>
</tr>
<tr>
<td>5.</td>
<td>Pericarpios coriáceos, semillas jugosas y numerosas cavidades.</td>
</tr>
<tr>
<td>5.</td>
<td>Corazón coriáceo o apergaminado, dividido en carpelos (verdadero fruto), rodeado de “carne” procedente del talamo. POMO</td>
</tr>
<tr>
<td>2.</td>
<td>Procedentes de varias flores. INFRUTESCENCIAS.</td>
</tr>
<tr>
<td>3.</td>
<td>Concréscentes, más o menos complejos.</td>
</tr>
<tr>
<td>4.</td>
<td>Frutos encerrados por el receptáculo.</td>
</tr>
<tr>
<td>4.</td>
<td>Frutos sobre el receptáculo.</td>
</tr>
<tr>
<td>3.</td>
<td>No concréscentes.</td>
</tr>
<tr>
<td>1.</td>
<td>Frutos no procedentes de ovarios (Gimnospermas).</td>
</tr>
<tr>
<td>2.</td>
<td>Escamas no carnosas y eje más o menos recio y leñoso, en torno al cual hay piezas o escamas protectoras y, entre éstas y el eje, escamas semiuniformes portando semillas.</td>
</tr>
<tr>
<td>3.</td>
<td>Escamas más o menos aplanadas, abundantes.</td>
</tr>
<tr>
<td>3.</td>
<td>Escamas piramidales, escasas.</td>
</tr>
<tr>
<td>2.</td>
<td>Escamas carnosas en la madurez.</td>
</tr>
<tr>
<td></td>
<td>SICONO SOROSIS TOMAN NOMBRES ANÁLOGOS A LAS INFLORESCENCIAS DE LAS QUE PRODEHEN</td>
</tr>
<tr>
<td></td>
<td>CONO O ESTROBILIO (PIÑAS) GALBULO ARCESTIDE</td>
</tr>
</tbody>
</table>

1.3. Principales características de las semillas

Las semillas de la mayor parte de las especies se encuentran encerradas al interior de los frutos hasta llegar a la madurez, aunque a veces es difícil distinguirlas como unidades diferentes, coincidiendo morfológicamente el fruto y la semilla. La semilla tiene tres partes básicas:

1) **Embrón.** Corresponde al elemento esencial de la semilla, ya que es el germen de la nueva planta. En él se diferencian un primordio de la raíz (radícula), el meristema apical del vástago (plúmula o epicotilo) y los cotiledones, fijados en el eje embrionario (hipocotilo).

2) **Endospermo.** Es un tejido de almacenamiento de sustancias nutritivas, presentándose en forma de un tejido organizado (**semillas endospermicas o albuminosas**) o es sustituido por los cotiledones como órganos de reserva (**semillas no endospermicas o exalbuminosas**).
3) Cubiertas seminales. Las cubiertas de la semilla proporcionan protección mecánica al embrión haciendo posible su transporte (dispersión) y almacenamiento (duración). Estas cubiertas, en algunos casos, contienen sustancias reguladoras del proceso de germinación.

La aparente simplicidad estructural encubre una gran complejidad, tanto en su proceso de formación, como en el posterior desarrollo hasta formar una nueva planta. Sin olvidar esta circunstancia, las semillas presentan en general unos caracteres morfológicos bastante estables, lo que permiten su identificación. Para ello se recurre normalmente a las características externas más definitivas (Martín y Berkeley, 1968; Niembro, 1988):

1) Forma. Cada semilla, en función de las características propias de la especie, tiene una forma particular que la diferencia de otras. Este criterio, aunque claramente diferenciado en algunos casos, no permite por sí solo distinguir todas las especies, sobre todo entre aquellas de gran proximidad taxonómica. La forma general de la semilla corresponde a una estructura plana o tridimensional, aunque presentan formas muy variadas pudiendo ser circulares, elípticas, oblongas, etc. Las figuras geométricas asociadas a la descripción de semillas han sido definidas en numerosos trabajos, siendo los más aceptados las clasificaciones propuestas por Font Quer (1953) y Martín y Berkeley (1968), claves empleadas en la descripción de semillas en este trabajo.

2) Tamaño. Un segundo criterio, ligado al anterior, se refiere a las dimensiones externas de la semilla. Las variaciones tanto interespecíficas, como para una misma especie, hacen difícil establecer dimensiones exactas, pero sí permiten definir valores medios que ayudan en su identificación. Los valores aceptados en este trabajo han sido los propuestos en trabajos de botánica forestal (Ceballos y Ruiz de la Torre, 1979) así como en estudios de flora (López González, 1982; Sagredo, 1987; Valdés et al., 1987; Castroviejo y colabor., 1989 y siguientes; Blanca y colabor.), intentando completarlo con referencias más precisas, en trabajos referidos a géneros en particular: Adenocarpus (Vicioso, 1955; Horjales, 1972; Rivas Martínez y Belmonte, 1989; Castroviejo, 1999); Cistus (Martín Bolafios y Guinea, 1949; Guinea, 1954; Valdés et al., 1987; Jiménez, 1982) Colutea (Browicz, 1963); Cytisus (Vicioso, 1955; Talavera y Gibbs, 1997); Genista (Viciosos, 1953; Cantó et al., 1988; Uribe-Echevarría y Urrutia, 1988; Cantó, et al., 1997); Populus (Vicioso, 1951); Retama (Vicioso, 1955); Spartium (Vicioso, 1955); Tamarix (Baum, 1978); Ulex (Vicioso, 1962); Ulmus (Richens y Jeffers, 1986).

3) Características externas de la cubierta seminal. Un cuarto criterio diferenciador viene determinado por las características externas de la cubierta de la semilla en lo que se refiere a tipo de superficie, consistencia o presencia de estructuras externas. La gran variedad de situaciones, y la dificultad de su identificación, limita notablemente el empleo de estas características para la descripción de semillas. Las más fáciles de utilizar son:

Tipo de superficie. La cubierta seminal de las semillas de especies
forestales presentan superficies de características externas muy variadas, siendo la más evidente en el proceso de descripción la textura, que puede observarse mediante apreciación directa o en trabajos de micro-topografía. Los tipos de textura más frecuentes son: lisa, tuberculada, estriada, aerolada, faveolada, alveolada, corrugada, escabrosa, acanalada, glandulosa, vesiculada, reticulada, ampullosa, escrobiculada, verrugosa, escamosa y vesiculada (Niembro, 1988) (ver glosario). En algunas especies existen estudios muy precisos de las cubiertas seminales (por ej. Corral et al., 1989).

Color.- El color externo de la testa es una de las características más definitorias de una semilla, tanto por su fácil interpretación, como por la estabilidad para una especie determinada. La identificación de colores suele hacerse de acuerdo a claves de colores, a veces de carácter general, o bien de acuerdo a claves específicas de colores para descriptores de semillas (Martín y Berkeley, 1968), la cual ha sido adaptada para este trabajo.

Estructuras externas.- Las estructuras externas más frecuentes en las semillas de especies mediterráneas se resumen en la tabla 2.

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilo</td>
<td>Cicatriz de tamaño y forma variada que queda en la semilla cuando ésta se desprende del funículo</td>
</tr>
<tr>
<td>Micrópilo</td>
<td>Perforación a manera de canal que comunica a la semilla con el exterior</td>
</tr>
<tr>
<td>Rafe</td>
<td>Región del óvulo o de la semilla que se ubica en el plano mediano, en la periferia, del lado que no incluye el micrópilo, entre la cálaza y el hilo.</td>
</tr>
<tr>
<td>Antirafe</td>
<td>Región del óvulo o de la semilla que se ubica en el plano mediano, en la periferia, del lado que no incluye el hilo, entre la cálaza y el micrópilo.</td>
</tr>
<tr>
<td>Funiculo</td>
<td>Cordón formado principalmente por tejido vascular que conecta al óvulo en la placenta. En la semilla madura el funículo generalmente se desprende dejando el hilo al descubierto, pero algunas veces permanece adherido.</td>
</tr>
<tr>
<td>Arilo</td>
<td>Estructura dura o carnosa que se desarrolla a partir del folículo.</td>
</tr>
<tr>
<td>Estrófilo</td>
<td>Excrescencia que se sitúa junto al hilo y que tiene su origen en el rafe o en el funículo</td>
</tr>
</tbody>
</table>

Sobre la base de estos cuatro criterios se estará, en la mayoría de los casos, en condiciones de identificar las semillas de las especies de uso forestal.
II. RECOLECCIÓN Y MANEJO DE SEMILLAS

2.1. Procedencia de la semilla

Para la consecución de masas forestales sanas, estables con el medio y que presenten buenos crecimientos es necesario utilizar el MFR con unas mínimas garantías de calidad. En el caso de las semillas, esta calidad supone que deben tener una buena calidad fisiológica, es decir que sean viables y vigorosas y una buena calidad genética, es decir idóneas para el lugar donde se van a utilizar y para los objetivos que se pretenden conseguir.

Las poblaciones de una especie dan lugar a una diferenciación genética que les confiere unas características especiales frente a determinadas condiciones del medio ambiente: clima, suelo, resistencia a plagas y enfermedades; así como unas características morfológicas o fisiológicas particulares. La conservación de las características peculiares de una planta o de un grupo de plantas, depende de la transmisión de una generación a la siguiente de una combinación específica de genes presentes en los cromosomas de las células. El conjunto total de los genes constituye el genotipo de la planta, que en combinación con el medio ambiente produce una planta que presenta un aspecto exterior dado, el fenotipo. Por tanto, un objetivo de cualquier técnica de reproducción de plantas es preservar el genotipo específico o una combinación de genotipos, que reproduzca de la forma más fiel posible el tipo de planta que se pretende obtener.

No debe confundirse el concepto de procedencia con el de semilla local, que se define como aquella que procede de una área expuesta a influencias climatológicas similares y que puede, de ordinario, considerarse aquella que queda dentro de una radio de 160 Km. de la siembra y dentro de un intervalo de 1000 m. respecto a su elevación geográfica (Hartmann y Kester, 1975).

En España, el ICONA viene haciendo trabajos de descripción de las procedencias de las principales especies de interés forestal, por lo que en la actualidad se cuenta con estudios definitivos para las siguientes especies: Abies pinsapo Boiss., Pinus canariensis De., Pinus halepensis Mill., Pinus nigra Arnold, Pinus pinaster Aiton, Pinus pinea L., Pinus sylvestris L., Pinus uncinata Ram., Fagus sylvatica L., Quercus ilex L., Quercus petraea L., Quercus robur L. y Quercus suber L. Lo anterior hace necesario, cuando se habla de una especie en producción de planta forestal, entenderla a un nivel infraespecífico, aceptando que esta diferenciación puede dar lugar a la aparición de razas o ecotipos locales.

2.2. Selección y recolección de semillas

2.2.1. Zonas de recogida de semillas

Las zonas de recogida de semillas se clasifican en los siguientes tipos:

1) Área de recolección de semillas: Son masas de una especie donde existen arboles con características potenciales como buenos productores de semillas, pero de las cuales no se ha realizado ninguna prueba de descendencia. Las áreas de recolección deben ser suficientemente grandes, siempre que la población seleccionada lo permita, para asegurar una adecuada variedad genética. En general, estas áreas no se manejan de forma intensa (no reciben cui-
dados culturales especiales) aunque debe procurarse llevar un registro y caracterización mínima si se pretende utilizarlas de forma periódica. Las áreas de recolección pueden ser de dos tipos:

Masas sin clasificar: Los árboles semilleros no han sido seleccionados por presentar unas características mas adecuadas, sino por criterios de facilidad de recolección, etc. La semilla obtenida en estas masas no tiene categoría especial de comercialización, y se considera SEMILLA NO CERTIFICADA (Etiquetas de color blanco).

Masas clasificadas: Los árboles semilleros han sido seleccionados basándose en las características que los hacen especialmente adecuados o deseables como progenitores. La semilla recogida en estas áreas se considera SEMILLA IDENTIFICADA (Etiquetas de color amarillo).

2) **Rodales selectos:** Son superficies relativamente pequeñas (< 50 ha) localizadas en el interior de una masa más extensa que se destina a la producción de semilla. Los árboles semilleros dentro del rodal son seleccionados de acuerdo a sus condiciones de crecimiento. Los rodales son tratados para mejorar las condiciones de producción de semilla, así como para la preservación de las características buscadas. Suele procederse a realizar claras que eliminan los árboles defecuosos o no deseados, y así conseguir que la masa se desarrolle en las condiciones óptimas de espesura. Pueden realizarse cuidados culturales al vuelo, fundamentalmente podas de formación y fructificación. Suele aislar el rodal mediante una zona parietal de 100 a 120 m para evitar polinizaciones externas.

La semilla obtenida en estos rodales corresponde a la categoría de SEMILLA SELECCIONADA (Etiquetas de color verde).

3) **Huertos semilleros:** Desde que Sylven sugirió en Suecia, en 1918, que la semilla había de ser producida en rodales especialmente establecidos para este propósito, con plantas de buenos orígenes conocidos, estas plantaciones resultan indispensables para que cualquier programa de mejora pueda alcanzar resultados óptimos, en particular, en las especies donde la semilla es el medio de propagación, a través del cual se difunden hacia la selvicultura los procesos derivados del material mejorado.

La utilización de huertos semilleros, supone una herramienta válida y eficaz para la producción de semilla controlada, o al menos seleccionada y de fácil recolección. Un **huerto semillero clonal** es una plantación de árboles productores de semilla, seleccionados en masas naturales por presentar unas características genéticamente superiores procedentes de progenies seleccionadas. Los huertos se establecen mediante clones (a través de injertos o estaquillas), en marcos de plantación que facilitan los cuidados culturales y la recolección de la semilla, y aislan para evitar la llegada de polen de fuentes externas. La planificación y establecimiento de huertos semilleros forma parte de los programas de mejora genética forestal, y han sido impulsados en España desde hace varios años, existiendo una red completa para algunas especie (Por ejemplo, *Pinus halepensis* y *Pinus pinea*, etc.) (Pardos, 1985). Las masas reciben un tratamiento bastante intenso, tanto en lo que se refiere a cuidados culturales al suelo (binas, escardas, fertilizaciones), como al vuelo (podas, tratamientos fitosanitarios, etc.). La semilla producida en los huertos semilleros tiene la categoría de SEMILLA DE PROGE-
2.2.2. Comercialización de Material Forestal de Reproducción

Con objeto de garantizar en el comercio nacional e internacional la calidad de los diferentes materiales forestales de reproducción se han establecido unas normas que, con distinto ámbito espacial de aplicación, regulan los requisitos que deben tener estos materiales para su comercio. Básicamente, en España, para el comercio de plantas o partes de plantas forestales se exigen dos documentos a cada lote:

1. *Documento de acompañamiento*: garantiza la identidad del material forestal. En función del espacio comercial al que se refiere cabe distinguir tres sistemas: AOSCA, UE y OCDE.

2. *Pasaporte fitosanitario*: su ámbito comercial sólo es la UE. Garantiza la protección contra la introducción en la misma de organismos nocivos para los vegetales así como su propagación por los países miembros. No es de aplicación para las Islas Canarias, Ceuta y Melilla.

Para el comercio de semillas forestales tan sólo se precisa del *Documento de acompañamiento*. Además de estos documentos, para el ámbito de la UE, todos los materiales de reproducción deben respetar unas normas de calidad exterior, que son diferentes según se trate de un tipo u otro de material.

Identidad del MFR

Los sistemas hasta la fecha establecidos que regulan la identidad de los MFR son:

1. El sistema AOSCA: cuyo ámbito exclusivo es de los EEUU.

2. El sistema OCDE: de carácter voluntario y utilizado por los países que pertenecen a esta organización. Además de los socios comunitarios han suscrito este norma Australia, Austria, Canadá, EEUU, Noruega, Suecia y Turquía. En 1994 España se integró en el sistema de la OCDE (1976), para un total de dieciséis especies forestales (BOE 285 de 29.11.94).

3. El sistema de la UE: es de obligado cumplimiento para los países miembros de la UE.

Las normativas americanas y europeas difieren sustancialmente, mientras que en las adoptadas por la UE y la OCDE hay un claro solapamiento. De hecho, la tendencia es a la convergencia absoluta de las normas UE a las OCDE. Las diferencias más notables entre el sistema OCDE y el de la UE radican en las diferentes categorías que establecen para los MFR (*Tabla 3*).
<table>
<thead>
<tr>
<th>CATEGORÍA</th>
<th>COLOR ETIQUETA</th>
<th>CATEGORÍA</th>
<th>COLOR ETIQUETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificado*</td>
<td>Amarillo</td>
<td>Selecto</td>
<td>Verde</td>
</tr>
<tr>
<td>Selecto</td>
<td>Verde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huerto semillero</td>
<td>Rosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no testado**</td>
<td>Azul</td>
<td>Controlado</td>
<td>Azul</td>
</tr>
</tbody>
</table>

* Los MFR han sido recogidos en las regiones de procedencia definidas para cada especie.
** Las semillas producidas en el mismo no son sometidas posteriormente a ensayos de progenies.

La comercialización y certificación del MFR en el seno de la UE está regulado por la Directiva UE 66/404 sobre Comercialización de materiales forestales de reproducción, modificada posteriormente por las Directivas 66/64 y 75/445. Con el ingreso de España en la UE hubo que adaptar la legislación española y así se amplió la Ley 11/71 de Semillas y plantas de vivero incorporando en su ámbito las semillas forestales (RD 442/86). El desarrollo de esta Ley se plasma en el Reglamento General sobre producción de semillas (RD 646/86) y en el Reglamento General Técnico de Control y Certificación (OM 23.5.1986).

En 1989, se dictan de acuerdo con las Directivas europeas, la Orden Ministerial 3079/89 de 21 de enero, por la que se regula la comercialización de los MFR en España. Esta OM en algunos capítulos fundamentales es una traducción literal de la normativa europea y por ello las especies a las que hace mención son las más importantes en el panorama forestal de Europa y no de España. Un aspecto importante a destacar en este marco legislativo es que únicamente es objeto de control los materiales destinados a la producción de madera, ya que el objetivo primordial de las directivas europeas es fundamentalmente económico y de defensa del consumidor-usuario de estos materiales. Los aspectos más importantes que cabe destacar de esta norma son:

1. Especies: únicamente es de aplicación obligatoria para trece especies forestales, de las que tan sólo seis de ellas cabe decir que son autóctonas: Pinus sylvestris, P. nigra, Abies alba, Fagus sylvatica, Quercus robur y Q. petraea. A estas habría que añadir el gen. Populus. El resto son: Larix decidua, L. leptolepis, Picea abies, P. stichensis, Pseudostuga menziesii, Pinus strobus y Quercus petraea. En la actualidad se está preparando una OM que complete la anterior, ampliando la normativa a otras diez especies autóctonas españolas: Abies pinsapo, Pinus halepensis, Pinus pinea, Pinus uncinata, Pinus canariensis, Quercus ilex, Quercus suber, Quercus faginea y Quercus pyrenaica.

2. MFR: lo integran las semillas, las plantas o ciertas partes de las mismas, destinados en su conjunto a la producción de plantas. Este material procede de un material base.

3. Los materiales de base: son los materiales a partir de los cuales se van a obtener los diferentes MFR. Se han definido los siguientes:

- En materiales de reproducción sexual: masas y poblaciones forestales y huertos semilleros.
En materiales de reproducción vegetativa: clones y mezclas de clones en proporciones especificadas.

El Instituto Nacional de Semillas y Plantas de Vivero (INSPV) es el organismo competente para el control y Certificación de los materiales forestales de reproducción y representa a España en las diferentes Organizaciones internacionales. Es competente en:

Establecer y publicar las listas de materiales de base admitidos para las distintas especies destinadas a la producción de MFR seleccionado.

Admitir y publicar las listas de materiales de base para las distintas especies destinadas a la producción de MFR controlado.

Los Catálogos Nacionales de Material de Base publicados hasta la fecha son: *Pinus sylvestris* y *P. nigra* (OM 9611/91), *Populus* (OM 17778/92), *Fagus sylvatica* (OM 3409/93) y *Quercus robur* y *Q. petraea* (OM 7316/94). Próximamente saldrá un nuevo Catálogo de *Fagus sylvatica* y el de *Quercus rubra*. Estos Catálogos son muy dinámicos pudiendo haber altas y bajas continuas.

El procedimiento de admisión de un rodal o masa como material de base seleccionado parte de la decisión del propietario del monte que lo solicita al órgano competente de la Comunidad Autónoma. A raíz de la solicitud, el personal técnico forestal de la Dirección General de Conservación de la Naturaleza del MAPA (DGCN) y de la Comunidad, junto con el propietario o gestor, comprueba si cumple con los requisitos para su aceptación, en cuyo caso la DGCN propone al INSPV su inclusión en el correspondiente Catálogo de Material de Base seleccionado. Finalmente el INSPV lo incluye en el mencionado Catálogo y cada año lo publicará en el BOE.

4. **Comercializar**: significa la exposición para la venta, la puesta a la venta, la venta o entrega a un tercero. Supone que esta norma no es aplicable a los casos de producción de planta por parte del propietario de un monte o finca (particular o Administración) para emplearlo en los mismos. Es decir, no regula el autoconsumo.

Para la comercialización, cada lote de MFR deberá contar con una **etiqueta** rellenada por el productor o proveedor en donde se refleje: nombre botánico de los MFR, variedad, región de procedencia, año de recolección, nombre del productor y cantidad. Esta etiqueta por parte del proveedor tiene por objeto asegurar la correcta comercialización de los MFR al mismo tiempo que pretende garantizar un control de su identidad genética.

Los tipos de etiquetas que se contemplan hacen relación a la categoría genética del MFR. En este sentido, se distinguen dos:

MFR seleccionado: se entiende por tal aquel que en virtud de sus cualidades no hagan presumir caracteres desfavorables para la selsicultura. Es decir, es aquel que provee de masas o rodales selectos.

MFR controlado: se entiende por tal, aquel que posea un valor mejorado en función de los resultados de los ensayos comparativos a los que se les somete. Este valor mejorado puede ser por la procedencia de semillas de huertos semilleros y/o mercedes de copos que han demostrado su valor superior. El MFR de *Populus* spp. no sólo puede ser comercializado con
esta categoría.

Amparándose en lo dispuesto en la norma, en el sentido de que se podrán adoptar medidas para el resto de las especies no contempladas en la OM 3079/89 con unos requisitos menos estrictos, se está autorizando la comercialización de MFR con la categoría de identificados, etiqueta amarilla, según lo dispuesto en la norma de la OCDE.

6. Sistema de control oficial: se establece con objeto de asegurar la identidad de los MFR desde la recolección hasta la entrega al último utilizador. Este sistema de control interviene en diferentes fases:

- Recolección del material forestal de reproducción: las entidades públicas o privadas que pretendan recolectar semillas o partes de plantas en las zonas autorizadas como material base deberán solicitar autorización al Servicio competente de cada Comunidad Autónoma. Terminada la recolección y realizadas las respectivas comprobaciones, estos Servicios emitirán un certificado al recolector en el que se hace constar la producción obtenida.

- Identificado y marcado del MFR.

- Comercialización del MFR: para que esto se pueda realizar deberá contar con un etiquetado correcto según lo dispuesto por la OM.

Declaración anual por el productor de las cantidades comercializadas de los MFR por categorías, especies y variedades o clones.

La calidad exterior de los MFR para su comercialización en el seno de la UE está regulada por la Directiva UE 71/161 sobre Normas de calidad exterior de materiales forestales de reproducción, comercializados en el interior de la UE. En España esta norma se ha desarrollado mediante la OM 3080/89 de 21 de enero.

La normativa el único aspecto que contempla, por sorprendente que parezca, es el relativo a su pureza específica, no haciendo ninguna mención a su facultad germínativa.

Asimismo, en su articulado, dispone que para comercializar las semillas deberá figurar en su etiqueta o documento de acompañamiento que justifica su identidad, las palabras Normas UE, el número de germenes vivos por kilogramo de producto comercializado de semilla, la pureza, la facultad germínativa, el peso de 1.000 granos del lote de semillas y en su caso la indicación de que las semillas se han conservado en cámara fría.

En la actualidad la Dirección General para la Conservación de la Naturaleza (DGCN, 2000), ha puesto a punto una propuesta de Regiones de identificación y utilización del material forestal de reproducción (RIUs), que se definen como una parte del territorio, ecológicamente homogéneo, donde el material de reproducción presenta un comportamiento y adaptación similar. Los objetivos de esta regionalización son facilitar las recomendaciones de uso del material de reproducción de base mediante una
homologación ecológica y climática en las diferentes regiones, y constituir unidades básicas de comercialización para los lotes de material de reproducción (Tabla 4).

Tabla 4. Regiones para la certificación y utilización del material forestal de reproducción.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Nombre</th>
<th>Nº</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Galicia litoral</td>
<td>25</td>
<td>Sistema Ibérico meridional</td>
</tr>
<tr>
<td>2</td>
<td>Montañas y mesetas interiores de Galicia</td>
<td>26</td>
<td>Serranía de Cuenca</td>
</tr>
<tr>
<td>3</td>
<td>Litoral astur-cántabro</td>
<td>27</td>
<td>Campo de Criptana</td>
</tr>
<tr>
<td>4</td>
<td>Vertiente septentrional cantábrica</td>
<td>28</td>
<td>Cuenca de Madrid</td>
</tr>
<tr>
<td>5</td>
<td>Vertiente meridional cantábrica-Lomas de la Maragatería</td>
<td>29</td>
<td>Montes de Toledo</td>
</tr>
<tr>
<td>6</td>
<td>Litoral vasco</td>
<td>30</td>
<td>Tajo-Campo Azañuelo</td>
</tr>
<tr>
<td>7</td>
<td>Montes vascos-navarros</td>
<td>31</td>
<td>Guadiana-Tierra de Barros</td>
</tr>
<tr>
<td>8</td>
<td>Pirineo</td>
<td>32</td>
<td>Campos de Calatrava</td>
</tr>
<tr>
<td>9</td>
<td>Prepiriene</td>
<td>33</td>
<td>La Mancha</td>
</tr>
<tr>
<td>10</td>
<td>Litoral catalán</td>
<td>34</td>
<td>Campos de Montiel</td>
</tr>
<tr>
<td>11</td>
<td>Orla septentrional de la Depresión del Ebro</td>
<td>35</td>
<td>Sierras de Cazorla y Segura</td>
</tr>
<tr>
<td>12</td>
<td>Depresión del Ebro</td>
<td>36</td>
<td>Subbética murciana</td>
</tr>
<tr>
<td>13</td>
<td>Orla meridional de la Depresión del Ebro</td>
<td>37</td>
<td>Litoral murciano</td>
</tr>
<tr>
<td>14</td>
<td>La Rioja</td>
<td>38</td>
<td>Litoral sur-oriental andaluz</td>
</tr>
<tr>
<td>15</td>
<td>Sistema Ibérico-Macizo del Moncayo</td>
<td>39</td>
<td>Sierra Nevada-Filabres</td>
</tr>
<tr>
<td>16</td>
<td>Páramos del Duero-Fosa de Almazán</td>
<td>40</td>
<td>Subbética granadina</td>
</tr>
<tr>
<td>17</td>
<td>Tierras del Pan y del Vino</td>
<td>41</td>
<td>Orla Meridional de la depresión el Guadalquivir</td>
</tr>
<tr>
<td>18</td>
<td>Sierra de Gata</td>
<td>42</td>
<td>Serranía de Ronda</td>
</tr>
<tr>
<td>19</td>
<td>Sierra de Gredos</td>
<td>43</td>
<td>Litoral meridional andaluz</td>
</tr>
<tr>
<td>20</td>
<td>Sierra de Guadarrama-Ayllón</td>
<td>44</td>
<td>Depresión del Guadalquivir</td>
</tr>
<tr>
<td>21</td>
<td>Alcarriás</td>
<td>45</td>
<td>Sierra Morena Meridional</td>
</tr>
<tr>
<td>22</td>
<td>Sierra de Albarracin</td>
<td>46</td>
<td>Sierra Morena Septentrional</td>
</tr>
<tr>
<td>23</td>
<td>Sistema Ibérico oriental</td>
<td>47</td>
<td>Pitiusas</td>
</tr>
<tr>
<td>24</td>
<td>Litoral levantino</td>
<td>48</td>
<td>Islas de Mallorca, Menorca, Conejera y Cabrera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49</td>
<td>Canarias orientales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>Canarias occidentales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51-52</td>
<td>Ceuta y Melilla</td>
</tr>
</tbody>
</table>

El documento propuesto por la DGCN recoge una primera tabla de homologación climática entre RIUs (tabla 5), aunque no especifica la similitud edáfica y botánica, descritas en las respectivas fichas de cada RIU. En la actualidad, y a la espera de disponer de la información completa, es recomendable ir incorporando estas regiones al proceso normal de control del material forestal de reproducción en los viñedos forestales.

2.3. Recolección de semillas o frutos
La recolección de semillas o frutos debe hacerse en el periodo comprendido entre
<table>
<thead>
<tr>
<th>RIU</th>
<th>HOMOLOGACIÓN CLIMÁTICA</th>
<th>RIU</th>
<th>HOMOLOGACIÓN CLIMÁTICA</th>
<th>RIU</th>
<th>HOMOLOGACIÓN CLIMÁTICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>18</td>
<td>18, 19</td>
<td>35</td>
<td>32, 34, 35, 40</td>
</tr>
<tr>
<td>2</td>
<td>2 (4)</td>
<td>19</td>
<td>18, 19, 29, 46</td>
<td>36</td>
<td>36, 39, 40</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>20</td>
<td>20, 26</td>
<td>37</td>
<td>37 (38)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>21</td>
<td>21, 22, 26</td>
<td>38</td>
<td>38 (37)</td>
</tr>
<tr>
<td>5</td>
<td>5 (15)</td>
<td>22</td>
<td>21, 22</td>
<td>39</td>
<td>36, 39, 40</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>23</td>
<td>23 (13)</td>
<td>40</td>
<td>32, 34, 35, 36, 39, 40, 46</td>
</tr>
<tr>
<td>7</td>
<td>7 (14)</td>
<td>24</td>
<td>24 (25)</td>
<td>41</td>
<td>31, 41, 45, 46</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>25</td>
<td>25 (24, 36)</td>
<td>42</td>
<td>41, 42, 45, 46</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>26</td>
<td>20, 21, 26</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>27</td>
<td>27, 28, 29, 32, 33</td>
<td>44</td>
<td>44, 45</td>
</tr>
<tr>
<td>11</td>
<td>11 (12,13,14)</td>
<td>28</td>
<td>26, 28, 29, 32, 33</td>
<td>45</td>
<td>41, 44, 45</td>
</tr>
<tr>
<td>12</td>
<td>11, 12, 14</td>
<td>29</td>
<td>19, 27, 28, 30, 32, 33, 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13 (11,14,16,17)</td>
<td>30</td>
<td>29, 30, 31</td>
<td>46</td>
<td>19, 31, 40, 41, 45, 46</td>
</tr>
<tr>
<td>14</td>
<td>12, 14</td>
<td>31</td>
<td>30, 31, 41, 46</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>15</td>
<td>15 (5, 16)</td>
<td>32</td>
<td>27, 28, 29, 33, 34, 35, 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16, 17</td>
<td>33</td>
<td>27, 28, 29, 33, 34</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>17</td>
<td>16, 17</td>
<td>34</td>
<td>29, 32, 33, 34, 35, 40</td>
<td>49</td>
<td>49</td>
</tr>
</tbody>
</table>

la maduración de la semilla o el fruto (que no necesariamente coinciden) y su desapa- rición como consecuencia de la diseminación o de la acción de agentes perjudicia- les. Las semillas se suelen recoger, en la mayoría de los casos, cuando ya han ma- durado y antes de que se produzca su diseminación. Es por ello que interesa co- nocer cómo se puede determinar el mo- mento de la madurez del fruto. Hay dife- rentes métodos, no existiendo ninguno que funcione bien para todas las especies. Básicamente cabe dividirlos en dos grupos: los métodos de campo y los de laboratorio. Los de mayor utilidad son los de campo, pudiéndose utilizar los segundos cuando exista cierta proximidad entre el monte y el laboratorio, como ocurren con los huertos semilleros. Los métodos que más se utilizan son los siguientes (Stubsgaard y Baadsgraad, 1989; García Salmerón, 1991; Willan, 1991; Gordon, 1992):

1) Métodos de campo. Tienen su fundamen- to en la percepción de los cambios ex- teriores que sufre el fruto cuando ya está maduro. Estos cambios son: dife- rente color, cambio de sabor u olor, cam- bio de densidad, reblanquecimiento de los frutos frescos o pérdida de brillo en las semillas de coníferas.

* Método gravimétrico. Basado en el principio de que el peso específico de los frutos disminuye a medida que aumenta la madurez. Así, determi- nada la densidad de los frutos o co- nos cuando estos están maduros, se prepara un líquido con un peso es- pecífico fijo en el cual flotarán los fru- tos maduros de una determinada especie y se hundirán los que todavi- a estén verdes. Cuando más de la mitad de los frutos analizados flotan en el líquido se puede iniciar la reco- gida. Es un método no destructivo.
• **Método colorimétrico.** Es otro método no destructivo que se basa en conocer el cambio de color que experimenta el fruto cuando alcanza su madurez. Sólo está recomendado para recolectores expertos. El cambio de color consiste, por lo general, en pasar del verde del fruto o cono inmaduro a diversos tonos de amarillo, pardo o gris, pudiendo estar acompañado del endurecimiento de las escamas del cono o pericarpio en los frutos dehesicientes y leñosos. Como la semilla madura normalmente antes que el fruto, es aconsejable programar la recolección para las primeras fases del cambio antes que para las últimas.

• **Examen de la semilla.** Este método destructivo obliga a cortar la semilla y a examinar su aspecto. Los embriones inmaduros tienen un aspecto lechoso mientras que las semillas maduras poseen un endosperma blanco y firme con consistencia de masa. Precisa de recolectores expertos.

Debe tenerse presente que aunque la abscisión y caída de frutos suele ser un signo de madurez, en muchas especies no conviene iniciar la recolección en ese momento ya que las primeras semillas son normalmente de baja calidad, pudiendo ser aconsejable iniciar la recolección más tarde.

2) **Métodos de laboratorio.**

• **Determinación del peso en seco.** Consiste en comprobar cuál es el momento en el que la semilla alcanza su máximo peso en seco, es decir, su madurez fisiológica. Esto significa que el árbol madre ha dejado de pasar nutrientes a la semilla. Es un método lento, que requiere tomar muestras de forma repetida y por ello se utiliza muy poco.

• **Análisis químico.** Están basados en los cambios de los compuestos bioquímicos que tienen lugar cuando se alcanza la madurez. El contenido de azúcares, grasa cruda o el nitrógeno proteico son algunos de los índices utilizados.

• **Radiografía con Rayos X.** Se basa en el examen del embrión y del endosperma de la semilla. Precisa de los medios adecuados y personal cualificado.

• **Contenido en humedad.** En muchas especies los conos y frutos al madurar pierden agua. Presenta los mismos inconvenientes que el método de peso en seco.

Existe, también, la posibilidad de recolectar semillas inmaduras y almacenarlas en condiciones relativamente frescas y ventiladas lo que permite la postmaduración de las semillas dentro del fruto. Este sistema, que ha dado buenos resultados en algunas experiencias sobre determinadas especies presenta como ventajas: ampliar la temporada de recolección, evitar los daños en la cosecha por insectos y otros patógenos, y aprovechar las semillas inmaduras que se han recolectado junto con otras que ya lo estaban. En algunas especies, como es el caso del *Fraxinus excelsior*, el embrión sigue siendo pequeño y poco desarrollado cuando la semilla ya está lista para su dispersión, precisándose de otro período de postmaduración con condiciones ambientales adecuadas.

En la mayoría de las especies la maduración de sus frutos se produce a finales de otoño, aunque existen especies que lo hacen en primavera o en verano o incluso otras lo hacen bien entrado el invierno.
recogen, a continuación, las épocas en que maduran los frutos de las principales especies forestales (Tabla 6). Debe conside-rarse, también, la variabilidad en la madura-cción de los frutos, ya que no todas las semillas maduran a la vez. Así, se presenta variabilidad en árboles de la misma masa y dentro de un mismo árbol. Un ejemplo para este último caso puede ser el del Juniperus thurifera. La dificultad de germinación de esta especie, según ciertos au-tores, está asociada a una maduración des-igual de los frutos en el árbol, circunstan-cia por la cual recomiendan recoger sólo los que han alcanzado la madurez.

Tabla 6. Época de maduración

<table>
<thead>
<tr>
<th>EPOCA DEL AÑO</th>
<th>ESPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marzo / Abril</td>
<td>Populus spp., Rhododendron ponticum, Ulmus spp.</td>
</tr>
<tr>
<td>Julio / Agosto / Septiembre</td>
<td>Amelanchier spp., Betula spp., Ceratonia siliqua, Cupressus macrocarpa, Rosa spp., Rosmarinus officinalis, Sambucus nigra, Spartium junceum, Thymus spp.</td>
</tr>
</tbody>
</table>

2.4. Época de recolección

La época de recolección para cada especie corresponde al intervalo comprendido entre la maduración del fruto y su disseminación. La recolección en este periodo garantiza una semilla madura, de origen conocido y no dañada por agentes externos. Ambos momentos, dependiendo de cada especie, pueden estar próximos o muy lejanos. Además, los efectos del clima en un año determinado pueden hacer que las fechas de fructificación se distancien del promedio. En la zona templada, una primavera temprana y un verano seco pueden hacer que la semilla madure muy pronto mientras que los vientos fuertes y secos producen la dispersión rápida de las semillas maduras. El tiempo fresco y húmedo, en cambio, pueden retrasar en semanas o en meses la maduración y disper-
la semilla. Por ejemplo, fóliculos, vainas, cápsulas, conos de coníferas, aquenios.

TIPO 2. - Incluyen frutos o conos que no son dehiscentes y que no diseminan sus semillas de inmediato al madurar (por ejemplo, pino carrasco). En muchos casos las semillas casi secas se cosechan directamente de plantas maduras en pie.

TIPO 3. - Abarca a las semillas producidas en frutos carnosos. En la naturaleza muchos de estos son comidos por las aves, y las semillas son diseminadas a través de su tracto digestivo. Estos frutos pueden madurar o endurecerse dificultando la germinación, por lo que la recogida debe hacerse en el momento adecuado. Por ejemplo, bayas, drupas, pomos, frutos agregados, etc.

Disponiendo de esta información con carácter general, y adaptada en particular a la zona de recogida, pueden programarse las campañas de recolección de MFR. En aquellas especies cuyas semillas muestran grandes letargos internos (inhibición de la germinación por causas bioquímicas) suele adelantarse la recolección al momento de la maduración del fruto en que este emberando (es decir, unas semanas o meses antes de finalizar totalmente la maduración del fruto), como por ejemplo Sorbus spp., Crataegus spp., o Juniperus spp.

De manera general se indica el periodo de recogida para algunas especies (Tabla 7). Como norma debe evitarse recoger la semilla de árboles aislados, sobremaduros, enfermos, de portes deficientes o en lugares con cosechas mediocres. En los árboles aislados o rodales de poca extensión el problema de la endogamia es patente.

<table>
<thead>
<tr>
<th>ÉPOCA DEL AÑO</th>
<th>ESPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abril / Mayo / Junio</td>
<td>Populus spp., Ulmus spp., Rhododendron ponticum</td>
</tr>
<tr>
<td>Agosto / Septiembre</td>
<td>Amelanchier ovalis, Anthyliis cytisoides, Berberis spp., Betula pendula, Ceratonia silqua, Colutea atlantica, Crataegus monogyna, Cupressus sempervirens, Cytisus spp., Ephedra fragilis, Frangula alnus, Juniperus communis, J. oxycedrus, Mespilus germanica, Pyrus bourgeana, Rhamnus lycioideae, Rosa spp., Rosmarinus officinalis, Sambucus nigra, Thymus spp., Viburnum spp., Zizyphus lotus</td>
</tr>
<tr>
<td>Septiembre / Octubre</td>
<td>Abies pinsapo, Arctostaphylos uva-ursi, Buxus sempervirens, B. balearica, Cistus spp., Chamaerops humilis, Fraxinus angustifolia, Juniperus phoenica, J. sabina, J. thurifera, Laurus nobilis, Malus sylvestris, Myrtus communis, Nerium oleander, Rhamnus alaternus, Sorbus aria, Sorbus domestica, Spartium junceum, Tamarix spp., Tetraclinis articulata</td>
</tr>
<tr>
<td>Octubre a Diciembre</td>
<td>Acer spp., Alnus glutinosa, Arbutus unedo, Castanea sativa, Cotoneaster granatensis, Cupressus sempervirens, Junipurs regia, Olea europea, Phillyrea angustifolia, P latifolia, Pistacia spp., Quercus spp., Retama spp., Ruscus aculeatus, Taxus baccata</td>
</tr>
</tbody>
</table>
2.5. Sistemas de recolección

Existe una gran variedad de métodos y equipos para recolectar los frutos. La elección de uno u otro depende de una serie de factores, tales como las características del fruto, del individuo del cual se colecta, del área de recogida y del lugar (Willan, 1991). Tradicionalmente se han descrito cuatro sistemas de recogida de frutos en las especies forestales (Hartman y Kester, 1975; García Salmeron, 1991, INIA, 1993; Gordon, 1993):

1. **Recogida de frutos en árboles apegados**: se aprovechan las cortas, condicionando la época del apeo con la de maduración. La recolección se suele realizar a mano con ayuda de rastrillos o ganchos. Cuando las operaciones son rápidas, la recogida de los frutos se realiza una vez que se han llevado los fustes y antes de que se amontone y se queme o triture la leña de las copas. Es un sistema sencillo y barato muy utilizado para Pinus sylvestris, P. nigra, P. pinaster y P. halepensis.

2. **Recogida de frutos de árboles en pie**: es la forma más recomendable desde el punto de vista de la calidad de la semilla y del menor daño a los árboles. Los sistemas de recogida en este caso son muy diversos:

 - **Recolección desde el suelo.** Se utiliza en el caso de árboles o arbustos con ramas bajas, cuando el recolector tiene acceso directo a los frutos de las ramas estando de pie en el suelo (Por ejemplo, Crataegus spp., Sorbus spp., Ilex spp.). Puede utilizarse como herramientas rastrillos, sierras, cuchillos, ganchos o tijeras de podar, con objeto de cortar los frutos o las ramillas fructíferas.

 - **Escalada al árbol.** Dentro de las diferentes técnicas de escalada al árbol cabría distinguir: trepadores con espuelas o con apoyos de caucho, la bicicleta suiza o baumvelo, el ekureuil (juego de plataforma y asiento que se elevan con los pies), o diferentes sistemas aplicados de la técnica de progresión del alpinismo, como puedan ser la ascensión con ganchos, estribos, escaleras de tramos acoplables o mediante trepadores de pie. Muchos de estos métodos precisan de fustes limpios, por lo que sólo sirven para acceder a la copa. Una vez en ella debe escalarse por las ramas del árbol. Es el único método aplicable en el caso de los montes que no tienen aprovechamiento maderero o cuando el apeo de los árboles se realiza fuera de la época de maduración de la semilla. También se recomienda para el caso de los rodales semilleros.

 - **Recolección mediante plataformas.** Son plataformas con brazo extensible montadas sobre vehículos similares a las que se utilizan para el montaje de cables eléctricos aéreos. Pueden llegar hasta alturas de 10 ó 15 m. Precisa este método de lugares con buen acceso.

3. **Recogida de frutos en depósitos naturales**: se cita como anécdota, pues prácticamente no se usa en España. Podría aplicarse a chopos, sauces y olmos, recogiéndose de depósitos producidos por el viento o el agua, pero la fugaz viabilidad de las semillas de estas especies, y el hecho de que en su cultivo se utilice preferentemente la reproducción vegetativa, no lo aconsejan. En algunas especies se utilizan depósitos formados por animales (algarrobo o sabina).

4. **Recogida de frutos en el suelo.** Su caída puede ser natural o producto de una vibración manual o mecánica. Es la forma de recogida para las semillas de gran
tamaño como es el caso de las especies de frondosas de los géneros Castanea, Quercus, Juglans, etc.

Cuando se recogen por caída natural debe tenerse la precaución de despreciar las que caen en primer lugar porque pueden estar dañadas o ser inmaduras. Presenta como inconvenientes los siguientes: recogida de semillas inmaduras, vanas, deterioradas o con germinación prematura y falta de conocimiento de quién es el árbol padre.

Las vibradoras mecánicas precisan de un terreno accesible y de operadores experimentados, por lo que su uso se recomienda a huertos o rodales semilleros. Ha sido usada en diferentes pinos, y en especies de los géneros Malus, Juglans, Prunus y Fraxinus, con buenos resultados. Para la recogida de los frutos que caigan de forma natural o por vibración, se suelen emplear lonas en el suelo, redes de polipropileno en torno a las copas, estructuras de madera en forma de embudo alrededor del tronco o redes o lonas elevadas mediante unos postes.

La recogida de los frutos del suelo se realiza de forma manual ayudándose de un rastrillo o en ocasiones se han empleado máquinas tipo aspirador que funciona por la comprensión de un motor de tractor. Esta máquina se ha utilizado para la recolección de los hayucos y de las bellotas.

Los sistemas de recolección más utilizados para cada una de las especies forestales se relacionan a continuación (Tabla 8).

<table>
<thead>
<tr>
<th>MÉTODO</th>
<th>ESPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recogida del fruto de las ramas desde el suelo directamente</td>
<td>Matas y arbustos</td>
</tr>
<tr>
<td>Recogida desde el suelo empleando pértigas</td>
<td>Acer spp., Alnus glutinosa,</td>
</tr>
<tr>
<td></td>
<td>Betula pendula, Fraxinus</td>
</tr>
<tr>
<td></td>
<td>angustifolia, Juniperus spp.,</td>
</tr>
<tr>
<td></td>
<td>Malus sylvestris, Morus alba,</td>
</tr>
<tr>
<td></td>
<td>Prunus avium, Pyrus</td>
</tr>
<tr>
<td></td>
<td>bourgeana, Taxus baccata,</td>
</tr>
<tr>
<td></td>
<td>Sorbus spp.</td>
</tr>
<tr>
<td></td>
<td>Castanea sativa, Celtis</td>
</tr>
<tr>
<td></td>
<td>australis, Ceratonia, Juglans</td>
</tr>
<tr>
<td></td>
<td>regia, Olea, Prunus, Quercus</td>
</tr>
<tr>
<td></td>
<td>spp., Tetraclinis articulata,</td>
</tr>
<tr>
<td></td>
<td>Ulmus spp.</td>
</tr>
<tr>
<td>Recogida desde el suelo previo vareo o agitado</td>
<td>Pinus spp.</td>
</tr>
<tr>
<td>Recogida en árboles apeados *</td>
<td>Acer spp., Abies pinsapo,</td>
</tr>
<tr>
<td></td>
<td>Cupressus sempervirens, Pinus</td>
</tr>
<tr>
<td></td>
<td>spp., Ulmus spp.</td>
</tr>
</tbody>
</table>

* Puede realizarse en la casi totalidad de especies aunque en la práctica sólo en aquellas que son objeto de cortas con interés comercial.
2.6. Extracción y almacenamiento de semillas

Una vez recogida la semilla, con la garantía de su calidad genética, ésta debe ser sometida a una serie de operaciones hasta su utilización o almacenaje. En cada una de estas operaciones hay que prestar una gran atención para evitar que se produzca la pérdida de viabilidad de la semilla en alguna de ellas. Si llega a perderse la misma en una de las fases iniciales del proceso, no los mejores métodos de almacenamiento o tratamiento previo lograrán resucitarla. Una extracción y una limpieza perfecta de la semilla son una pérdida de dinero si ésta muere después debido a unas condiciones de almacenamiento incorrectas o a una manipulación descuidada en el tránsito. Los mayores riesgos para la semilla se producen durante el almacenamiento temporal que sigue inmediatamente a la recolección, durante el transporte a la instalación de procesamiento y una vez más durante el transporte del almacén de semillas al viveiro. En estos periodos, debe garantizarse una buena ventilación y evitar que se alcancen altas temperaturas.

2.6.1. Extracción y limpieza de las semillas

Son las operaciones a realizar desde la recogida del fruto o semilla hasta que ésta queda lista para su almacenaje o siembra. Estas operaciones serán muy variables en función de las especies de que se trate y de la cantidad de semilla a producir.

Dado que lo que normalmente se recolecta en el monte son frutos y no semillas, estos deben someterse a una serie de operaciones hasta que se obtiene la semilla lista para su almacenaje o siembra. La finalidad de este proceso es obtener la máxima cantidad de semilla limpia y viable. Por ello, debe vigilarse que no se produzca la pérdida de viabilidad en cualquier de las operaciones.

La primera de todas las operaciones, previa a la extracción, consiste en la manipulación de los frutos o semillas desde la recolección hasta que llega al lugar donde se va a proceder a la misma. Durante este período, hay que tener presente, que es muy alto el peligro de que se pierda la identidad del material así como su viabilidad.

Para evitar la pérdida de identidad debe etiquetarse el recipiente tanto dentro como fuera, con la siguiente información mínima: especie, número de lote, localización geográfica, fecha de recolección, peso y nombre del recolector. Los recipientes a utilizar pueden ser sacos de arpillería, o nylon con objeto de favorecer la circulación de aire, o bolsas de polietileno en el caso de semillas recalcitrantes. El transporte debe ser rápido, siendo preferible utilizar remolques abiertos, salvo en el caso del tipo anterior de semillas donde se debe evitar la insolación directa y las corrientes de aire. Una vez llegado el fruto a la planta de procesado, las operaciones a las que puede verse sometido son las siguientes:

Operaciones previas a la extracción. Entre ellas cabe citar:

- **Limpieza de los frutos**: Normalmente por cribado para la eliminación de impurezas. En algunos casos es la única operación que se realiza en aquellas especies en las que sus frutos y semillas se emplean casi como se recolectan o tan sólo precisan de una pequeña limpieza consistente en separarlas de los envoltorios que las cubren, de las ramillas y demás impurezas que las pueden acompañar (*Quercus, Castanea, Acer, Ulmus, Fraxinus, etc.*).

- **Almacenamiento del fruto**: puede ser necesario por la incapacidad de las máquinas para extraer todos los frutos que han llegado o para comple-
tar su maduración (coníferas). El lugar de almacenamiento debe ser seco, fresco y bien ventilado al objeto de evitar el desarrollo de mochos y altas temperaturas.

Extracción de la semilla: los diferentes métodos utilizados dependen del tipo de fruto, cabe agruparlos en cuatro categorías:

- **Secado:** tiene su fundamento en que los frutos secos dehiscentes permanecen cerrados hasta que su humedad baja de un determinado contenido, abriéndose en ese momento y liberando la semilla. En la naturaleza, esta desecación es consecuencia de la interacción temperatura y viento. Los tipos de secado que normalmente se han utilizado son los siguientes: secado al aire, secado al sol y secado en hornos.

- **El secado al aire:** se utiliza para aquellas especies en que sus piñas se abren o desintegran por la acción directa del aire a la temperatura ambiente y son muy sensibles al calor (Abies). Los frutos se extienden en capas de poco grosor sobre el suelo (madera, ladrillo) en naves muy bien ventiladas y son volteados frecuentemente. Este procedimiento tiene el inconveniente de necesitar un verano completo para la obtención de la semilla, con la demora y la necesidad de almacenamiento del fruto correspondiente. Las ventajas son la simplicidad o el bajo coste en infraestructuras, pero alto en mano de obra. Un problema añadido es el riesgo de ataques por insectos y animales.

- **El secado al sol:** se utiliza para aquellas especies que abren sus frutos al exponerlos durante algún tiempo a la acción conjunta del sol y del viento. Es el método más primitivo que se conoce y se ha desarrollado en toda la región mediterránea para extraer la semilla de Pinus pinea, P. pinaster, P. halepensis, Cupressus spp., etc. Tiene como inconveniente su lentitud ya que las piñas que se recolectan en un año no se extraen hasta la primavera siguiente y como consecuencia la semilla no se podrá emplear hasta el otoño o la siguiente primavera. Su ventaja es la economía.

- **El secado en hornos:** es necesario en las regiones de clima húmedo y siempre que se quiera utilizar los frutos recogidos en otoño para la siembra de primavera. Este tipo de secado acorta sensiblemente la duración del proceso frente a otros sistemas. Para conseguir un secado perfecto debe someterse a las piñas a una corriente de aire caliente cuya humedad vaya disminuyendo gradualmente. Existen diferentes tipos de hornos, entre los que cabe citar: hornos progresivos horizontales, hornos progresivos verticales y hornos rotatorios. Este último es el sistema más utilizado para el resto de las coníferas. Son procedimientos más caros pero más rápidos que los anteriores. Para evitar la muerte del embrión hay que controlar la temperatura que no supere los 60ºC en ningún momento. Todo los hornos se basan en hacer circular a través de los frutos una corriente de aire caliente con humedad
relativa progresivamente menor a medida que avanza los procesos. Se puede hacer un presecano de los frutos cubiertos y aireados durante 2 a 3 semanas a varios meses. La regulación de la humedad y la temperatura pueden ser manual o automática. Una vez que los frutos se han abierto, la extracción de la semilla se hará en volteadoras o rodillos de malla giratoria, que separan la semilla de forma continua.

- Desgrane (Trillado): Consiste en el desgrane de los frutos mediante medios mecánicos principalmente. Se usan trituradoras para romper la envoltura que rodea a la semilla. El método es utilizado para aquellas especies cuyos frutos en legumbre o cápsula se extraen fácilmente golpeándolos para que se desgranan o para separar los frutos cuando estos aparecen en racimos o manojos (Acer, Fraxinus, etc.). Se puede realizar mediante máquinas como molinos de martillos o cuchillas, o bien extendiendo los frutos en una pava sobre el suelo y procediendo a su pisado o vareado. Deberá tenerse cuidado al realizar este proceso debido a que se pueden dañar las semillas si la máquina se usa a demasiadas revoluciones. El mayor o menor número de revoluciones a emplear estará en relación con la dureza de la cáscara de la semilla. Una vez trillada la semilla se usará uno de los métodos de limpieza para separar las cáscaras de estas.

- Despulpado (Maceración): Se aplica a las especies con frutos carnosos en las que es preciso separar las semillas de la pulpa (Amelanchier, Prunus, Sorbus, Berberis, Cotoneaster, Crataegus, etc.). El proceso consiste en las siguientes etapas: trituración mecánica o maceración de los frutos, separación de las semillas, limpieza y secado de las semillas hasta obtener un contenido de humedad óptimo para su conservación. Para este propósito se emplea una máquina despulpadora que separará la pulpa de la semilla sin dañar a esta. Hay que tener cuidado a la hora de decidir la velocidad de la máquina porque unas excesivas revoluciones pueden dañar a la semilla. El número de revoluciones a emplear dependerá de la especie a despulpinar. Existen especies como las del género Juniperus o el palmito que si el fruto recolectado está poco hidratado necesitan una hidratación previa. Otro método de despulpado es el que se realiza por medio de una batidora con la cual se baten los frutos sin dañar la semilla. Una vez realizado el batido se cuela el agua para separar la semilla de la pulpa y se deja secar. Este método se suele emplear si para la máquina despulpadora no se tienen varios juegos de cribas para poder separar los diferentes tamaños de semillas. Durante todas las operaciones de despulpado se debe dirigir un chorro de agua suficiente para evitar que se forme una pasta, difícil de manipular, de semilla y pulpa. Si el fruto es lo suficientemente carnoso como por ejemplo el de Olea europaea no será necesario el empleo del chorro del agua.

Limpieza de la semilla: Una vez que se han extraído las semillas de los frutos y que se han dejado secar hasta un contenido de humedad aconsejable, deberán someterse a diferentes operaciones de limpieza con objeto de separar las semillas viables de las vacías y no viables y de los fragmentos
inertes de fruto. La finalidad de estas operaciones es conseguir que el lote de semillas adquiera un grado de pureza elevado que esté de acuerdo con la normativa vigente en el comercio internacional. Hay que tener presente que en algunas semillas no es conveniente proseguir la limpieza para alcanzar un grado de pureza superior a un determinado porcentaje, pues superado ese nivel se va con las impurezas una cantidad cada vez mayor de semilla buena. Los métodos más empleados son el aventado, con desalado previo o no, cribado, flotación en agua y la separación centrífuga o vibración (García Salmerón, 1991):

- **Aventado**: con esta operación se logra separar las semillas buenas y las impurezas pesadas de las semillas vanas e impurezas livianas. Esta operación se puede realizar a mano o mediante el empleo de aventadoras. El principio en el que se basan estas máquinas es el que una muestra de semillas, cuando esta sometida a una corriente ascendente de aire a una velocidad determinada, se divide en una fracción ligera y en una pesada, de manera que la primera asciende más que la segunda.

- **Cribado**: consiste en pasar las semillas por cribas con mallas de distinto tamaño, acompañadas de un movimiento rotatorio. Normalmente cuando se emplean máquinas para el limpiado de semillas, estas suelen ir dotadas de un dispositivo de aventado y otro de cribado.

- **Desalado.** Algunas especies precisan de un desalado previo (*Pinus*, *Picea*, etc.), con objeto de reducir el volumen que ocupa la semilla y evitar los inconvenientes que supone el empleo de semillas aladas en las máquinas sembradoras. El desalado puede realizarse de forma manual o mediante el empleo de desaladoras. Estas máquinas son, en su mayoría, mecanismos giratorios en los que la semilla es presionada, por unos cepillos o almohadillas, contra las paredes del cilindro, o también en los que unas cabezas o almohadillas giratorias obligan a las semillas a pasar por unas ranuras estrechas donde quedan retenidas las alas. Existen especies a las que no se les suele quitar el ala ya que se podría dañar la semilla durante el proceso, como por ejemplo las semillas de arce o sabina de Cartagena.

- **Flotación**: se basa en los métodos densimétrico ya vistos en la maduración, y consiste en separar las semillas por densidad o peso específico. Los líquidos que se emplean suelen tener un peso específico inferior a 1, de manera que las semillas buenas van al fondo mientras que las semillas vanas e impurezas se quedan en la superficie. Si el líquido es agua las semillas llenas la absorben haciéndose más pesadas y se hunden. Debe ser utilizado con precaución para evitar problemas posteriores en la semilla (hongos, reblandecimiento, etc.).

- **Lavado**: Método de limpieza que consiste en una criba sobre la cual se deposita la semilla con los restos de pulpa. A continuación mediante un chorro de agua a presión se eliminan los restos de pulpa, que pasan a través de la criba, quedando la semilla limpia retenida en la misma.

- **Separación centrífuga o por vibración**: se basa, al igual que el método anterior, en el peso específico de las semillas. De tal forma que, cuando las semillas se centrifugan en un cilindro abierto, las partículas más
pesadas son las primeras que ascienden y salen del cilindro. La variación en la velocidad de rotación permite la separación de las partículas de peso distinto.

2.6.2. Almacenamiento de semillas

Una vez obtenida la semilla, esta puede ya emplearse para efectuar las siembras, siendo este momento el más propicio para su utilización, ya que entonces la mayoría de nuestras especies forestales presentan el máximo de potencia germinativa, cosa que no ocurre con otras especies como el boj o el madroño, que requieren un periodo de postmaduración para garantizar dicho máximo. En este último caso, y en aquel en que la periodicidad de la cosecha lo obliga, o cuando la producción no cubre las necesidades antes del momento de la siembra, se requiere el almacenamiento de semillas y su conservación del modo más eficaz posible.

Debe tenerse muy presente que desde el momento que la semilla madura en la planta madre comienza un proceso de deterioro. Su intensidad, es función de las condiciones ambientales de su entorno, variando desde la pérdida de vigor (reducción de la tasa de germinación y crecimiento, pérdida de capacidad para superar las situaciones de estrés en el campo, etc.) hasta la pérdida de viabilidad o muerte de la semilla. La longevidad de las semillas es muy variable, dependiendo de las diferentes especies forestales, de la calidad en el momento de la recolección, de los tratamientos a los que se las somete entre la recolección y el almacenaje y de las condiciones de almacenaje.

En la actualidad se distinguen dos tipos principales de semillas en función de sus requerimientos para la conservación y longevidad (Robert, 1973):

1. **Semillas ortodoxas**: son todas aquellas que se pueden desecar hasta unos contenidos de humedad muy bajos, alrededor 5% y almacenarlas a temperaturas muy bajas, inferiores incluso a -200°C, durante largos periodos de tiempo. Dentro de este grupo están muchos géneros mediterráneos, como es el caso de los géneros Pinus, Cupresus, Genista, Retama, etc.

2. **Semillas recalcitrantes**: son las semillas que no pueden sobrevivir si sufren una fuerte desecación, generalmente no pueden soportar contenidos de humedad inferiores de 20%-50% y no toleran el almacenaje durante largos periodos de tiempo. Dentro de este grupo están prácticamente todas las frondosas con semillas comestibles, como son las de los géneros Quercus, Castanea, Juglans, Fagus, etc. Dentro de este grupo, se suelen distinguir las semillas absolutamente recalcitrantes, que no soportan desecaciones importantes sin sufrir daños graves en su capacidad de germinación (Quercus, Castanea) de aquellas que se comportan como ortodoxas si se les aplica un método adecuado para almacenarlas (Fagus). Además, existen géneros que pueden presentar indistintamente especies ortodoxas y recalcitrantes.

Posteriormente se ha definido una tercera categoría intermedia (Ellis et al., 1990).

Los factores más importantes que deberán ser controlados, con objeto de que las semillas puedan conservar su viabilidad o potencia germinativa, son la temperatura, la humedad y el contenido de oxígeno en el ambiente. Su importancia se pone de manifiesto si se tiene en cuenta que las cau-
sas más frecuentes de la destrucción de las semillas durante su almacenamiento son el agotamiento de sus reservas, daños causados por agentes externos, contenido de humedad, temperatura de almacenamiento y contenido de oxígeno. Otros factores extrínsecos que afectan a la viabilidad de la semilla son la luz, los daños mecánicos en la fase de recolección y posteriores manipulaciones. Entre los factores intrínsecos se encuentran la estructura de la cubierta, la madurez de la semilla y las sustancias de reserva.

2.6.3. Métodos de almacenaje

Existen una clara relación entre la ecología de una especie y su comportamiento de almacenamiento. Según algunos autores (King y Robert, 1980; Gordon, 1993) las semillas de comportamiento ortodoxo pueden almacenarse a largo plazo bajo condiciones adecuadas. El mantenimiento de la viabilidad de semillas de comportamiento intermedio o recalcitrante es problemático. Sin embargo, el almacenamiento a largo plazo de las semillas de comportamiento intermedio es posible bajo condiciones definidas:

1. Semillas de comportamiento ortodoxo.— Las semillas ortodoxas pueden secarse sin daño bajo niveles de contenido de humedad, y bajo un amplio rango de condiciones; su longevidad crece con la disminución del contenido de humedad, y la temperatura de forma cuantificable y predecible. Para que una semilla sea considerada ortodoxa debe cumplir dos condiciones:

- Las semillas maduras sobreviven a la desecación con contenidos de humedad del 2-6% dependiendo de la especie. Por encima de este valor, la relación entre el contenido de humedad y la longevidad es negativa.

- Respecto al efecto de la temperatura en la longevidad, hay una relación negativa entre la temperatura y la longevidad.

El agua también influye en la supervivencia de las semillas. Durante la imbibición, la rápida absorción de agua por parte de las semillas secas puede provocar heridas. Este fenómeno es realmente importante en las semillas hidratadas antes de la siembra, y puede evitarse humedeciendo previamente las semillas en atmósfera humed (100% HR), hasta alcanzar el 16-18% en contenido de humedad previamente a entrar en contacto con el agua líquida.

La tolerancia a la desecación y el potencial de longevidad de las semillas ortodoxas cambian durante el desarrollo de las semillas y la maduración. Así, las semillas ortodoxas no toleran la desecación en todos los estados de maduración y desarrollo. Por lo general, la tolerancia a la desecación a muy bajo contenido de humedad puede producirse en estados de desarrollo muy distintos en especies diferentes. Distintos tratamientos pueden provocar igualmente una reducción de la tolerancia a la desecación. Así, el almacenamiento frío-húmedo (especies frías) comúnmente practicado como método para romper el letargo interno de semillas durmientes, puede provocar efectos deletéreos si se produce una desecación posterior a la estratificación.

2. Semillas recalcitrantes.— Cuando las semillas frescas recalcitrantes co-
mienzan a secarse, la viabilidad primero desciende ligeramente, pero si esta desecación continua se llega a un contenido de humedad, llamado contenido de humedad crítico. Si el contenido de humedad sigue bajando la viabilidad llega a ser cero. Este contenido de humedad crítico varía entre especies, variedades, e incluso con el método de secado.

La tolerancia a la desecación aumenta en estas semillas durante su desarrollo y maduración en la planta madre. Sin embargo, al contrario que en las semillas ortodoxas, la disminución del contenido de humedad no se produce durante la maduración y las semillas frescas recalcitrantes tienen altos niveles de humedad cuando terminan de madurar.

No existe un método satisfactorio para mantener la viabilidad de las semillas recalcitrantes intactas a largo plazo. Estas semillas se dañan tanto si se desecan, como si se almacenan a temperatura bajo cero. Además, algunas semillas tropicales recalcitrantes sufren daños a los 10-15 °C. Sin embargo, la longevidad de semillas de especies adaptadas al ambiente templado puede mantenerse durante periodos mayores, como por ejemplo en Quercus spp. a −3 °C durante 3 años.

3. Semillas de comportamiento intermedio.- Los niveles críticos del contenido de humedad de las semillas intermedias son los que pierden más rápidamente la viabilidad. Se produce durante el almacenamiento hermético dependiendo considerablemente de la especie, grado de maduración, y método de extracción de las semillas. Por lo general, las semillas maduras extraídas toleran la desecación hasta un contenido de humedad del 40-50% aunque en ciertos Citrus spp. se llega hasta el 7%; y la longevidad de la semilla secada (7-10%) se reduce con la disminución de la temperatura por debajo de 10 °C.

Teniendo en cuenta los factores principales que inciden en la conservación de las semillas, a saber: humedad, temperatura y contenido de oxígeno, se han propuesto una serie de métodos usuales para el almacenaje (Tabla 9).
<table>
<thead>
<tr>
<th>MÉTODO DE ALMACENAJE</th>
<th>ESPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Húmedo y frío*</td>
<td>Castanea sativa, Juglans regia, Quercus spp.</td>
</tr>
<tr>
<td>Vacio parcial</td>
<td>Populus spp.</td>
</tr>
</tbody>
</table>

SISTEMA DE ALMACENAMIENTO PARA SEMILLAS RECALCITRANTES

Criterio general. Almacenamiento con temperaturas cercanas a 0°C, alto contenido en humedad y bien aireadas, para periodos cortos de tiempo (invierno). Almacén próximo al lugar de la siembra para evitar recalentamientos durante el transporte. La semilla se puede mezclar con arena en recipientes con buena aireación a 0°C, ó directamente en sacos de polietileno sin cerrar herméticamente a esa misma tª.

<table>
<thead>
<tr>
<th>CONTENIDO EN HUMEDAD</th>
<th>T (°C)</th>
<th>AGREGANTE</th>
<th>LUGAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus suber</td>
<td>no < 30% humedad inicial</td>
<td>-1° 6 -2°</td>
<td>cámaras frigoríficas</td>
</tr>
<tr>
<td>Quercus ilex</td>
<td>no < 15% humedad inicial</td>
<td>arena o turba humedecida</td>
<td></td>
</tr>
<tr>
<td>Castanea</td>
<td>40%-45%</td>
<td>-1° 6 -2°</td>
<td>cámaras frigoríficas</td>
</tr>
</tbody>
</table>

* el número indica otro método posible de almacenamiento

1. **Almacenaje en seco y frío**: Temperatura entre 4 y 6°C y humedad generalmente inferior al 10%. El contenido de humedad de la semilla recomendado para este tipo de almacenaje varía según las especies. Para mantener este grado de humedad es necesario que la semilla se mantenga en recipientes de cierre hermético o bien en cámaras frigoríficas. Es el más usual para las especies de los géneros Abies, Acer, Pinus, etc.

2. **Almacenaje a la temperatura ambiente**: En ambiente fresco y sin cambios bruscos de temperatura. La semilla puede guardarse en sacos aunque es preferible en recipientes herméticos. Este tipo de al-
macenaje sólo es aconsejable para periodos de tiempo de uno o dos años. Se utiliza para las especies que debido a sus cubiertas duras o impermeables o por otras causas, mantienen su viabilidad durante varios años si se guardan en estas condiciones (especies de los géneros *Celtis, Juniperus*, etc.).

3. **Almacenaje en ambiente frío y húmedo**: Temperatura de 2 a 3°C y humedad mínima de 40%. Para conseguir estas condiciones las semillas se suelen mezclar con un volumen (2 o 3 veces su propio volumen) de arena, turba o cualquier otra sustancia porosa que previamente haya sido humedecida. Como orientación, cuando se usa arena se suelen echar de 15 a 18 litros de agua por cada 100 kilos de arena seca. Si el periodo de almacenaje es corto y el clima del lugar es húmedo este almacenaje puede realizarse en el exterior, en sitios bien drenados y ventilados y con una cobertura de paja, hojas o en zanjas. En climas cálidos se precisa de cámaras frigoríficas. En algunas especies recalcitrantes las semillas recién germinadas pueden conservar mejor la viabilidad almacenadas en ambiente frío y húmedo, que las semillas no germinadas. Así se ha comprobado que en lotes de semillas de *Quercus* spp. con germinación previa, no se habían producido portes significativos en el número de gérmenes vivos tras un año de almacenamiento en bolsas de polietileno. Es el sistema de almacenaje para las especies de los géneros *Quercus, Castanea, Junghians*, etc.

Se deduce la conveniencia de disponer de cámaras frigoríficas para almacenar las semillas, que pueden ser bien armarios frigoríficos corrientes, en los que los congeladores pueden alcanzar -4/-5°C, que sirven para pequeñas cantidades de semillas o en cámaras frigoríficas de gran tamaño.

4. **Almacenaje en vacío parcial**: Temperatura ligeramente superior a los 0°C y presión de 1 mm. Las semillas se mantienen en recipientes herméticos. Se emplea para las especies con semillas muy delicadas y de corta vida, como son las de los géneros *Populus, Salix*, etc. Este tipo de almacenaje sólo se utiliza con fines de investigación en laboratorios, ya que la propagación de estas especies con fines comerciales se realiza mediante estaquillas.

5. **Almacenaje dentro del propio fruto**: Se utiliza para periodos cortos de tiempo y para las especies que se conservan fácilmente a la temperatura ambiente dentro del propio fruto. Su mayor inconveniente es el gran volumen que se precisa para almacenar todos los frutos. Se utiliza para las especies de los géneros *Platanus, Cedrus*, etc.

2.6.4. **Tipos de recipientes para el almacenamiento**

El recipiente a utilizar en el almacenamiento de semillas debe permitir manejar y manipular fácilmente los lotes, aprovechar al máximo el espacio de almacenamiento, proteger las semillas contra los animales y las plagas, e impedir si es necesario, el intercambio de humedad y gases entre la atmósfera exterior y el interior del recipiente. Los distintos tipos de recipientes utilizados para el almacenaje de semillas de especies forestales cabe agruparlos en
función de la permeabilidad a la humedad y los gases de los diferentes materiales: materiales plenamente permeables a la humedad y los gases, materiales completamente impermeables y materiales resistentes a la humedad pero no impermeables totalmente (Willan, 1991; Gordon, 1993):

1. **Materiales plenamente permeables a la humedad y los gases**: Dentro de este grupo están los sacos de arpillera, bolsas de algodón y recipientes de papel o cartón blando o rígido. Ninguno de estos materiales ofrece una protección total contra los ataques de insectos y roedores, siendo completamente permeables al vapor de agua y otros gases. Su utilización para semillas ortodoxas sólo está indicada para períodos bastante cortos o almacenados con control de la temperatura y la humedad relativa. En el caso de almacenamiento húmedo de semillas recalcitrantes pueden emplearse sacos de arpillera a los que se moja periódicamente para evitar la desecación de la semilla.

2. **Materiales completamente impermeables**: Dentro de este grupo están los recipientes de aluminio o estaintio, los envases de vidrio, los recipientes rígidos de plástico y los envases de papel de aluminio laminado. El grado de protección contra la humedad viene dado además de por el material, por el tipo de cierre del recipiente (a rosca, con abrazaderas, sellado por calor, etc.). Este aspecto es fundamental para el almacenamiento a largo plazo. El tipo más recomendado son las latas metálicas y herméticas. No están recomendadas para semillas recalcitrantes o semillas ortodoxas con un alto contenido en humedad, que se deterioran con más rapidez en condiciones herméticas que al aire libre.

3. **Materiales resistentes, pero no impermeables totalmente**: Dentro de este grupo están las bolsas de polietileno y otros materiales plásticos y el papel de aluminio. Estos materiales son resistentes al paso de la humedad pero permiten, cuando son periodos largos, un intercambio de vapor de agua que tiende a equilibrar el interior con el exterior. El cerrado de las bolsas de polietileno puede realizarse mediante selladoras térmicas. No son convenientes para almacenamiento a largo plazo de semillas ortodoxas.

III. TRATAMIENTOS DE GERMINACIÓN DE LAS SEMILLAS FORESTALES

Un mecanismo de supervivencia de algunas especies vegetales es el carácter durmiente de las semillas. Se trata de una adaptación según la cual las semillas pueden retener su viabilidad durante prolongados períodos de tiempo, incluso si las condiciones de temperatura y humedad son favorables, de forma que no todas las semillas germinan al mismo tiempo, evitando el riesgo de que, por ejemplo, una sequía posterior acabe con todas las plántulas haciendo peligrar la permanencia de la especie en la zona. De este modo, de forma natural, las especies poseen un banco permanente de semillas en el suelo que tienen a garantizar su persistencia en condiciones viables.

El carácter durmiente de las semillas puede expresarse de dos formas: una es la durmición impuesta, en la que las semillas no germinan porque las condiciones ambientales no son favorables para ello. Se emplea para designar este fenómeno el término quiescencia. La otra forma es in-
trinsec a la propia semilla: se trata de una durmicion orgánica o innata, debido a la cual la semilla no germina aunque este puesta en condiciones ambientales tenidas por adecuadas para una germinación óptima, a está circunstancia nos referimos cuando se afirma que una semilla es durmiente o está en letargo.

3.1. Letargo
La maduración de las semillas incluye el desarrollo de los mecanismos internos que controlan el inicio de la germinación, de tal manera que ésta coincida con los periodos del año en que es más probable que se presenten las condiciones ambientales favorables para la supervivencia de las plantas. Ecológicamente, se piensa que los mecanismos de control de la germinación, se han originado como mecanismos para la supervivencia en la naturaleza. Los requerimientos específicos de germinación están relacionados con las condiciones ambientales en que las especies vegetales han evolucionado. Puede hablarse de dos tipos de letargo:

Letargo primario: Cuando al tiempo de la maduración existen dentro de la semilla condiciones que impiden la germinación.

Letargo secundario: Una vez que la semilla ha pasado por unos periodos de postmaduración, puede de nuevo volver al estado de letargo si la semilla que ha absorbido agua es expuesta a condiciones especialmente desfavorables.

El letargo de las semillas se produce por diversas causas fisiológicas (Hartman y Kester, 1975):

Grupo I.- Semillas en las que la regulación ocurre en las cubiertas externas no vivientes pero en las cuales el embrión mismo es quiescente.

A. Cubierta de la semilla dura e impermeable a la humedad (letargo debido a la presencia física de la cubierta). Las semillas no llegan a absorber agua mientras la cubierta no sea modificada por métodos naturales (alteración por acción de los ácidos estomacales) o artificiales (baños ácidos).

B. Cubierta dura de la semilla resistente a la expansión del embrión. Es probable que sean pocas las semillas que no germinen sólo por esa causa, pero puede ser un factor para retardar la germinación de semillas con cubiertas duras, como las nueces, los "huesos" como las acebuchinas, o con pericarpios endurecidos como el maíz (C. acutus spp.). En este tipo de semillas el tratamiento pregerminativo consiste en la rotura por diversos métodos de estas cubiertas endurecidas.

C. Semillas cuya cubierta contiene inhibidores químicos. En muchas plantas se producen sustancias químicas específicas que impiden la germinación de las semillas. Por lo común, estas sustancias se encuentran tanto en el pericarpio como en el jugo de los frutos carnosos o en las cubiertas secas que son retenidas por las semillas de algunas plantas. También puede ocurrir que existan inhibidores además en las cubiertas, en el endospermo e incluido en el embrión de las semillas, pudiendo así mismo, intervenir en algunas otras categorías de letargo. Muchas plantas tropicales y algunas de áreas deserticas producen inhibidores específicos. Estos son reducidos o eliminados por lixiviación natural o son absorbidos por el suelo.
Grupo II.- Semillas con embriones morfológicamente poco desarrollados (rudimentarios). El tamaño del embrión varía desde aquellos muy pequeños hasta los que llenan por completo las cubiertas de la semilla. Su proporción respecto a los tejidos de almacenamiento (endospermo y perispermo), también varía. Los embriones que en el tiempo de maduración del fruto son muy pequeños deben aumentar de tamaño antes de que efectúen la germinación. Esta situación es común entre especies de plantas tropicales, por ejemplo palmeras u orquídeas, pero algo menos común en plantas de las zonas templadas, por ejemplo el fresno.

Grupo III.- Semillas con letargo interno (endógeno).- La germinación es regulada por los tejidos internos de la semilla, esto es, el embrión, el endospermo circundante y la capa tegumento interna o ambas. Las cubiertas de la semilla desempeñan un papel en todas las subclases de este grupo, resultando las diferencias entre ellas la variación de la profundidad del letargo dentro del embrión. Se puede encontrar básicamente:

A. Letargo fisiológicamente superficial: este tipo se encuentra en la mayoría de las semillas recién cosechadas, y desaparece en un periodo de días o meses con el almacenamiento en seco. La regulación parece provenir de la actividad fisiológica de la cubierta interna de la semilla o de las capas del endospermo, perneciendo el embrión mismo relativamente quiescente. Es muy común que esas semillas sean livianas y sensibles a la luz y a las temperaturas, respondiendo a la abrasión mecánica, así como a diversos tipos de sustancias químicas tales como el nitrato de potasio, el ácido giberelico y la kinetina. Este tipo de letargo es común en plantas herbáceas, tanto cultivadas como silvestres y es probable que se presente en la mayoría de las semillas recién cosechadas.

B. Letargo fisiológicamente intermedio: el enfriamiento húmedo estimula la germinación, pero puede no ser fundamental para superar el letargo. Este tipo de letargo se encuentra en las semillas de diversas coníferas y de otras plantas leñosas. La regulación por la cubierta de las semillas resulta de mayor significación que las condiciones dentro del embrión.

C. Letargo fisiológicamente profundo: Este tipo de letargo desaparece con el enfriamiento en húmedo prolongado. La regulación se encuentra en forma predominante en el embrión, aunque parece que intervienen las cubiertas de la semilla. Esta clase es común en semillas de árboles y arbustos, así como en plantas herbáceas de la zona templada y en climas más fríos, donde las semillas pasan el invierno en el terreno y germinan en primavera. Dentro de este grupo se presentan variaciones del tamaño del embrión respecto al endospermo que van de pequeño a intermedio, y hasta de tamaño completo.

Se conocen otros dos subgrupos: a) semillas que para el crecimiento de la raíz y del hipocotilo requieren de un periodo cálido previo al perdido frío y húmedo, y por otro lado b) semillas que para el crecimiento de la raíz requieren un periodo frío seguido de un periodo cálido, y después un segundo periodo de frío para estimular la germinación (diversas perennes nativas de las zonas templadas).

Grupo IV. Letargo doble o combinado. Se presenta letargo tanto en las cubiertas
de la semilla (externo), como en el embrión (interno), y los tratamientos requeridos deben darse en secuencias. Esta clase comprende semillas de varias especies de árboles y arbustos leñosos; siendo de las más difíciles de manejar por el propagador debido a lo largo del periodo previo a la germinación, que a veces llega hasta los dos años.

3.2. Tratamientos pregerminativos.
Las semillas pueden someterse a varios tratamientos o manipulaciones con objeto de mejorar su comportamiento respecto a la germinación o siembra. Estos pueden dividirse en:

1. Tratamiento cuya finalidad es mejorar la nascencia de la semilla a través de un aumento de su facultada germinativa, velocidad o regulación de la germinación.

2. Tratamiento cuya finalidad es la de mejorar la siembra propiamente dicha, permitiendo la utilización de sembradoras.

3. Tratamiento cuya finalidad es la de mejorar la conservación de la viabilidad de la semilla.

En el manejo de semilla para la producción de planta en vivero, o para la repoblación forestal por siembra directa interesa que la germinación del lote empleado, independientemente de su potencia germinativa, se produzca de la forma más homogénea posible, por lo que es necesario aplicar tratamientos que estimulen la germinación o que traten de superar el letargo o dormición. Los tipos de tratamientos son variables según los tres tipos de letargos descritos:

A) El letargo exógeno físico, se supera mediante:

1. Tratamiento con ácidos: consiste en escarificar las cubiertas median-

2. Tratamiento por inmersión en agua caliente: Infusión: Consiste en sumergir la semilla en agua a temperatura entre 75 y 100 ºC, dejando enfriar durante 12 h. Esca
dado: Consiste en hervir las semillas, a temperatura próxima a 100 ºC, y posteriormente dejar las semillas hasta enfriamiento total.

3. Tratamiento por inmersión en agua fría: Se sumergen las semillas en agua a temperatura ambiente entre 24 y 48 horas para superar la pereza a germinar, siendo esta una práctica muy generalizada sobre todo en semillas que se encuentran desecadas. Durante este procedimiento deben desecharse las semillas que floten, generalmente vanas.

4. Tratamiento de escarificación mecánica: Se procede al lijado con abrasivos, en maquinas adecuadas (escarificadores), variando la dureza del abrasivo y el tiempo del tratamiento.

B) Para vencer el letargo exógeno químico se utilizan:

6. Eliminación del pericarpio.- Con-
siste en la eliminación del pericarpio, normalmente mediante maceración en el proceso de extracción y limpieza de la semilla. En algunos casos es necesario un lavado con alguna sustancia (ej. sosa), para lograr una limpieza completa (ej. Olea).

7. Lavado intenso o lixiviación: Los inhibidores se remueven remojando las semillas en agua corriente o cambiándoles el agua con frecuencia. La duración varía entre 12 y 24 horas.

C) Para vencer el letargo endógeno se recurre a:

8. Estratificación en frío: consiste en mezclar la semilla con un material inerte (arena o turba) humedecido y conservarla en cámaras frigoríficas a temperaturas entre 2 y 4 °C durante 60 o 90 días. Se basa en el hecho de que la combinación de un

nivel de humedad elevado y una temperatura baja, ponen en marcha una serie de cambios bioquímicos que producen transformaciones en las sustancias nutritivas complejas para convertirlas en otras más sencillas que pueden ser asimiladas por el embrión. Esta recomendado para romper la latencia fisiológica. En muchas especies pueden obtenerse resultados parecidos a los de la estratificación almacenando las semillas húmedas en bolsas de polietileno.

9. Estratificación caliente seguida de estratificación en frío: es un procedimiento similar al anterior consistente en una conservación durante 1 a 3 meses con temperaturas de 30°C por el día y 20°C por la noche, para pasar a continuación durante un periodo de tiempo similar a temperaturas de 2 a 4°C. Es el utilizado para Fraxinus excelsior.

<table>
<thead>
<tr>
<th>TRATAMIENTO PREGERMINATIVO</th>
<th>VENTAJAS</th>
<th>INCONVENIENTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escarificado químico</td>
<td>• Muy efectivo para muchas especies
• No se precisa equipo especial
• Costo razonable
• Se puede recuperar la mayor parte del ácido
• Permite y facilita un almacenamiento temporal
• Elimina los posibles patógenos existentes en la testa</td>
<td>• Determinación del tiempo de tratamiento y control de las variables
• Peligrosidad</td>
</tr>
</tbody>
</table>

| Inmersión en agua caliente | • Muy efectivo para muchas especies
• No se precisa equipo especial
• Costo razonable
• Aplicación sencilla y poco peligrosa. | • En algunas especies se rebladecen y apelmazan las semillas
• Resultados muy variados
• Dificultades en la siembra |
IV. ANÁLISIS DE SEMILLAS

4.1. Introducción

En distintos momentos del manejo de las semillas se hace necesario la realización de análisis con objeto de determinar y definir ciertas operaciones. Así, antes de la recolección será necesario, en ocasiones, realizar unos análisis para comprobar el grado de madurez de la semilla, al objeto de definir el momento adecuado de la recolección y estimar la cosecha posible. Durante el manejo, será necesario la determinación, otras veces, del contenido de humedad al objeto de definir la posibilidad y condición del almacenamiento. Finalmente para su comercialización o uso posterior, es decir antes de la siembra, será necesario la determinación de la pureza, el peso y la facultad germinativa.

Para conseguir que estos análisis ofrezcan unos datos comparables y reproducibles, es necesario que los mismos estén normalizados. En la actualidad están vigentes dos reglas internacionales de análisis, la AOSA (Association of Official Seed Analyst), que se utiliza en USA y Canadá, y la ISTA (International Seed Testing Association), que es la se viene utilizando en Europa. Las normas ISTA están en continua revisión (Gordon et al., 1991). Los objetivos que se pretenden con la elaboración de unas normas para la realización de estos ensayos son (Willan, 1991):

<table>
<thead>
<tr>
<th>TRATAMIENTO PREGERMINATIVO</th>
<th>VENTAJAS</th>
<th>INCONVENIENTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escarificación mecánica</td>
<td>• Muy efectivo para muchas especies</td>
<td>• Equipos especiales para grandes lotes de semillas</td>
</tr>
<tr>
<td></td>
<td>• No existe peligro de dañar las semillas por exceso de calor</td>
<td>• Semillas libres de resinas</td>
</tr>
<tr>
<td></td>
<td>• No es peligroso.</td>
<td>• Mayor sensibilidad al ataque de patógenos</td>
</tr>
<tr>
<td></td>
<td>• El equipo es costoso, pero el tratamiento es barato</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• La semilla queda seca después del tratamiento</td>
<td></td>
</tr>
</tbody>
</table>

1. Establecer métodos mediante los que pueda determinarse con precisión la calidad de las muestras de semilla.

2. Disponer de métodos para que los analistas de semillas de diferentes países puedan tener unos resultados comparables.

3. Relacionar, en la mayor medida posible, los resultados de laboratorio con los que se producen en el campo.

4. Completar los ensayos en el mínimo tiempo posible.

5. Realizar los ensayos de la manera más económica.

En estas reglas se regulara la operatividad que se aplica para la realización de los diferentes ensayos que contempla. Así, se describe como seleccionar la muestra, o el proceso operativo que debe aplicarse. Los análisis que se describen son: análisis de pureza, ensayo de germinación, determinación del número de semillas por unidad de peso, ensayo para determinar la viabilidad, ensayo sanitario, verificación de la especie o cultivar, determinación del contenido de agua. La práctica diaria en el manejo de estas normas pone en evidencia dos aspectos de la misma, a saber: que
no están recogidas todas las especies forestales, ya que en ellas sólo están las especies que tienen una mayor demanda en su comercialización; y que a veces es preciso realizar modificaciones sobre la metodología descrita al objeto de mejorar los resultados de la analítica.

En la práctica, para el repoblador, la finalidad más importante de los ensayos de semillas es determinar el número de plantas sanas y vigorosas que se pueden producir a partir de un determinado lote de semillas.

Antes de proceder al desarrollo de los procedimientos analíticos, conviene definir, como objetivo esencial del proceso de análisis, qué se entiende por *semilla de buena calidad* (Hartman y Kester, 1975): es aquella que reproduce con fidelidad las características genéticas de la especie o cultivar, tiene capacidad para una germinación elevada, está libre de enfermedades e insectos y está exenta de mezclas con otras semillas y de material extraño o inerte.

A partir de esta definición, el análisis de semilla, pretende determinar y cuantificar en qué medida un lote determinado de semillas se adapta a este concepto de calidad, y permitir por tanto la adecuada interpretación de los resultados en las prácticas de cultivo.

4.2. Muestreo

Cuando va a procederse al análisis de un lote de semillas debe garantizarse que la muestra tomada sea representativa del total, lo cual se consigue mediante un muestreo adecuado. En cualquier caso debe garantizarse que previamente se ha mantenido la identidad de los lotes de semillas para evitar confusiones o mezclas de partidas diferentes. En el proceso de muestreo se entiende por:

- **Lote de semillas**: Toda cantidad de semillas de árboles (especies forestales) hasta un máximo de 5000 Kg., si se trata de semillas del tamaño de *Fagus* spp. o mayores, y 1000 Kg. si se trata de semillas más pequeñas que *Fagus* spp.

- **Muestra elemental**: Cada una de las muestras que se toman del contenido de todos o parte de los envases que componen un lote de semillas.

- **Muestra global**: La compone el conjunto de las muestras elementales reunidas, y adecuadamente homogeneizadas, en una muestra única.

- **Muestra a enviar al laboratorio**: Corresponde a la cantidad de semilla que por reducción de la muestra global debe remitirse al Centro de Análisis para su tratamiento.

- **Muestra de análisis**: Se obtiene mediante una reducción de la muestra enviada, y es a partir de la cual se realizan uno o varios de los ensayos que comprende el análisis.

Debe garantizarse en todo el proceso de muestreo que las partidas, o muestras parciales, sean suficientemente homogéneas. Para ello se recurre a un procedimiento de muestreo que de forma sistemática toma semillas de todos o un número determinado de envases. Estos muestreos pueden realizarse básicamente mediante tres procedimientos: sondas, muestreo en el transcurso de las operaciones de limpieza o muestreo a mano.

El conjunto de muestras elementales se coloca en un contenedor para formar la muestra global, lo cual debe reducirse para formar la muestra a enviar al laboratorio. Esta primera partición suele hacerse por procedimientos bastante sencillos mediante un divisor mecánico simple o mediante
partición manual, hasta lograr el tamaño de muestra deseado. Lo más importante es lograr una buena homogeneización de la muestra compuesta, para evitar desviaciones en los análisis.

La muestra de análisis se obtiene mediante una segunda participación de la muestra enviada, hasta alcanzar un peso establecido. Esta división, que ya se realiza en el laboratorio, se hace de forma más cuidadosa recurriendo a divisores mecánicos o métodos manuales. Independientemente del procedimiento de obtención de la muestra de análisis, el tamaño final debe ser el adecuado, partiendo de la norma general que la muestra contenga al menos 2500 semillas para todas las especies excepto para las de gran tamaño que será de 500 semillas. Si se va a proceder al análisis de contenido de humedad la muestra debe incrementarse en 10 gr.

4.3. Análisis de semillas
4.3.1. Comprobación de la especie

En el procedimiento normal de suministro de semillas al laboratorio o centro de semillas debe existir la garantía de que la se-

| Tabla 11. Número de muestras elementales en función de la cantidad de semilla recibida |
|--|---------------------------------|---------------------------------|
| **SEMILLA A GRANEL** | **NÚMERO DE MUESTRAS ELEMENTALES** |
| Hasta 500 Kg. | 5 muestras elementales |
| | 3 muestras elementales (L<50 Kg.) |
| 501 a 3000 Kg. | 1 muestra cada 300 Kg. y al menos 5 muestras elementales |
| 3001 a 20000 Kg. | 1 muestra cada 500 Kg. y por lo menos 10 muestras elementales |
| **SEMILLA EN ENVASE** | **NÚMERO DE MUESTRAS ELEMENTALES** |
| Hasta 5 envases | 1 muestra por envase y por lo menos 5 muestras elementales |
| De 6 a 30 envases | 1 muestra cada 3 envases y por lo menos 5 muestras elementales |
| 31 envases o más | 1 muestra cada 5 envases y por lo menos 10 muestras elementales |

| Tabla 12. Tamaños mínimos recomendados para la realización de pureza para semillas de algunas especies de interés forestal (Adaptado de Serrada, 1993) |
|--|----------------|----------------|
| **ESPECIE** | **MUESTRA (GR.)** | **ESPECIE** | **MUESTRA (GR.)** |
| Abies pinsapo | 100 | Juglans spp. | >300 s. |
| Acer negundo | 100 | *Pinus halepensis* | 50 |
| Acer platanoides | 200 | *Pinus nigra* | 25 |
| Acer pseudoplatanus | 100 | *Pinus pinaster* | 100 |
| Alnus glutinosa | 3 | *Pinus pinea* | 500 |
| Betula pubescens | 1 | *Pinus sylvestris* | 10 |
| Castanea sativa | >300 s. | *Populus spp.* | 1 |
| Cupressus sempervirens | 10 | *Quercus spp.* | >500 s. |
| Fraxinus angustifolia | 100 | *Taxus baccata* | 100 |
| Ulmus spp. | 25 | | |
milla recibida corresponde a la especie y procedencia deseada. Para ello debe procederse cuidadosamente al etiquetado tanto de los lotes, como de las muestras extraídas conservando los números de registro y las etiquetas que permitan la verificación necesaria. No obstante, por distintas circunstancias puede producirse la pérdida de esta información, o considerarse conveniente una comprobación de la autenticidad de la especie indicada. Esto puede hacerse mediante:

1) Comprobación de la especie de los árboles padre mediante inspección en el terreno o contraste en herbario.

2) Identificación de las semillas mediante claves analíticas, atlas descriptivos o colecciones. En general las características de identificación se basan en la topografía externa e interna de las semillas, y en algunos casos en análisis químicos. En vivejos centrales puede disponerse de muestras de las especies más utilizadas.

3) Identificación de brinzales en el caso de dificultades especiales, híbridos, etc. Es un procedimiento lento, y a veces complejo, pero que puede requerirse en algunos casos.

Si la identificación de la especie ya puede resultar difícil en algunos casos, la comprobación del origen puede ser prácticamente imposible. La garantía dependerá del grado de confianza del recolector; así como de la buena identificación de la zona de recogida.

4.3.2. Análisis de pureza

Los lotes de semillas, incluso después de un proceso cuidadoso de limpieza pueden contener impurezas tales como restos de hojas y frutos, alas, materiales extraños, etc., cuya separación es difícil o costosa. La pureza establece la composición en peso de los constituyentes del lote de semillas expresada en % (coeficiente de pureza). Para ello se establecen las siguientes categorías de componentes posibles en una muestra de semillas:

A. Semillas puras.- Comprende todas las semillas pertenecientes a una variedad cualquiera de la especie indicada.

B. Semillas de otras especies forestales

C. Semillas de otras especies de plantas

(Estas dos últimas categorías se agrupan salvo que haya un interés especial en conocer la fuente de contaminación)

D. Materiales inertes.

4.3.3. Análisis de germinación

El ensayo de germinación representa uno de los análisis de mayor aplicación práctica, ya que permite conocer el número máximo de semillas que están en condiciones de producir plantas viables. Cuando se realizan los ensayos de germinación en un laboratorio es evidente que los resultados que se obtienen no pueden aplicarse directamente en la práctica de producción de planta forestal, ya que es imposible controlar totalmente las condiciones ambientales donde va a desarrollarse la planta. Sin embargo, el realizar estos ensayos en condiciones que es posible reproducir en otras condiciones suministra una información fácil de interpretar, y de adaptar a las condiciones particulares de cada vivero.
Se entiende por **germinación** la emergencia y desarrollo, a partir del embrión de la semilla, de aquellos órganos esenciales que, para la especie de semillas consideradas, prueban su aptitud para producir **plantas normales**, bajo condiciones favorables de suelo.

Se entiende por **plántulas anormales**, aquellas que no se manifiestan capaces de seguir su crecimiento y de producir plantas normales cuando se desarrollan en una tierra (substrato) de buena calidad y en condiciones favorables de humedad, temperatura y luz.

Tabla 13. Normas sobre ensayos de germinación. S = arena o tierra; TP = sobre papel; JA = Jacobsen; I = días para primer conteo; U = días para último conteo (Adaptado de Serrada, 1993).

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>SUSTRATO</th>
<th>T(°C)</th>
<th>I</th>
<th>U</th>
<th>TRATAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies spp.</td>
<td>S, TP, JA</td>
<td>20-30</td>
<td>7</td>
<td>28</td>
<td>Enfriar 21 días a 3 o 5°C</td>
</tr>
<tr>
<td>Acer spp.</td>
<td>TP, JA, S</td>
<td>20</td>
<td>7</td>
<td>28</td>
<td>Enfriar 2 meses a 1/5°C</td>
</tr>
<tr>
<td>Alnus spp.</td>
<td>TP, JA</td>
<td>20-30</td>
<td>7</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Betula spp.</td>
<td>TP, JA</td>
<td>20-30</td>
<td>7</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Castanea sativa</td>
<td>S</td>
<td>20-30</td>
<td>7</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Cupressus sempervirens</td>
<td>TP, JA</td>
<td>20-30</td>
<td>7</td>
<td>28</td>
<td>Estratificado húmedo 6 meses</td>
</tr>
<tr>
<td>Fraxinus angustifolia</td>
<td>S, TP</td>
<td>20-30</td>
<td>12</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td>TP, JA, S</td>
<td>20</td>
<td>7</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Pinus nigra</td>
<td>TP, JA</td>
<td>20-30</td>
<td>7</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>TP, JA</td>
<td>20</td>
<td>7</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Pinus pinea</td>
<td>S</td>
<td>20</td>
<td>7</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>TP, JA</td>
<td>20-30</td>
<td>7</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Populus spp.</td>
<td>TP, JA</td>
<td>20-30</td>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Quercus spp.</td>
<td>S</td>
<td>20-30</td>
<td>7</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Saffix spp.</td>
<td>TP, JA</td>
<td>20-30</td>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ulmus spp.</td>
<td>TP, JA</td>
<td>20-30</td>
<td>7</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

La **potencia germinativa** (PG), es la proporción expresado en % de semillas que dan lugar a un germen normal respecto del total de semillas de la muestra operativa en un plazo de tiempo determinado para cada especie. Un concepto asociado al anterior es la **energía germinativa**, expresada como porcentaje de semillas de una muestra, las cuales germinan en un periodo (periodo de energía) determinado (7 ó 14 días) o porcentaje de semillas de una muestra las cuales germinan hasta el momento de máxima germinación, entendido como la medición en la cual se alcanza un mayor porcentaje de semilla germinada. Este punto puede ser determinado en un diagrama, en donde en abscisas se sitúan los días de germinación y en ordenadas el porcentaje de germinación acumulada. Viene determinado por el punto de tangencia a la curva de germinación con la recta que pasa por el origen.

Dada la dificultad que presentan algunas especies para realizar los ensayos de germinación por los medios convencionales, se han desarrollado métodos indirectos que permiten hacerlo de una forma rápida y eficaz. Estos métodos se utilizan cuando las semillas de una especie germi-
nan muy lentamente o requieren de trata-
mientos pregerminativos difíciles, apare-
ciendo en los ensayos un número muy ele-
vado de semillas frescas no germinadas.

Existen diferentes métodos tales como en-
sayos al corte, pruebas con embrión sepa-
rado, etc.; pero el más frecuente es el en-
sayo topográfico con sal de tetrazolio (TT).
El ensayo topográfico, aunque es un mé-
todo que da buenos resultados, es difícil
de aplicar de forma generalizada o para un
número elevado de muestras, teniendo
condiciones particulares para cada uno de
los géneros (ISTA, 1976). Este método, por
las condiciones particulares de aplicación,
sólo se utiliza en laboratorios especializa-
dos de semillas.

4.3.4. Número de semillas por unidad
de peso

Dentro de una misma especie, por la pro-
pia variedad genética y estacional, hay un
rango de tamaño y peso de semillas. Esto
cuando se interprete como un factor de
calidad de la propia semilla, ya que en ge-
ergéral semillas más grandes tienden a te-
nen más sustancias de reserva y por tanto
más posibilidades de germinar y dar lugar
a plantas de buena calidad. Por otro lado
es un valor a la hora de estimar cantidad
de semilla necesaria para las siembras.

4.3.5. Determinación de la humedad

El contenido de humedad de un lote de
semillas expresado en %, lo que tiene im-
portancia fundamentalmente en el alma-
cenamiento, sirviendo para determinar las
variaciones (prosecado o humidificación)
necesaria.

4.3.6. Ensayo sanitario de semillas

La producción de planta de calidad requie-
re utilizar semillas que presenten unas con-
diciones sanitarias adecuadas, evitando que
estas sean vectores de plagas o enferme-
dades en los viveros, e indirectamente a
las plantaciones forestales. Los ensayos
sanitarios no son una práctica frecuente en
los análisis, realizándose exclusivamente
por requerimientos del solicitante o por
organismos oficiales en el movimiento na-
cional o internacional de semillas. Este tipo
de ensayos requiere normalmente la cola-
boración de un patólogo forestal para po-
der hacer un diagnóstico correcto. Muchas
de estas patologías pueden manifestarse
después en el vivero, en forma de hongos
patógenos, insectos o alteraciones fisiológicas. Estos ensayos se hacen mediante
examen de semillas secas, ó residuos del
lavado de semillas.