
1^{er} Inventario de sumideros de CO₂ en Andalucía

Edita:

Consejería de Medio Ambiente. Junta de Andalucía. Dirección General de Gestión del Medio Natural.

Coordinador:

José María Oliet Palá.

Autores:

Rafael Agudo Romero, Marta Muñoz Martínez, Óscar del Pino del Castillo.

Fotografía:

Juan Manuel Delgado Marzo; Antonio Camoyán Pérez, Rafael Agudo Romero, Demarcación de Costas de Cádiz.

Diseño, Maquetación y Producción Gráfica:

Imagen & Textos

Depósito Legal: SE-4311-07

ISBN: 978-84-96776-37-1

De acuerdo con los compromisos de la Consejería de Medio Ambiente en materia de cambio climático se organizaron en Córdoba las "I Jornadas Técnicas sobre el Cambio Climático: Sumideros de ${\rm CO}_2$ ", Noviembre de 2005, y allí se elaboró este primer inventario de Sumideros de ${\rm CO}_2$ en Andalucía.

ÍNDICE

PR	ÓLO	GO		6			
1.	AN	ΓECED	ENTES	8			
2.	METODOLOGÍA Y RESULTADOS						
	2.1	Invent	ario de captaciones de CO ₂	15			
		2.1.1	Definición de las categorías de uso del terreno	16			
		2.1.2	Estimación de superficies	17			
		2.1.3	Estimación de emisiones y captaciones de CO ₂	21			
		2.1.4	Terrenos forestales	26			
		2.1.5	Terrenos agrícolas	50			
		2.1.6	Pastizales	63			
		2.1.7	Humedales	72			
		2.1.8	Terrenos Urbanos	76			
		2.1.9	Otros Terrenos	80			
	2.2 Resultados de la Metodología GPG LULUCF						
		2.2.1	Cambios anuales totales en la biomasa y suelos	84			
		2.2.2	Cálculo de los cambios anuales de carbono.	86			
		2.2.3	Carbono acumulado en la biomasa viva	89			
		2.2.4	Evolucion temporal del carbono en la biomasa viva	89			
3.	CON	NCLUS	IONES	92			
4.	OBS	SERVAC	CIONES Y NECESIDADES	100			
5.	ANI	EXOS		106			
	Ane	xo I: Da	tos del IFN2	108			
			actores de ajuste para el cálculo del cambio de carbono en suelos	112			
			Cuantificación del CO ₂ fijado por las principales especies forestales en Andalucía	118			
Bil	oliog	rafía		153			
ÍN	DICE	DE TA	BLAS, FIGURAS y FUNCIONES	158			

RÓLOGO

Desde el inicio del periodo cuaternario hace unos dos millones de años, el Planeta ha sufrido diversos ciclos alternantes de periodos glaciares y otros periodos climáticamente más benignos (como el que vivimos en la época actual) en que además se intercalan otros ciclos más cortos de frío y calor.

La tendencia, desde hace unos siete mil años, ha sido la de un enfriamiento global del planeta, lo que nos debería de estar conduciendo hacia una nueva era glacial. Pero esta tendencia se interrumpió a mediados del siglo XIX, sustituida por un nuevo proceso de calentamiento que persiste, con ligeras oscilaciones, acelerándose incluso desde la década de los años sesenta.

A pesar de las muchas variables que influyen sobre el balance energético del sistema climático (cambios en la cantidad de aerosoles en la atmósfera, cambios en la radiación solar y en las propiedades de la superficie terrestre), el mecanismo fundamental que explica el calentamiento terrestre es el llamado efecto invernadero, consistente en la acumulación de calor en las capas bajas de la atmósfera, como consecuencia de la intervención de ciertos gases, cuya peculiaridad es que son casi transparentes para la radiación de onda corta que llega del sol, pero opacos para la radiación de onda larga emitida desde la Tierra.

Los gases que provocan el efecto invernadero (GEI) existen de forma natural en la atmósfera, siendo el dióxido de carbono y el vapor de agua los más representativos, ya que posibilitan la vida en el planeta al elevar la temperatura hasta niveles óptimos para su existencia. El problema surge cuando aumentan significativamente. El incremento de su concentración en la atmósfera da como resultado una mayor captación de radiación infrarroja, que vuelve a ser emitida a la tierra con el consiguiente aumento de las temperaturas sobre la superficie, lo que conlleva un calentamiento global.

La Convención Marco de las Naciones Unidas sobre el Cambio Climático (UNFCCC), abierta a firma en Río de Janeiro en 1992, recogió el reconocimiento generalizado de que el cambio climático puede llegar a representar una de las principales amenazas para el medio ambiente. El objetivo fundamental planteado en dicha Convención fue la estabilización de las concentraciones de los gases efecto invernadero en la atmósfera a nivel apropiado para prevenir un grado peligroso de interferencia antropogénica con el sistema climático. En ella se instaba también a todas las partes a que se comprometiesen a elaborar, actualizar periódicamente, publicar y poner a disposición de la Conferencia de las Partes sus inventarios nacionales de emisiones antropogénicas, clasificadas por fuentes, y de las remociones, clasificadas como sumideros y a emplear metodologías comparables para los inventarios de las emisiones y remociones de los gases efecto invernadero, que se someterán a la Conferencia de Partes.

El Protocolo de Kioto (1997) establece unos compromisos cuantificados de reducción de emisiones, en total un 5% por debajo de los niveles de 1990 para el periodo 2008-2012.

La Unión Europea asumió el compromiso de reducir en un 8% las emisiones de los seis gases invernadero considerados en el Protocolo de Kyoto (dióxido de carbono (CO_2) , metano (CH_4) , óxido nitroso (N_2O) , carburos hidrofluorados (HFC), carburos perfluorados (PFC), y hexafluoruro de azufre (SF₆) respecto al año 1990 (año de referencia) en el horizonte temporal 2008-2012, lo cual quedó refrendado por la Decisión 2002/358/CE de aprobación del Protocolo.

En el Consejo Europeo de junio de 1998 se llegó a un acuerdo político sobre el reparto de carga entre los estados miembros concretándose el compromiso de España en la posibilidad de crecimiento de emisiones hasta un máximo de un 15% respecto al año de referencia.

El Protocolo de Kioto permite a los países firmantes que se beneficien de los llamados mecanismos flexibles para conseguir la reducción (comercio de emisiones, mecanismos de desarrollo limpio e implementación conjunta), así como contabilizar el carbono absorbido por los sumideros (bosques y tierras de cultivo). En sus artículos 3.3 y 3.4 expresa la posibilidad de utilizar los bosques como sumideros de carbono mediante varias acciones: incremento de la superficie forestal a través de reforestaciones y forestaciones, conservación y mejora de la capacidad de captación de CO₂ de los sistemas forestales a través de actuaciones selvícolas.

Existen dos vías para reducir las emisiones netas de CO_2 , y así frenar el cambio climático, son la disminución de emisiones y el aumento de la fijación de CO_2 a corto y medio plazo. En este sentido, los bosques juegan un papel fundamental por su capacidad de fijar el carbono del CO_2 atmosférico en biomasa viva: actúan de sumidero de carbono. Pero los bosques no tienen la capacidad de almacenar todo el carbono que se emite, además este secuestro es temporal, el carbono sigue un ciclo y al final vuelve a la atmósfera por descomposición, quema, etc. por lo que la utilización de los bosques como sumideros para la mitigación del cambio climático es una manera de ganar tiempo, se mantiene fijado el carbono mientras se buscan estrategias para reducir las emisiones, por ejemplo el desarrollo de las energías renovables, entre las que se encuentra la biomasa.

La Junta de Andalucía ha expresado su voluntad de contribuir al cumplimiento de los compromisos del Estado español en materia del Cambio Climático, adoptando consecuentemente una Estrategia Andaluza ante el cambio Climático (Acuerdo, de 3 de septiembre de 2002, del Consejo de Gobierno de la Junta de Andalucía BOJA nº 113 del 26 de septiembre de 2002).

De acuerdo a estos compromisos La Consejería de Medio Ambiente de la Junta de Andalucía organizó la "I Jornada Técnica sobre Cambio Climático: Sumideros de $\mathrm{CO_2}$ " celebrada en Noviembre del 2005 en Córdoba. Así como la elaboración de este Primer Inventario de Sumideros de $\mathrm{CO_2}$ de Andalucía.

José Guirado Romero

Director General de Gestión del Medio Natural. Consejería de Medio Ambiente. Junta de Andalucía.

.. PRÓLOGO 7

E

l IPCC ha elaborado varios documentos en los que se establecen las directrices para la elaboración de los inventarios nacionales de gases efecto invernadero¹. Se consideran los siguientes sectores para la elaboración de los inventarios nacionales de gases de efecto invernadero (GEI):

- 1. Energía
- 2. Procesos industriales
- 3. Utilización de disolventes y otros productos
- 4. Agricultura
- 5. Cambio del uso de la tierra y selvicultura
- 6. Residuos

¹ Revised 1996 Guidelines for International Greenhouse Gas Inventories; Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Good Practice Report) and Good Practice Guidance for LULUCF 2003

El sector 5 "Cambio de uso de la tierra y selvicultura" se diferencia de los otros en que es el único que contiene tanto fuentes como sumideros de CO₂. La CMCC define sumidero como cualquier proceso, actividad o mecanismo que elimine de la atmósfera un gas efecto invernadero, cualquier proceso, actividad o mecanismo que elimine de la atmósfera un gas efecto invernadero, un aerosol o un precursor de éstos. Se considera uso de la tierra al conjunto de métodos, actividades e insumos aplicados en un determinado tipo de cubierta del suelo (una serie de acciones humanas). Los cambios de uso son aquellos cambios en el uso o la gestión de las tierras por los seres humanos, que pueden provocar cambios en la cubierta del suelo. Estos cambios pueden influir en el albedo, la evapotranspiración, las fuentes y los sumideros de gases efecto invernadero, o en otras propiedades del sistema climático, y en consecuencia tener un impacto en el clima a nivel local o mundial.

La Guía de Buenas Prácticas para el sector, Land Use and Land Use Change and Forestry, en adelante GPG LULUCF establece técnicas para estimar, medir, realizar seguimientos y presentar informes sobre cambios en el stock de carbono y emisiones de gases de efecto invernadero para estas actividades bajo los Artículos 3.3, 3.4, 6 y 12 del Protocolo de Kioto. El objetivo principal de esta guía es permitir desarrollar inventarios que sean transparentes, documentados, consistentes temporalmente, completos, comparables, de incertidumbres evaluadas, sujetos a control y garantía de la calidad y eficientes en el uso de los recursos. La GPG LULUCF es además consistente con las otras guías de buenas prácticas existentes para el resto de sectores.

La CMNUCC, define sumidero como cualquier proceso, actividad o mecanismo que elimine de la atmósfera un gas efecto invernadero, un aerosol o un precursor de éstos.

2. ANTECEDENTES 11

E

l presente documento recoge el inventario de captaciones de CO₂ en los reservorios de Andalucía, entendiendo como reservorio todo componente del sistema climático, excluida la atmósfera, que tiene la capacidad de almacenar, y acumular o liberar un gas efecto invernadero.

En este trabajo
se contabiliza
el cambio anual
de carbono en
los sumideros,
existentes en cada
uso del suelo y en
los cambios de uso
del suelo, según
las directrices que
marca el Panel
Intergubernamental
del Cambio
Climático (IPCC) en
la GPG LULUCE.

En este trabajo se contabiliza el cambio anual de Carbono en los sumideros (biomasa viva, materia orgánica muerta, suelos), existentes en cada uso del suelo y en los cambios de uso del suelo, según las directrices que marca el Panel Intergubernamental del Cambio Climático (IPCC) en la GPG LULUCF. Por otro lado, utilizando los cambios de carbono anuales que se han calculado con esta metodología, se determinará el stock de carbono acumulado en estos sumideros. Desde el punto de vista de elaborar un inventario de captaciones de CO₂ es imprescindible partir de un estudio exhaustivo del ciclo del carbono en los ecosistemas pues será el balance entre emisiones y captaciones debidas tanto a procesos naturales (crecimiento, descomposición de materia orgánica, etc.) como a actuaciones antrópicas (tratamientos selvícolas, incendios, repoblaciones, etc.) que nos permitirá obtener un dato fiable de CO₂ emitido/captado por la vegetación y los suelos de una determinada región.

Hemos empleado, como herramienta fundamental, los Sistemas de Información Geográfica, utilizando los Mapas de Usos del Suelo de los años 1991, 1995 y 1999 para la obtención de las superficies de cambios de usos entre estos años, y el Mapa de Suelos de Andalucía para la estimación del cambio de carbono en los suelos. También se han utilizado datos procedentes de los Anuarios de Estadística Agraria, datos publicados por la Consejería de Medio Ambiente de Andalucía (1995-2000); datos del Segundo Inventario Forestal Nacional (1986-1996), entre otras muchas fuentes.

Por otro lado se ha realizado un estudio de estimación de la biomasa y del CO₂ fijado por las principales especies forestales arbóreas en Andalucía, basado en los datos ofrecidos por el Segundo Inventario Forestal Nacional. Este estudio complementa el inventario según la metodología LULUCF y supone una fuente de datos importante para la realización del mismo.

Monte Mediterráneo. Málaga.

2.1 INVENTARIO DE CAPTACIONES DE CO₂

Guía de Buenas Prácticas para el Sector de Uso de la Tierra, Cambio del Uso de la Tierra y Selvicultura (GPG LULUCF)

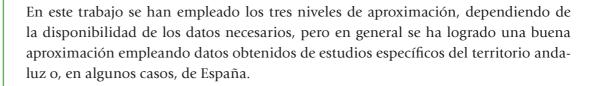
En la Guía de Buenas Prácticas describimos la metodología desarrollada por el IPCC para determinar el cambio de carbono que se produce en el sector LULUCF (uso de la tierra, cambio de uso de la tierra y selvicultura). Utilizando esta metodología se va a estimar el carbono total fijado/emitido por cada uso de la tierra en los años 1991, 1995 y 1999, que son los años para los que se dispone de cartografía digital (Mapa de Usos del Suelo de Andalucía), y por tanto para los que es posible cuantificar los cambios de superficie de cada tipo de uso.

Los inventarios consistentes con las buenas prácticas son fijados como aquellos que contienen las mejores estimaciones posibles dentro de los límites establecidos por los conocimientos científicos actuales y los recursos disponibles a nivel nacional, reduciendo la incertidumbre lo máximo posible. Esta guía ofrece un amplio margen de actuación dependiendo de la disponibilidad de datos que tenga cada país o región. Diferencia tres niveles metodológicos de aproximación que se corresponden con una progresión que va desde el uso de ecuaciones simples con datos por defecto hasta sistemas complejos a nivel nacional con datos desarrollados específicamente para cada país. La incertidumbre de las estimaciones disminuye al aumentar el nivel:

Nivel 1: utiliza el método básico y se aplican factores de emisión por defecto proporcionados por el IPCC.

Nivel 2: usa el método básico pero aplicando datos específicos del país o región de estudio para las actividades y usos del terreno más importantes. Pueden usarse metodologías específicas si existen.

Nivel 3: se decanta por modelos e inventarios adaptados a las características particulares de cada país o región, con alta resolución de los datos, desagregados a menor escala y actualizados periódicamente.


Para cualquiera de los tres niveles, la metodología seguida en la guía se basa en varios pasos, que resumimos a continuación, y que se aplicarán en la elaboración del inventario.

- 1. Definición de las categorías de uso del terreno, dentro del sector LULUCF.
- 2. Estimación de las superficies ocupadas por cada categoría de uso de la tierra y estimación de las superficies de cambios de uso.
- *3.* Estimación de las emisiones y captaciones de gases de efecto invernadero para cada categoría de uso.

Utilizando estos < datos se va a estimar el carbono total fijado/emitido por cada uso de la tierra en los años 1991, 1995 y 1999, que son los años para los que se dispone de cartografía digital (Mapa de Usos del Suelo de Andalucía). v por tanto para los que es posible cuantificar los cambios de superficie de cada categoría de uso.

De forma necesaria, se requiere una adaptación de las seis categorías a las fuentes de datos cartográficos disponibles.

A continuación describimos todo el proceso de elaboración del inventario de sumideros en Andalucía siguiendo la GPG LULUCF, y describiendo las fuentes de datos utilizadas en cada momento.

2.1.1 Definición de las categorías de uso del terreno

En la GPG LULUCF del IPCC se describen seis categorías de uso de la tierra. Estas categorías son lo suficientemente amplias como para clasificar toda la superficie de la mayoría de los países y para acomodar las diferencias existentes en los sistemas de clasificación nacionales.

- 1. Terrenos forestales
- 2. Terrenos agrícolas
- 3. Pastizales
- 4. Humedales
- 5. Terrenos urbanos
- 6. Otros terrenos

Es necesaria la adaptación de las seis categorías a las fuentes de datos cartográficos disponibles. El Mapa de Usos del Suelo de Andalucía (años 1991, 1995 y 1999), establece 112 clases agrupadas en cuatro grandes categorías, que son las siguientes:

- A. Superficies edificadas e infraestructuras
- B. Zonas húmedas y superficies de agua
- C. Territorios agrícolas
- **D.** Superficies forestales y naturales.

Estas clases se han reclasificado para adaptarlas a las seis categorías de usos definidas por el IPCC para el sector LULUCF. Los criterios seguidos en esta reclasificación se basan principalmente en la definición IPCC de cada categoría pero teniendo muy en cuenta las definiciones de terrenos consideradas en Andalucía. A continuación se describe de forma resumida esta reclasificación:

1. Terrenos forestales: están incluidas las zonas forestales y naturales arboladas, entre ellas las formaciones arboladas densas, las formaciones de matorral denso con arbolado, de matorral disperso con arbolado y matorral sin arbolado; así como pastizales con arbolado.

Pinsapar de Grazalema.

- 2. Terrenos agrícolas: se incluyen las áreas destinadas a cultivos herbáceos o leñosos, tanto las áreas agrícolas homogéneas como las heterogéneas.
- 3. Pastizales: formaciones de pastizal sin arbolado, continuo y discontinuo.
- 4. Humedales: son sitios inundados, de manera temporal o permanente, por aguas dulces o salinas. Dentro de esta clasificación también se incluyen los ambientes creados por el hombre como presas o lagos artificiales, y que no se incluyen en las otras categorías.
- 5. Terrenos urbanos: se incluyen las áreas desarrolladas, incluyendo las infraestructuras para el transporte y las zonas urbanizadas de cualquier dimensión, siempre que no estén incluidas en las otras categorías.
- 6. Otros terrenos: son los suelos desnudos, roca, hielo y aquellas superficies que no están incluidas en las otras cinco categorías.

La Guía de Buenas Prácticas establece que es aconsejable definir subcategorías dentro de cada categoría para que el inventario sea más detallado y representativo. En este estudio se ha seguido esta recomendación, cuando ha sido posible, como se verá más adelante.

2.1.2 Estimación de superficies

La estimación de las superficies ocupadas por cada categoría de uso de la tierra parte de la necesidad de conocer la representación del territorio. Con el objeto de conocer los usos y cambios de usos del suelo, planteamos tres métodos. Estos métodos pretenden adaptarse a cualquier circunstancia regional y emplear los datos y recursos disponibles de la mejor manera posible. Además pretenden cumplir los siguientes condicionantes: representativos, consistentes temporalmente, que incluyan toda la superficie de la zona de estudio, que sean transparentes y estén claramente definidos:

La Guía de
Buenas Prácticas
establece que es
aconsejable definir
subcategorías
dentro de cada
categoría para que
el inventario sea
más detallado y
representativo.

>> Mediante ArcGIS se han determinado las superficies de cambio de uso.

Tabla 2.1.2.i. Superficie que ocupa cada uso del suelo en 1991, 1995 y 1999, en hectáreas.

Método 1: Datos básicos sobre el uso del terreno. Emplea datos que han sido preparados con otros propósitos, como estadísticas agrícolas o forestales. Los cambios de uso se estiman como diferencias entre dos datos distanciados en el tiempo.

Método 2: Estudio del uso del terreno y de los cambios de uso del terreno: Proporciona no sólo salidas y entradas de superficies en cada categoría, sino que también indica qué representan dichos cambios (especifica los cambios que se producen entre categorías). Los resultados pueden presentarse como una matriz de cambio de uso no espacial.

Método 3: Datos geográficamente explícitos sobre el uso del terreno: Se implementa sobre Sistemas de Información Geográfica (SIG) y produce como resultado una matriz de cambio de uso del terreno explícitamente espacial.

Estos métodos no constituyen un sistema jerárquico, por lo que no son excluyentes entre sí. Es posible usar una combinación de ellos en función de las circunstancias específicas de cada región, de la información disponible en cada periodo y de los requisitos de los informes a presentar.

En el estudio del territorio de Andalucía se ha utilizado el Método 3: cartografía digital y SIG. La cartografía digital más actual disponible son los Mapas de Usos del Suelo de Andalucía correspondientes a los años 1991, 1995 y 1999 (1:50.000). Mediante ArcGIS se han determinado las superficies de cambio de uso durante este periodo mostradas en la siguiente tabla.

Código Mapa Usos	Denominación	Categoría	Área 91 (ha)	Área 95 (ha)	Área 99 (ha)
111	Tejido urbano	5	57.112	58.395	58.806
115	Urbanizaciones residenciales	5	26.276	29.512	30.120
117	Urbanizaciones agrícola / residenciales	5	3.954	6.060	6.325
121	Zonas industriales y comerciales	5	16.706	19.746	20.762
131	Autovías, autopistas y enlaces viarios	5	1.329	1.847	2.444
133	Complejos ferroviarios	5	278	359	417
135	Zonas portuarias	5	1.482	1.516	1.511
137	Aeropuertos	5	2.259	2.523	2.550
141	Otras infraestructuras técnicas	5	339	609	670
151	Zonas mineras	5	18.788	20.751	21.841
153	Escombreras y vertederos	5	2.454	2.940	2.558
155	Zonas en construcción	5	6.360	11.149	11.762
157	Balsas de alpechín	5	139	490	537
191	Zonas verdes urbanas	5	870	996	971
193	Equipamiento deportivo y recreativo	5	2.965	4.658	5.360
211	Marisma mareal con vegetación	4	12.634	12.784	12.773
215	Marisma no mareal con vegetación	4	39.774	35.109	36.546

Código Mapa	Denominación	Categoría	Área 91 (ha)	Área 95 (ha)	Área 99 (ha)
Usos					
217	Marisma reciente sin vegetación	4	755	738	741
221	Salinas tradicionales	4	5.790	5.729	5.729
225	Salinas industriales y parques de cultivos	4	6.875	8.668	9.574
231	Albuferas	4	283	283	283
241	Estuarios y canales de marea	4	6.625	6.614	6.674
291	Mares y océanos	4	7	85	70
311	Ríos y cauces naturales: lámina de agua	4	4.609	4.683	4.684
315	Ríos y cauces naturales: bosque galería	4	2.847	3.177	3.126
317	Ríos y cauces naturales: otras formaciones riparias	4	21.790	22.298	20.957
321	Canales artificiales	4	1.610	1.524	1.542
331	Lagunas continentales	4	10.518	10.056	10.027
341	Embalses	4	31.149	14.097	43.649
345	Balsas de riego y ganaderas	4	234	1.154	1.827
411	Cultivos herbáceos en secano	2	1.677.446	1.579.918	1.475.061
415	Olivar secano	2	1.167.570	1.196.060	1.245.068
417	Viñedo	2	35.038	33.651	33.818
419	Otros cultivos leñosos en secano	2	106.670	100.883	103.784
421	Arrozales	2	38.387	148	38.667
423	Cultivos forzados bajo plástico	2	32.996	34.726	40.781
425	Otros cultivos herbáceos regados	2	353.318	60.258	195.628
427	Regados y no regados	2	424	85.915	100.264
429	No regados	2	583	243.098	74.524
430	Parcialmente regados o no regados	2	-	5.842	8.886
431	Cítricos	2	41.494	42.438	45.380
433	Olivos regadío	2	17.873	23.013	25.798
435	Frutales tropicales	2	429	4.211	6.196
439	Otros cultivos leñosos en regadío	2	20.151	12.964	13.466
441	Cultivos herbáceos y leñosos en secano	2	165.436	190.850	202.602
445	Olivar-viñedo	2	4.806	5.052	4.845
449	Otras asociaciones y mosaicos de cultivos leñosos secano	2	24.161	23.428	23.640
451	Regados	2	80.458	31.185	34.544
455	Parcialmente regados	2	568	40.619	45.830
457	No regados	2	465	14.921	14.389
459	Mosaico de leñosos en regadío	2	12.664	11.125	10.471
461	Con cultivos herbáceos	2	24.904	32.699	32.051
465	Con cultivos herbáceos y leñosos	2	39.267	61.635	66.897
469	Con cultivos leñosos	2	7.206	6.825	6.745
471	Cultivos herbáceos y pastizales	2	2.720	15.763	23.481
471	Cultivos herbáceos y vegetación natural leñosa	2	61.492	66.534	65.414
475	Cultivos leñosos y pastizales	2	415	1.560	2.189
477	Cultivos leñosos y vegetación natural leñosa	2	116.582	119.839	120.496 55.801
479	Otros mosaicos de cultivos y vegetación natural	2	42.011	50.744	
481	Olivar abandonado	2	15.153	13.270	12.809
489	Otros cultivos leñosos abandonados	2	5.723	4.776	4.722
510	Formación arbolada densa: quercíneas	1	128.558	125.234	124.459
520	Formación arbolada densa: coníferas	1	292.906	275.365	273.808
530	Formación arbolada densa: eucaliptos	1	52.651	33.674	24.028
540	Formación arbolada densa: otras frondosas	1	5.544	5.549	5.542

Código Mapa Usos	Denominación	Categoría	Área 91 (ha)	Área 95 (ha)	Área 99 (ha)
550	Formación arbolada densa: quercíneas+coníferas	1	3.017	3.167	3.155
560	Formación arbolada densa: quercíneas +eucaliptos	1	950	605	337
570	Formación arbolada densa: Coníferas + eucaliptos	1	1.491	3.557	3.455
580	Formación arbolada densa: otras mezclas	1	1.131	1.010	1.011
611	Matorral denso arbolado: quercíneas densas	1	63.911	76.371	74.233
615	Matorral denso arbolado: quercíneas dispersas	1	271.955	256.506	244.574
621	Matorral denso arbolado: coníferas densas	1	39.662	45.474	46.740
625	Matorral denso arbolado: coníferas dispersas	1	136.326	110.974	111.728
630	Matorral denso arbolado: eucaliptos	1	79.821	65.860	55.974
640	Matorral denso arbolado: otras frondosas	1	2.323	2.713	2.711
650	Matorral Denso Arbolado: quercíneas+coníferas	1	10.282	11.420	11.386
660	Matorral denso arbolado: quercíneas +eucaliptos	1	2.766	2.646	2.230
670	Matorral denso arbolado: coníferas +eucaliptos	1	4.016	4.854	4.420
680	Matorral denso arbolado: otras mezclas	1	1.614	1.730	1.638
711	Matorral disperso arbolado: quercíneas. Denso	1	261.004	254.978	251.764
715	Matorral disperso arbolado: quercíneas. Disperso	1	239.514	244.295	241.303
721	Matorral disperso arbolado: coníferas. Denso	1	209.382	191.010	196.554
725	Matorral disperso arbolado: coníferas. Disperso	1	175.223	183.731	198.193
730	Matorral disperso arbolado: eucaliptos	1	65.815	83.954	78.443
740	Matorral disperso arbolado: otras frondosas	1	11.322	10.865	10.823
750	Matorral disperso arbolado: quercíneas+coníferas	1	39.163	41.125	43.661
760	Matorral disperso arbolado: quercíneas + eucaliptos	1	2.358	2.731	2.572
770	Matorral disperso arbolado: coníferas + eucaliptos	1	3.905	6.230	6.309
780	Matorral disperso arbolado: otras mezclas	1	1.844	2.133	2.116
811	Pastizal arbolado: quercíneas. Denso	1	278.283	270.695	258.515
815	Pastizal arbolado: quercíneas. Disperso	1	182.062	192.466	193.201
821	Pastizal arbolado: coníferas. Denso	1	4.585	3.662	4.211
825	Pastizal arbolado: coníferas. Disperso	1	8.152	10.405	10.503
830	Pastizal arbolado: eucaliptos	1	1.852	1.661	1.835
840	Pastizal arbolado: otras frondosas	1	4.053	4.067	3.976
850	Pastizal Arbolado: quercíneas+coníferas	1	1.180	1.229	1.283
860	Pastizal arbolado: quercíneas +eucaliptos	1	20	82	16
870	Pastizal Arbolado: Coníferas + eucaliptos	1	64	61	419
880	Pastizal arbolado: otras mezclas	1	201	330	336
891	Cultivo herbáceo arbolado: quercíneas. Denso	1	25.194	26.054	39.608
895	Cultivo herbáceo arbolado: quercíneas. Disperso	1	92.625	95.973	109.759
901	Talas y plantaciones forestales recientes	1	69.223	97.723	91.947
911	Matorral denso	1	245.291	228.741	211.888
915	Matorral disperso con pastizal	1	310.716	311.866	315.497
917	Matorral disperso con pasto y roca o suelo	1	738.330	730.453	719.750
921	Pastizal continuo	3	212.546	228.956	204.935
925	Pastizal con claros (roca, suelo)	3	7.971	21.889	13.901
931	Playas, dunas y arenales	6	7.283	7.225	7.144
932	Roquedos y suelo desnudo	6	33.374	34.816	33.559
933	Áreas con fuertes procesos erosivos	6	6.045	6.157	6.346
934	Zonas incendiadas	1	27.378	15.153	2.535
935	Zonas sin vegetación por roturación	1	12.347	20.517	47.036

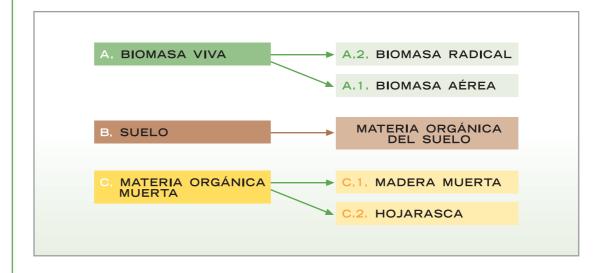
Estableciendo dos periodos para el análisis, 1991-1995 y 1996-1999, los cambios de uso del suelo se muestran en la siguiente tabla.

Categoría inicial	Categoría inicial Categoría final		Periodo 1996-1999
Forestal	Forestal	4.054.180	4.018.789
No forestal	Forestal	15.361	16.693
Total Forestal		4.069.541	4.035.482
Agrícola	Agrícula	4.064.193	4.097.278
No Agrícola	Agrícola	44.768	36.967
Total Agrícola		4.108.961	4.134.245
Pastizal	Pastizal	196.128	202.472
No pastizal	Pastizai	53.668	16.365
Total Pastizal		249.796	218.836
Humedales	Humedales	126.315	126.171
No humedales	nullieuales	1.076	32.030
Total Humedales		127.391	158.201
Urbanos		140.132	160.941
No urbanos	Urbanos	16.645	5.693
Total Urbanos		156.777	166.634
Otros terrenos	04	46.607	46.780
No otros terrenos	Otros terrenos	1.377	267
Total Otros Terrenos		47.984	47.046
SUPERFICIE TOTAL		8.760.450	8.760.450

Tabla 2.1.2.ii.
Superficies con y sin
cambio de uso entre 1991
y 1995, y entre 1995 y
1999 respectivamente,
según categorías, en
hectáreas.

2.1.3 Estimación de emisiones y captaciones de CO₂

Según las Directrices del IPCC, las bases fundamentales de la metodología descansan sobre dos temas interconectados:


- a. El flujo de CO₂ hacia o desde la atmósfera se supone igual a los cambios en el stock de carbono de la biomasa y los suelos.
- *b.* Los cambios pueden ser estimados estableciendo primero las tasas de cambio del uso de la tierra y la práctica que ocasionó el cambio y, en segundo lugar, se aplican simples supuestos y datos sobre su impacto en el stock de carbono y la respuesta biológica a un uso de la tierra dado.

Existen cinco sumideros de carbono en los ecosistemas terrestres que están clasificados en tres partes según se muestra en la figura 2.1.3.i.

El flujo de CO₂
hacia o desde
la atmósfera se
supone igual a
los cambios en el
stock de carbono
de la biomasa y los
suelos.

Figura 2.1.3.i. Sumideros de carbono en los ecosistemas terrestres.

Disponemos de dos métodos de estimación del cambio anual de carbono. El primero, denominado *método por defecto*, puede generalizarse y aplicarse a todos los sumideros de carbono (biomasa aérea, radical, materia muerta y suelos) y es el que ha sido utilizado para este inventario. Este método se expresa en la ecuación 2.1.1.

Ecuación 2.1.1 Cambio anual en el stock de carbono en un sumidero dado como función de las pérdidas y las ganancias

$$\Delta C = \Sigma_{ijk} \left[A_{ijk} \cdot (CI - CL)_{ijk} \right]$$

Donde,

 ΔC = cambio del stock de carbono en el sumidero, tC año-1

A = superficie, ha

ijk = corresponde al tipo de clima i, de bosque j, la práctica de gestión k, etc...

CI = tasa de ganancia de carbono, tC ha-1 año-1

CL = tasa de pérdida de carbono, tC ha-1 año-1

Un método alternativo, denominado *método del cambio del stock*, aplicable cuando el stock de carbono se mide en dos momentos diferentes se ilustra en la siguiente ecuación:

$$\Delta C = \sum_{ijk} (C_{t2} - C_{t1}) / (t_2 - t_1)_{ijk}$$

Donde,

 \mathbf{C}_{t1} = stock de carbono en el sumidero en el momento \mathbf{t}_{1} , en tC.

 C_{t2} = stock de carbono en el sumidero en el momento t_2 , en tC.

El método por defecto es aplicable en los tres niveles de aproximación que marca la guía, anteriormente descritos, mientras que el método del cambio no es aplicable en el primer nivel por los requerimientos de datos necesarios para este método.

A continuación describimos el proceso seguido para estimar los cambios anuales de carbono para cada una de las categorías definidas por el IPCC:

- 1. Terrenos forestales
- 2. Terrenos agrícolas
- 3. Pastizales
- 4. Humedales
- 5. Terrenos urbanos
- 6. Otros terrenos

En cada categoría de uso del suelo determinaremos el cambio de carbono cuando en un periodo no se cambia de uso y tambien cuando se produce un cambio de uso, tanto en la biomasa como en el suelo. En el tercer sumidero (materia orgánica muerta) no se ha contabilizado, como se comentará más adelante.

La estimación del cambio de carbono en la biomasa cuando exista cambio de uso se realiza aplicando la siguiente fórmula:

$$\Delta C_{ij} = A_{conversion} \cdot (L_{conversion} + \Delta C_{growth})$$
$$(L_{conversion} = C_{after} - C_{before})$$

Siendo,

 $\Delta C_{ij} =$ cambio de carbono en la biomasa debido la conversión del uso i al uso j. $A_{conversión} =$ área que cambia de uso, ha ·año-¹

L_{conversión}= cambio anual de carbono para cada tipo de conversión, tC·ha⁻¹.

 ΔC_{growth} = carbono en el primer año de crecimiento de la nueva vegetación, t $C \cdot ha^{-1}$.

C_{atter}= stock de carbono inmediatamente después de la conversión, tC·ha⁻¹

 C_{before} = stock de carbono inmediatamente antes de la conversión, t $C \cdot ha^{-1}$

En la Tabla 2.1.3.i. aparecen los datos que serán empleados en los cálculos del cambio de carbono cuando existan cambios de categoría. C_{before} es el stock de carbono de cada categoría, y es diferente en los dos periodos de tiempo considerados (1991-1995 y 1996-1999). A lo largo de cada periodo el stock varía debido a los cambios anuales, por lo que C_{before} en 1995 es distinto que en 1991 y que en 1999. Sin embargo, ΔC_{growth} no varía según el año ya que se trata del crecimiento de una nueva masa en un terreno en el que no existe vegetación y se supone que tendrá siempre el mismo comportamiento, dentro de los periodos considerados.

El método utilizado para este inventario de estimación del cambio anual de carbono es el denominado método por defecto que puede generalizarse y aplicarse a todos los sumideros de carbono (biomasa aérea, radical, materia muerta y suelos).

Tabla 2.1.3.i.

Valores necesarios para
determinar el cambio de
carbono en terrenos que
cambian de categoría.

Forestal 14.6 22.1 1.6 Agrícola anual 0 0 0 Agrícola no anual 10.5 2.7 0.88 Pastizal 0 0 0 Humedal N Urbano No se considera No se considera No se considera Otros Terrenos 0

A continuación describimos el proceso de obtención de estos factores para cada uso del suelo.

El stock de carbono forestal en el año 1990 es determinado a partir de los datos del IFN2, referidos a 1990 pero que, por aproximación, consideramos que es igual en 1991. El stock de carbono en ese año es 14.6 tC·ha⁻¹, como se ha calculado en la Tabla 2.2.3.ii. La biomasa media para cada subcategoría se ha calculado a partir de los datos de volumen del IFN2 (Tabla I.1 y I.2 del Anexo I), convertidos en biomasa utilizando factores de conversión, como se explicará en la Tabla 2.2.4.vii.

Tabla 2.1.3.ii. Biomasa media y carbono en las áreas forestales, C_{before} en 1990, en toneladas·ha-1

Subcategoría Forestal	Superficie estratos IFN2	Biomasa (t ms/ha)	Biomasa total (t ms)
Coníferas	610.945	32,7	19.968.186
Frondosas	959.595	32,8	31.495.364
Mixto	38.514	25,3	975.619
Otros	438.420	21,0	9.206.826
Quemado	58.778		
Total	2.106.252		61.645.995
	Biomasa med	a en terrenos forestales (t/ha)	29,3
	Carbono medio	en terrenos forestales (tC/ha)	14,6

El stock de carbono en la categoría agrícola no anual ha sido fijado a partir de los valores modulares de biomasa del olivo. La densidad media de olivos en los olivares andaluces es de aproximadamente 150 pies/ha, cifra obtenida conociendo el número de pies total en la comunidad y la superficie que ocupan. Se supone que todos los olivos pertenecen a las clases diamétricas 15, 20 y 25, en igual proporción (50 pies·ha¹ para cada clase diamétrica), de manera que, multiplicando los valores modulares de carbono (INIA) por el número de pies/ha se obtiene que la densidad de carbono media en 1990 en los olivares es de 10.5 tC·ha¹.

La cantidad de carbono que se acumula en el primer año de la conversión de un terreno a terreno forestal, ΔC_{growth} , es **1.60 tC·ha**⁻¹·**año**⁻¹. Este cálculo es considerando que las superficies que pasan a ser forestales se han repoblado con pies de diámetros menores de 5 cm. Tomando valores modulares de biomasa seca, se ha estimado el valor medio

para los pies menores de coníferas y frondosas. Asimismo, tomando como referencia el Decreto 127/1998 de 16 de Junio, por el que se establece un régimen de ayudas para fomentar inversiones forestales en explotaciones agrarias, hemos considerado que la densidad mínima de plantación es de 500 pies·ha⁻¹ para coníferas y 300 pies·ha⁻¹ para frondosas. En la Tabla 2.2.3.iii se muestran los cálculos para determinar el carbono en el primer año del establecimiento de un terreno forestal.

	Peso pie CD<5 cm (kg)	Densidad (№ pies/ha)	Biomasa (Kg ms/ha)	Carbono (tC/ha)	Δ Cgrowth (tC/ha)
Coníferas ¹	3.7	500	1.852	0.93	1.60
Frondosas ²	4.5	300	1.353	0.68	1.60

- 1 Se incluyen: Pinus sylvestris, Pinus pinaster, Pinus nigra, Pinus pinea y Pinus halepensis.
- 2 Se incluyen: Quercus ilex, Quercus suber, Quercus pyrenaica, Quercus canariensis y Quercus faginea.

En el caso de los terrenos agrícolas, el ΔC_{growth} , es $0.88~tC \cdot ha^{-1} \cdot a\tilde{n}o^{-1}$, calculado con el supuesto de densidad de plantación de 150 pies $\cdot ha^{-1}$, con diámetros menores de 5 cm. Multiplicando esta densidad de olivar por los valores modulares de carbono de olivo obtenemos esta cantidad.

Estimamos, respecto a los cultivos agrícolas anuales y a los pastizales, que toda la biomasa que se acumula en un año se pierde ese mismo año debido a las cosechas anuales y a la mortalidad, por lo que ΔC_{growth} y C_{before} son cero. Se considera el mismo supuesto para las categorías de humedales y otros terrenos, además de la falta de vegetación que acumule biomasa.

En el caso de terrenos urbanos estos valores no son cero, pero como se explicará en su apartado correspondiente, no han sido considerados por la gran incertidumbre que conlleva su determinación debida a la ausencia de datos.

El stock en 1995 es el stock de 1990 al que se le ha añadido el cambio anual calculado, y el stock en 1999 es el correspondiente al de 1995 más el cambio anual de ese periodo.

Tabla 2.1.3.iii.

Determinación del carbono en el primer año de establecimiento de un terreno forestal △C_{growth} (tC·ha¹)

Quejigar de los Llanos del Juncal. Cádiz.

NOTAS

- Se han conservado en las ecuaciones empleadas la numeración y nomenclatura tal y como aparece en la GPG LULUCF, para que, en el caso de que se quiera consultar la guía, sea más sencillo de localizar cada paso.
- El IPCC describe cómo calcular el cambio de carbono en varias categorías descritas en la GPGLULUCF, describiendo la metodología en distintos capítulos a lo largo de la guía. Los países que se han comprometido a realizar su inventario de sumideros deben realizar las estimaciones descritas, excepto las contenidas en los capítulos de la guía que se nombran a continuación, para las que es opcional. Para estas categorías describimos la manera de estimar el carbono pero encierran mucha incertidumbre y los datos escasean, por lo que se pueden omitir. En este trabajo desarrollamos un supuesto de estimación en algún caso de los que se nombran, aunque finalmente no se haya considerado (por ejemplo los terrenos urbanos que no cambian de uso).
 - Apéndice 3a1. Productos de madera
 - Apéndice 3a2. Emisiones de otros gases por drenaje e inundación de suelos forestales.
 - Apéndice 3a3. Humedales que permanecen como humedales
 - Apéndice 3a4. Urbanos
 - Capítulo 3.7. Otros terrenos

2.1.4 Terrenos forestales

Esta sección atribuye los cambios en el stock de carbono y las emisiones de gases efecto invernadero asociados a cambios en la biomasa y en suelos en terrenos forestales y en terrenos convertidos a forestales. Se determinan los cambios anuales de carbono en los sumideros de carbono mencionados anteriormente, incluyendo las emisiones de carbono en terrenos manejados debidas a pérdidas naturales como incendios, tormentas, plagas, etc; y son relacionadas con las estimaciones de las áreas calculadas anteriormente.

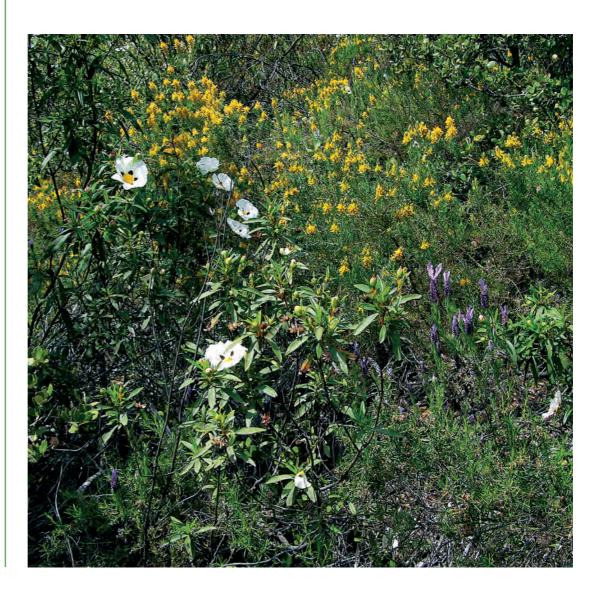
Esta sección esta dividida en dos partes, la primera contiene la metodología para establecer los cambios en el stock de carbono en los sumideros de las áreas que han sido forestales desde hace al menos 20 años; la segunda parte se refiere a áreas repobladas recientemente. Las Directrices del IPCC consideran que toda la biomasa que toda la biomasa extraída se oxida en el año de su eliminación pero proporciona flexibilidad para incluir el carbono almacenado en los productos de madera, si se prevé que el stock existente vaya a aumentar. Por ahora esta opción no se ha considerado pero en futuros estudios habría que tenerla en cuenta.

Han sido atribuidas varias subcategorías dentro de la categoría forestal, siguiendo el consejo de la guía de buenas prácticas, para obtener resultados disgregados y por lo

Se han
considerado varias
subcategorías
dentro de la
categoría forestal,
siguiendo las
recomendaciones
de la GPG LULUCF

tanto más ajustados a la realidad que si consideramos la categoría forestal como una única unidad. Hemos realizado esta subdivisión inicial pero a lo largo de la elaboración del inventario se han tenido que volver a agrupar, a veces en una sola categoría, debido a que lo más frecuente es que los datos disponibles no estén diferenciados de la misma manera. En futuros estudios sería conveniente disponer de datos, más disgregados de modo que el inventario pueda realizarse de forma más ajustada. Las cuatro subcategorías forestales tratadas son las siguientes:

- i. Coníferas: son las formaciones vegetales con arbolado de coníferas
- ii. Frondosas: son las formaciones vegetales con arbolado de frondosas
- iii. Mixto: son las formaciones vegetales con arbolado de coníferas y de frondosas.
- *iv. Otros terrenos forestales:* se incluye el resto de terrenos forestales, compuestos en su mayoría por formaciones de matorral.


Matorral de Doñana.

Debemos hacer notar que la información sobre matorrales es escasa e insuficiente, en concreto todo lo relacionado con la biomasa y el crecimiento. Debido a la considerable superficie que ocupan y a su importancia como fijadores de CO₂, sería necesario realizar un estudio de biomasa para las formaciones de matorral en Andalucía. Además, en un futuro, debería realizarse un estudio más detallado de cada formación vegetal, porque la clasificación propuesta por LULUCF es muy general y, en cada país, es considerado por definición cada categoría de una manera. Por ejemplo, en nuestra clasificación se han incluido las formaciones de pastizal con quercíneas (dehesas) en la categoría forestal aunque según el IPCC deberían incluirse en la categoría "Grasslands" (pastizales).

En la Tabla 2.1.4.i mostramos las categorías del Mapa de Usos del Suelo de Andalucía que han sido catalogadas como Terreno Forestal y la correspondiente división en subcategorías utilizadas para realizar la contabilización del cambio en el stock de carbono en las zonas forestales.

Jaral-aulagar de Sierra Morena.

Tabla 2.1.4.i. Clasificación de los usos en subcategorías forestales

Cod	Categorías Mapa Usos suelo de Andalucía	Código Mapa Usos	Subcategoría forestal
4.1.1.1	Formación arbolada densa: quercíneas	510	Frondosas
4.1.1.2.	Formación arbolada densa: coníferas	520	Coníferas
4.1.1.3.	Formación arbolada densa: eucaliptos	530	Frondosas
4.1.1.4.	Formación arbolada densa: otras frondosas	540	Frondosas
4.1.1.5.	Formación arbolada densa: quercíneas + coníferas	550	Mixto
4.1.1.6.	Formación arbolada densa: quercíneas + eucaliptos	560	Frondosas
4.1.1.7.	Formación arbolada densa: coníferas + eucaliptos	570	Mixto
4.1.1.8.	Formación arbolada densa: otras mezclas	580	Mixto
4.1.2.1.1	Matorral denso arbolado: quercíneas densas	611	Frondosas
4.1.2.1.2	Matorral denso arbolado: quercíneas dispersas	615	Otras
4.1.2.2.1	Matorral denso arbolado: coníferas densas	621	Coníferas
4.1.2.2.2	Matorral denso arbolado: coníferas dispersas	625	Otras
4.1.2.3	Matorral denso arbolado: eucaliptos	630	Frondosas
4.1.2.4	Matorral denso arbolado: otras frondosas	640	Frondosas
4.1.2.5	Matorral denso arbolado: quercíneas + coníferas	650	Mixto
4.1.2.6	Matorral denso arbolado: quercíneas +eucaliptos	660	Frondosas
4.1.2.7	Matorral denso arbolado: coníferas + eucaliptos	670	Mixto
4.1.2.8	Matorral denso arbolado: otras mezclas	680	Mixto
4.1.3.1.1	Matorral disperso arbolado: quercíneas. Denso	711	Frondosas
4.1.3.1.2	Matorral disperso arbolado: quercíneas. Disperso	715	Otras
4.1.3.2.1	Matorral disperso arbolado: coníferas. Denso	721	Coníferas
4.1.3.2.2	Matorral disperso arbolado: coníferas. Disperso	725	Otras
4.1.3.3	Matorral disperso arbolado: eucaliptos	730	Frondosas
4.1.3.4	Matorral disperso arbolado: otras frondosas	740	Frondosas
4.1.3.5	Matorral disperso arbolado: quercíneas + coníferas	750	Mixto
4.1.3.6	Matorral disperso arbolado: quercíneas + eucaliptos	760	Frondosas
4.1.3.7	Matorral disperso arbolado: coníferas + eucaliptos	770	Mixto
4.1.3.8	Matorral disperso arbolado: otras mezclas	780	Mixto
4.1.4.1.1	Pastizal arbolado: quercíneas. Denso	811	Frondosas
4.1.4.2.1	Pastizal arbolado: coníferas. Denso	821	Coníferas
4.1.4.3	Pastizal arbolado: eucaliptos	830	Frondosas
4.1.4.4	Pastizal arbolado: otras frondosas	840	Frondosas
4.1.4.5	Pastizal arbolado: quercíneas +Coníferas	850	Mixto
4.1.4.6	Pastizal arbolado: quercíneas +eucaliptos	860	Frondosas
4.1.4.7	Pastizal arbolado: coníferas +eucaliptos	870	Mixto
4.1.4.8	Pastizal arbolado: otras mezclas	880	Mixto
4.1.5.1	Cultivo herbáceo arbolado: quercíneas. Denso	891	Frondosas
4.1.6	Talas y plantaciones forestales recientes	901	Otras
4.2.1	Matorral denso	911	Otras
4.2.2.1	Matorral disperso con pastizal	915	Otras
4.2.2.2	Matorral disperso con pasto y roca o suelo	917	Otras

Ecuación 2.1.4 Captaciones o emisiones anuales en terrenos forestales que permanecen

como forestales

El cambio de carbono total ocurrido en cada categoría y en cada periodo de estudio depende de los cambios en las superficies de usos.

Ecuación 2.1.5.
Cambio anual en el stock
de carbono en la biomasa
viva en terrenos forestales
que permanecen como
forestales

2.1.4.1 Cambio anual de carbono en terrenos forestales que permanecen como forestales.

El cambio anual de carbono en estos terrenos es la suma del cambio en los sumideros (biomasa viva, materia orgánica muerta y suelos), según se representa en la ecuación 2.1.4.

$$\Delta C_{\text{FF}} = (\Delta C_{\text{FF}} + \Delta C_{\text{FF}_{\text{DOM}}} + \Delta C_{\text{FF}_{\text{Soil}}})$$

Siendo,

 ΔC_{FF} = cambio anual de carbono en terrenos forestales que permanecen como forestales, en toneladas C \cdot año⁻¹

 ΔC_{FF} = cambio anual de carbono en biomasa viva (aérea y radical) en toneladas C \cdot año-1

 $\Delta C_{\text{FF}_{DOM}}$ = cambio anual de carbono en la materia orgánica muerta, en toneladas C \cdot año⁻¹

 $\Delta C_{FF_{Soils}}$ = cambio anual de carbono en los suelos, en toneladas C · año⁻¹

2.1.4.1.1 Cambios en el carbono fijado en la biomasa

Durante el desarrollo del trabajo, como volveremos a mencionar más adelante, se ha visto que el cambio anual por hectárea que se va calcular es el mismo, en cada categoría, durante el periodo 1991-1995 y 1996-1999, entre otras cosas porque hemos usado series temporales de datos bastante amplias y porque, en muchas ocasiones, las cifras utilizadas son valores medios que no están asociados a ningún año en concreto. El cambio de carbono total ocurrido en cada categoría y en cada periodo de estudio dependerá por tanto de los cambios en las superficies de usos.

De esta manera, en primer lugar se ha calculado el cambio en el periodo 1991-1995 y después en el 1996-1999.

Hemos empleado el método por defecto, en el que se restan las pérdidas anuales de carbono de la biomasa al incremento anual de biomasa, según se expresa en la ecuación 2.1.5.

$$\Delta C_{FF_{iB}} = (\Delta C_{FF_{iB}} - \Delta C_{FF_{iD}})$$

Siendo

 $\Delta C_{\text{FF}_{LB}}$ = cambio anual en el stock de carbono en la biomasa viva (aérea y radical), t $\text{C}\cdot$ año $^{\text{-}1}$

 $\Delta C_{\text{FF}_G}^{\text{LL}}$ = incremento anual de biomasa debido al crecimiento, t $C \cdot$ año $^{-1}$

 $\Delta C_{\text{FF}_{\text{\tiny I}}}$ = disminución anual debido a las pérdidas de biomasa, t $C \cdot$ año⁻¹

En la Tabla 2.1.4.ii se exponen los datos empleados para la determinación del cambio anual de carbono en los terrenos forestales que permanecen como forestales en el periodo 1996-1999. La definición y la obtención de estos valores es explicada a lo largo del documento.

Categoría	Factores	Fuentes empleadas
Sı	uperficie forestal que permanece forestal en 1995 (ha)
Coníferas	540.869	Mapa Usos Suelo Andalucía 1991 y 1995
Frondosas	1.242.352	Mapa Usos Suelo Andalucía 1991 y 1995
Mixto	68.164	Mapa Usos Suelo Andalucía 1991 y 1995
Otros	2.202.795	Mapa Usos Suelo Andalucía 1991 y 1995
	Incremento anual de volumen (m³ ha-¹ año-¹)	
Coníferas	1.59	IFN2
Frondosas	1.02	IFN2
Mixto	0.74	IFN2
	Densidad (t ms ha ⁻¹)	
Coníferas	0.42	Varias fuentes
Frondosas	0.53	Varias fuentes
Mixto	0.47	Media coníferas- frondosas
	BEF ₁ (adimensional)	
Coníferas	1.70	Estudio Biomasa INIA - EGMASA
Frondosas	2.90	Estudio Biomasa INIA - EGMASA
Mixto	2.30	Media coníferas- frondosas
	R (root-shoot ratio) (adimensional)	
Coníferas	0.30	Estudio Biomasa INIA - EGMASA
Frondosas	0.50	Estudio Biomasa INIA - EGMASA
Mixto	0.40	Media coníferas- frondosas
Matorral	2.8	GPG LULUCF y Cañellas (2000)
	Cortas anuales madera (m³)	
Coníferas	171.058	Anuario Estadística Agraria Andalucía (1997-2000)
Frondosas	555.196	Anuario Estadística Agraria Andalucía (1997-2000)
	Cortas anuales leña (m³)	
Coníferas	21.376	Anuario Estadística Agraria Andalucía (1997-2000)
Frondosas	190.746	Anuario Estadística Agraria Andalucía (1997-2000)
Matorral	10.547	Anuario Estadística Agraria Andalucía (1997-2000)
	BEF ₂ (adimensional)	
Coníferas	1.55	Estudio Biomasa INIA - EGMASA
Frondosas	2.13	Estudio Biomasa INIA - EGMASA
	Áreas afectadas incendios (ha)	
Arbolada	7.571	Consejería Medio Ambiente Junta Andalucía (web) (1988-2002)
Matorral	6.131	Consejería Medio Ambiente Junta Andalucía (web) (1988-2002)

A continuación describimos los pasos seguidos para calcular el cambio en la biomasa, representados en las Figuras 2.1.4.i a 2.1.4.iv. Hemos empleado series temporales de datos bastante amplias para que los datos medios empleados fueran lo más representativos posible, es el caso de las cifras de cortas de madera o pérdidas por incendios. En primer lugar se ha calculado el cambio anual por hectárea en el periodo 1991-1995, como es descrito a continuación. Posteriormente, utilizando las superficies forestales

Tabla 2.1.4.ii.
Datos y sus fuentes
empleados para la
aplicación de las fórmulas.

Tabla 2.1.4.iii. Superficie forestal que permanece como forestal en 1995, en ha.

Ecuación 2.1.6. Incremento anual medio de biomasa

El carbono se calcula a partir del volumen con corteza (VCC) de los fustes maderables, que es el dato que tradicionalmente ofrecen los inventarios forestales.

que permanecen como tales entre 1995 y 1999, se ha comprobado que este cambio es de la misma magnitud:

Paso 1. Caracterización de las áreas forestales que permanecen como forestales, según las subcategorías forestales entre 1990 y 1995 (Tabla 2.1.4.iii).

Subcategorías de Terreno Forestal	Superficie (ha)
1. Coníferas	540.869
2. Frondosas	1.242.352
3. Mixto: coníferas y frondosas	68.164
4. Otras formaciones	2.202.795
TOTAL superficie que permanece como forestal	4.054.180

Paso 2. Estimación de la media de incremento anual de biomasa aérea y radical, G_{TOTAL} , según la ecuación 2.1.6.

$$G_{TOTAL} = G_{W} \cdot (1+R)$$

Siendo $G_{W} = [I_{V} \cdot D \cdot BEF_{1}]$

Siendo:

G_{TOTAL} = incremento anual medio de biomasa aérea y radical, t ms ha⁻¹ año⁻¹.

 G_w = incremento medio anual de biomasa aérea, t ms ha-1 año-1.

 $R = \hbox{relación entre biomasa radical y biomasa a\'erea ("root-shoot ratio"), adimensional.}$

 I_v = incremento medio anual en volumen destinado a procesos industriales, en $m^3 \cdot ha^{-1}$ año $^{-1}$

D = densidad básica, t ms⋅m⁻³

 BEF_1 = factor de expansión, para convertir el incremento de biomasa maderable en incremento de toda la biomasa aérea, adimensional.

El carbono es calculado a partir del volumen con corteza (VCC) de los fustes maderables, que es el dato que tradicionalmente ofrecen los inventarios forestales. Este volumen se transforma en biomasa seca, utilizando la densidad básica y con los factores de expansión (BEF); con el factor "root-shoot ratio" se transforma la biomasa aérea en biomasa arbórea total (aérea + radical). La cantidad de carbono correspondiente a la biomasa seca arbórea ha sido estimada en el 50%.

El incremento medio anual en volumen I_v se ha obtenido a partir del Segundo Inventario Forestal Nacional, concretamente en la Tabla 301 "Densidad de masa. Existencias por hectárea de cada estrato y especie", en la que hay datos sobre área basimétrica, volumen con corteza y sin corteza, incremento de volumen y cantidad de pies menores. El IFN2 define distintos estratos en cada provincia, según el tipo de vegetación, fracción de cabida cubierta y ocupación (Tabla 116. Tabla de datos

básicos por estrato). Hemos clasificado cada estrato según la especie dominante, en varias categorías: coníferas, frondosas, masas mixtas, otras formaciones y árboles quemados, y se ha calculado el promedio de los incrementos medios (IAVC) de cada provincia y de Andalucía, para estas categorías, según representamos en el Anexo I (Tablas I.1. y I.2.) y en la Tabla 2.1.4.iv.

Almería 1,42 0,49 Cádiz 1,86 0,52 Córdoba 1,86 0,11 0,88 Granada 1,35 3,54 0,85 Huelva 1,53 2,20 Jaén 1,54 0,12 Málaga 1,89 0,64 0,48 1,16 0,54 Incremento medio Andalucía 1,59 1,02 0,74

Monte mediterráneo. Sierra de Hornachuelos.

Tabla 2.1.4.iv. Incremento anual medio por provincia (m³-ha⁻ ¹-año⁻¹)

Se ha calculado la relación entre los valores modulares de biomasa radical y de biomasa aérea para todas las clases diamétricas de cada especie

estudiada.

En la subcategoría "Otras formaciones" hemos considerado que se trata de formaciones cuya vegetación predominante es el matorral.

El factor R (root-shoot ratio), relación biomasa radical/biomasa aérea, ha sido tomado del estudio de biomasa realizado por el INIA-EGMASA. Se ha calculado la relación entre los valores modulares de biomasa radical y de biomasa aérea para todas las clases diamétricas de cada especie estudiada. El resultado de calcular el promedio para todas las especies concluye en que la relación R en coníferas es 0.3 y en frondosas es 0.5. Estos porcentajes son semejantes a los publicados en la GPG LULUCF, en la que se ofrecen unos valores medios según la zona climática y el tipo de vegetación. En el caso de masas mixtas hemos tomado el promedio de estos dos valores debido a la ausencia de otros datos. A partir de los estudios encontrados sobre formaciones de matorral en España, los valores de root-shoot ratio para matorrales de coscoja están en un rango comprendido entre 2.6 y 4.7 (Cañellas, 2000), y en formaciones de matorral bajo es 2.3 (Martínez, F, 1987)⁴. En las formaciones de matorral se ha considerado que el factor R es igual a 2.8, valor tomado de la GPG LULUCF, y que es coherente con los valores citados.

Pinar de Doñana.

⁴ Martínez, F; Merino, J. Evolución estacional de la biomasa subterránea del matorral del Parque Nacional de Doñana, VIII Bienal Real Sociedad Española Historia Natural, 1987. pp. 563-570.

La densidad básica D, es la relación entre el volumen en verde y el peso seco. La densidad básica la hemos obtenido haciendo la media de los datos para coníferas y frondosas obtenidos de varias fuentes de datos⁵ para diversas especies arbóreas. Como se observa en la Figura 2.2.4.i, ha sido considerado que la densidad de coníferas es 0.42 t ms·m⁻³, la de frondosas es 0.53 t ms·m⁻³ y la de mixto 0.47 t ms·m⁻³.

Los BEF₁ sirven para transformar el incremento de biomasa maderable (de fuste) en incremento de biomasa aérea total. Para calcularlos se ha tomado la relación entre los valores modulares de incremento de biomasa aérea y los del fuste, de todas las especies forestales estudiadas. La relación media entre incremento biomasa aérea/incremento biomasa fuste en coníferas es 1.7 y en frondosas es 2.9.

Paso 3. Estimación del incremento anual en el stock de carbono debido al incremento de biomasa aplicando la ecuación 2.1.7.

$$\Delta C_{FF_{c}} = \sum_{ij} (A_{ij} \cdot G_{TOTAL_{ij}}) \cdot CF$$

Siendo:

 ΔC_{FF_G} = el incremento anual en el stock de carbono debido al incremento de biomasa, según categoría forestal y zona climática.

 A_{ij} = área forestal que permanece como forestal, diferenciando subcategoría forestal, en ha.

G_{TOTALij} = incremento anual medio de biomasa diferenciando categoría forestal, en toneladas de materia seca (t ms) por hectárea y año.

CF = fracción de carbono en materia seca, por defecto es 0.5.

Aplicando todos los datos expuestos, llegamos a la conclusión de que el incremento anual de carbono en la biomasa viva de los terrenos forestales que permanecen como forestales es de 8.165.285 tC·año-1.

Ecuación 2.1.7.
Incremento anual en el stock de carbono debido al incremento de biomasa en terrenos forestales que permanecen como forestales

⁵ IPCC, AITIM, F. Golfín, Gutiérrez Oliva

Figura 2.1.4.i.
Cálculo del incremento
anual de carbono en
terrenos forestales
que permanecen como
forestales debido al
crecimiento, en tG·año¹.

Ecuación 2.1.8.
Pérdidas anuales de carbono debido a cortas comerciales

El incremento anual de carbono en la biomasa viva de los terrenos forestales que permanecen como forestales es de 8.165.285 tC·año-1.

Categoría: FORESTAL

FORESTAL QUE PERMANECE COMO FORESTAL

Cambio anual de carbono en la biomasa viva (aérea y radical)

Subcategorías Año 1995	Area Forestal que permanece Forestal (ha)	Increm. anual volumen (m³/ha año)	Densidad básica (t ms/m³)	Factor conversión increm. fuste a increm. biomasa total	Increm. anual biomasa aérea (t ms/ha año)	Relación R biomasa radical/aérea	Increm. anual biomasa (t ms/ha año)	% carbono (tC/ t ms)	Increm. anual carbono debido al crecimiento (t C/año)
				BEF1					I _v = A*G*H
	A	В	С	D	E	F	G	Н	
Coníferas	540.869	1,59	0,42	1,70	1,14	0,30	1,48	0,50	399.118
Frondosas	1.242.352	1,02	0,53	2,90	1,56	0,50	2,33	0,50	1.449.739
Mixto	68.164	0,74	0,47	2,30	0,81	0,40	1,13	0,50	38.413
Total arbolado	1.851.385								1.887.269
Otros (matorral)	2.202.795	/	/	/	1,50	2,80	5,70	0,50	6.277.966
TOTALES	4.054.180	/	/	/	/	/	1	/	8.165.235

Paso 4. Estimación de las pérdidas anuales de carbono debido a las cortas comerciales L_{fellings} .

$$L_{\text{fellings}} = H \cdot D \cdot BEF \cdot (1 - f_{BL}) \cdot CF$$

Siendo,

 L_{fellings} = pérdidas anuales por cortas comerciales, $tC \cdot a\tilde{n}o^{-1}$.

H = volumen maderable extraído anualmente, m³ · año⁻¹.

 $D = densidad básica, t ms \cdot m^{-3}$.

BEF₂ = factor de expansión de biomasa, para convertir la biomasa maderable en biomasa aérea total, adimensional.

 f_{BI} = fracción de biomasa caída en el suelo.

CF = fracción de carbono en la materia seca, se supone 0.5 por defecto, tC/t ms.

Para aplicar esta ecuación hacemos la suposición de que la biomasa total asociada al volumen de madera extraída se considera que es emitida inmediatamente. Esta es la suposición por defecto e implica que el factor f_{bl} es 0. Esta suposición debe hacerse a menos que los cambios en la materia orgánica muerta vayan a contabilizarse, pero este no es el caso.

El volumen de madera extraída los hemos obtenido de los datos publicados por el Instituto Nacional de Estadística para Andalucía desde el año 1997 hasta el 2000. En la Tabla 2.1.4.v se presenta el volumen medio de cortas, para las subcategorías de coníferas y frondosas. Para transformar el volumen de madera en biomasa seca se emplearán las densidades básicas (columna K) y los factores de expansión de biomasa.

Los BEF₂, factores de expansión de biomasa (Columna L), sirven para transformar biomasa maderable (de fuste) en biomasa aérea total. Para calcularlos hemos usado

los valores modulares de biomasa de las especies estudiadas por el INIA. El porcentaje de biomasa de fuste respecto de la biomasa aérea total es del 64% en coníferas y de 47% en frondosas. Para convertir la biomasa seca maderable en total aérea multiplicaremos esta cantidad por la relación biomasa aérea / biomasa fuste, que es el inverso de los porcentajes anteriores, es decir, en coníferas es 1.55 y en frondosas es 2.13. Existen otras fuentes⁶ que publican datos de factores de expansión de biomasa que sirven para transformar volumen maderable en biomasa aérea.

Total Coníferas	171.058
Total Frondosas	555.196
Total Madera	726.254

Tabla 2.1.4.v. Volumen de corta anual de madera en terrenos forestales, en m³-año⁻¹.

Trozas de pino silvestre de la Sierra de Filabres.

⁶ Inventario de emisiones de GEI de España (1990-2002). Comunicación a la Comisión Europea (Decisión 1999/296/CE). Ministerio de Medio Ambiente, Madrid, Diciembre 2003. Gracia *et al.* (CREAF) Comunicación personal, pendiente de publicación en *Forest Ecology and Management;* Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

Ecuación 2.1.9.
Pérdidas anuales de carbono debido a recolección de leñas

Tabla 2.1.4.vi. Extracciones anuales medias de leñas en Andalucía, en m³-año¹

Figura 2.1.4.ii.
Cálculo de las pérdidas
anuales de carbono
por cortas de madera
y de leñas, en terrenos
forestales que permanecen
como forestales, en
tC·año-1.

Paso 5. Estimación de las pérdidas anuales de carbono debido a la recogida de leñas, L_{fuelwood} .

$$\mathsf{L}_{\mathsf{fuelwood}} = FG \cdot D \cdot BEF_2 \cdot \mathsf{CF}$$

Siendo,

 $L_{fuelwood}$ = pérdidas anuales debidas a la recolección de leñas, $tC \cdot a\~no^{-1}$.

FG = volumen anual de recolección de leñas, en m³.

D = densidad básica, es el peso seco entre volumen verde, en t ms·m⁻³

BEF₂ = factor de expansión de biomasa para convertir biomasa maderable en biomasa total aérea, adimensional.

CF = fracción de carbono en la materia seca, se supone 0.5 por defecto, tC/t ms.

En la Tabla 2.1.4.vi. contemplamos las cortas anuales de leñas en Andalucía. Para transformar el volumen de madera en biomasa seca se emplearán las densidades básicas; y para obtener la biomasa total utilizaremos los factores de expansión expuestos anteriormente.

Leñas coníferas	21.376
Leñas frondosas	190.746
Leñas matorral	10.547
Total leñas	217.395

Las pérdidas anuales de carbono debidas a las cortas de madera y de leñas son 366.695 $tC \cdot a\tilde{n}o^{-1}$ y 118.402 $tC \cdot a\tilde{n}o^{-1}$, respectivamente. Los cálculos realizados para estimar estas cifras se describen en la Figura 2.1.4.ii.

Categoría: FORESTAL
FORESTAL QUE PERMANECE COMO FORESTAL
Cambio anual de carbono en la biomasa viva (aérea y radical)

Odilibio diludi de C			. ,	, ,				
Subcategorías Año 1995	Cortas anuales madera (m³/año)	Densidad (t ms/m³)	Factor expansión biomasa	Pérdidas anuales por cortas madera (tC/año)	Volumen anual extraído para leña (m³/año)	Densidad (t ms/m³)	Factor expansión biomasa	Pérdidas anuales por cortas para leña (tC/año)
			BEF2	N=J*K*L*H			BEF2	R=0*P*Q*H
					0		Q	
Coníferas	171.058	0,42	1,55	55.679	21.376	0,42	1,55	6.958
Frondosas	555.196	0,53	2,13	311.015	190.746	0,53	2,13	106.854
Mixto	-	-	-	-	10.547	0,47	1,84	4.590
Total arbolado	726.254			366.695	212.122			118.402
Otros (matorral)	-	-	-	-	-	-	-	-
TOTALES	726.254			366.695				118.402

Paso 6. Estimación de las pérdidas anuales de carbono debidas a otras pérdidas, $L_{\text{other losses}}$

El término "Otras pérdidas" en terrenos gestionados es referido a pérdidas debidas a causas distintas de las extracciones de biomasa por aprovechamientos, como por ejemplo, las pérdidas causadas por tormentas, plagas o fuegos. Es una buena práctica contabilizar todas las áreas afectadas por estas causas que ocurran, ya sean de origen natural o como resultado de actuaciones humanas. Dependiendo de la intensidad, fuegos, vientos, plagas, afectan a una proporción variable de las masas. También es positivo diferenciar las superficies afectadas en categorías según la intensidad de los daños. En estudios futuros sería conveniente disponer de datos específicos, más disgregados que los datos disponibles en la actualidad, que han sido utilizados en la realización de este inventario.

$$\mathsf{L}_{\mathsf{otherlosses}} = \mathsf{A}_{\mathsf{disturbance}} \cdot B_{\mathsf{W}} \cdot (1 - f_{\mathsf{BL}}) \cdot \mathsf{CFJ}$$

Siendo,

 $L_{\text{other losses}} = \text{otras p\'erdidas, tC} \cdot \text{a\~no}^{-1}.$

 $A_{disturbance}$ = áreas forestales afectadas por desastres, ha.

 B_w = biomasa media en áreas forestales, t ms·ha⁻¹.

 f_{BL} = fracción de biomasa caída en el suelo (igual a cero como se ha comentado anteriormente).

CF = fracción de carbono en la materia seca, se supone 0.5 por defecto, tC/t ms.

Ecuación 2.1.10. Otras pérdidas anuales de carbono

"Otras pérdidas"
en terrenos
gestionados se
refieren a pérdidas
debidas a causas
distintas de las
extracciones
de biomasa por
aprovechamientos

Pinar incendiado, provincia de Sevilla.

En este estudio se han contabilizado las zonas afectadas por incendios en los últimos años.

Tabla 2.1.4.vii.
Cálculo de la biomasa
y carbono medio en los
terrenos forestales de
Andalucía en 1990.

Figura 2.1.4.iii.
Cálculo de las pérdidas
anuales de carbono por
incendios, en terrenos
forestales que permanecen
como forestales, en
tC·año¹.

En este estudio hemos contabilizado las zonas afectadas por incendios en los últimos años, utilizando los datos publicados por la Consejería de Medio Ambiente de la Junta de Andalucía, desde 1988 a 2002. Los incendios han afectado a una superficie de 7.571 ha de arbolado y 6.131 ha de matorral. En los datos sobre incendios, no se especifica el tipo de arbolado, si se trata de coníferas o de frondosas, por lo que, para poder seguir la división en las subcategorías definidas en un principio, se ha considerado que la mitad de la superficie arbolada incendiada estaba formada por coníferas y la otra mitad por frondosas. En estudios posteriores sería conveniente que los datos de estadísticas de áreas incendiadas tuvieran información más detallada de las especies o formaciones vegetales afectadas por los incendios.

La biomasa media de zonas forestales arboladas ha sido calculada a partir del volumen total de coníferas y frondosas del IFN2 en Andalucía, los factores de expansión y los valores de densidad utilizados en anteriores ocasiones. La biomasa media calculada se corresponde al año 1990, ya que es obtenida a partir de los datos publicados en el IFN2; en áreas de coníferas es de 32.68 t ms·ha⁻¹ y de 32.82 t ms·ha⁻¹ en frondosas y 12.67 t ms·ha⁻¹ en mixto.

Categoría	Volumen IFN2 (m³/ha)	Densidad básica (t ms/m³)	Factor de conversión biomasa maderable a total BEF2	Root-shoot ratio	Biomasa media en áreas forestales (t ms/ha)	Carbono medio en áreas forestales (t ms/ha)
Coníferas	38,6	0,42	1,55	0,30	32,68	16,34
Frondosas	19,5	0,53	2,13	0,50	32,82	16,41
Mixto	20,8	0,47	1,84	0,40	25,33	12,67

La biomasa media de matorral se ha considerado que es 21 t ms·ha⁻¹, que es el valor mencionado anteriormente obtenido del artículo de Cañellas (2000). Hemos tenido en cuenta que la superficie de matorral incendiada corresponde a la subcategoría "Otras".

Las pérdidas anuales de carbono causadas por incendios forestales ascienden a 188.361 $tC \cdot ha^{-1}$.

Áreas afectadas por incendios (ha/año)	Biomasa media en áreas forestales (t ms/ha)	Pérdidas anuales de carbono (por incendio) (t C/ año)
		V=S*T*(1-U)*H
S	Т	V
3.785,5	32,68	61.862,8
3.785,5	32,82	62.123,0
/	/	/
7.571	/	123.986
6.131	21,00	64.376
		188.361

No se han contabilizado las plagas, porque las superficies afectadas representan un porcentaje muy bajo respecto a la superficie total.

Paso 7. Estimación del total de pérdidas, es la suma de los pasos 4 al 6.

$$\Delta C_{FF_L} = [\ L_{disturbance} + L_{fuelwood} + L_{otherlosses}\]$$

Siendo,

 $\Delta C_{FF_{I}}$ = reducción anual de carbono debida a la pérdida de biomasa.

 $L_{fellings}$ = pérdidas anuales por cortas comerciales.

L_{fuelwood} = pérdidas anuales debido a la recolección de leñas.

L_{other losses} = otras pérdidas.

Las emisiones producidas por todas las pérdidas de biomasa son de 673.457 tC·año⁻¹, (Figura 2.1.4.iv)

Paso 8. Estimación del cambio anual del stock de carbono en la biomasa (Ecuación 2.1.2).

Siguiendo esta metodología obtenemos un resultado final en el que el incremento anual de carbono en la biomasa viva de los terrenos forestales que permanecen como forestales es de 7.491.778 tC·año⁻¹ (Figura 3.2.4.iv). Si tenemos en cuenta las áreas forestales que no cambian de uso (columna A), la consecuencia es que el cambio anual en el stock de carbono de estas superficies es de 1.85 tC·ha⁻¹·año⁻¹.

Subcategorías 1995	Area Forestal que permanece Forestal (ha)	Incremento anual carbono debido al crecimiento (t C/año)	Disminución anual debido a las pérdidas de biomasa (t C/año)	Cambio anual en el stock de carbono en la biomasa viva (t C/año)	Cambio anual en el stock de carbono en la biomasa viva (t C/ha.año)
		IV= A*G*H	W=N+R+V	X=I-W	
	A	ı	W	Χ	
Coníferas	540.869	399.118	/	/	/
Frondosas	1.242.352	1.449.739	/	/	/
Mixto	68.164	38.413	1	/	/
Total arbolado	1.851.385	1.887.269	609.082	1.278.187	0,69
Otros (matorral)	2.202.795	6.277.966	64.376	6.213.591	2,82
TOTALES	4.054.180	8.165.235	673.457	7.491.778	1,85

Recordamos que, según GPG LULUCF, existen tres niveles metodológicos para obtener los datos, según se utilicen ecuaciones simples con datos por defecto hasta sistemas complejos a nivel nacional con datos desarrollados específicamente para cada país. En

Ecuación 2.1.11.
Reducción anual en el stock de carbono debido a pérdidas de biomasa en terrenos forestales que permanecen como terrenos forestales.

Figura 2.1.4.iv.

Cálculo del cambio anual de carbono en la biomasa por diferencia entre incremento y pérdidas, en terrenos forestales que permanecen como forestales, en tC·año¹.

Tabla 2.1.4.viii.
Niveles metodológicos
empleados para
determinar el incremento
anual de carbono en
terrenos forestales
que permanecen como
forestales

Tabla 2.1.4.ix.
Porcentaje de
incertidumbre de los
datos empleados en la
estimación del cambio
anual de carbono en
terrenos forestales
(GPGLULUCF).

Ecuación 2.1.12.
Captaciones o emisiones
anuales en terrenos que
pasan a ser forestales

la Tabla 2.1.4.viii resumimos los niveles de aproximación en la obtención de los datos para la realización del cambio anual en el almacenaje de carbono en la biomasa viva de los terrenos forestales que permanecen como forestales en el periodo 1991 a 1999.

Áreas forestales	Nivel 3
Incremento anual biomasa Aérea y Radical	Nivel 3
Pérdidas anuales de biomasa: Cortas madera y Recolección de leñas	Nivel 2
Otras pérdidas: Incendios	Nivel 2

La obtención de los distintos valores utilizados en el inventario conlleva un porcentaje de incertidumbre que es necesario tener en cuenta para conocer el grado de aproximación del que estamos hablando. Los porcentajes de incertidumbre de los datos empleados se presentan en la Tabla 2.1.4.ix.

Densidad Básica	30%
Factor de Estimación de Biomasa (BEF)	30%
Relación biomasa radical/biomasa aérea	30%
Cortas comerciales	< 30%
Áreas de actividad (métodos SIG)	10-15%

2.1.4.2 Cambio anual de carbono en terrenos que pasan a ser forestales

Un terreno no forestal pasa a ser forestal por forestación o reforestación, bien sea por regeneración natural o artificial (incluyendo plantaciones). Esta conversión implica un cambio de uso. El IPCC establece por defecto que las tierras que pasan a ser forestales tienen un periodo de conversión de 20 años. Después de 20 años los terrenos son tratados como forestales que permanecen como forestales, y se contabilizan en el apartado anterior.

La estimación de emisiones debidas a cambios de uso de no forestal a forestal es la suma del cambio anual de carbono en la biomasa viva, en el suelo y en la materia orgánica muerta, como se muestra en la ecuación 2.1.12.

$$\Delta C_{LF} = (\Delta C_{LF_{LB}} + \Delta C_{LF_{DOM}} + \Delta C_{LF_{Soils}})$$

Siendo,

 $\Delta C_{LF}=$ cambio anual de carbono en terrenos que pasan a ser forestales, en toneladas $C \cdot a \tilde{n} o^{-1}$. $\Delta C_{LF_{LB}}=$ cambio anual de carbono en biomasa viva (aérea y radical) en toneladas $C \cdot a \tilde{n} o^{-1}$. $\Delta C_{LF_{DOM}}=$ cambio anual de carbono en la materia orgánica muerta, en t toneladas $C \cdot a \tilde{n} o^{-1}$. $\Delta C_{LF_{Solik}}=$ cambio anual de carbono en los suelos, en toneladas $C \cdot a \tilde{n} o^{-1}$.

2.1.4.2.1 Cambios en el carbono fijado en la biomasa

El método propuesto para estimar los cambios en el stock de carbono en la biomasa es el mismo que el utilizado hasta el momento, es decir, el cambio es igual a la acumulación debida al crecimiento menos las pérdidas. Debido a que la tasa de crecimiento de un bosque depende en gran medida del sistema de gestión aplicado, la GPG LULUCF propone considerar el cambio de carbono distinguiendo entre los bosques gestionados de forma extensiva (p.ej. bosques con regeneración natural sin intervención humana) y los gestionados de forma intensiva (p.ej. plantaciones forestales en terrenos preparados y fertilizados). El cambio anual de carbono es la suma de los cambios en terrenos que pasan a ser bosques con gestión intensiva y en los que pasan a ser bosques con gestión extensiva.

Sin embargo en este estudio se ha optado por seguir la misma metodología que se propone para estimar el cambio anual debido a los cambios de usos para las otras categorías. El cambio medio del stock de carbono ΔC_{LG} en el periodo 1991-1995 y 1996-1999 (Tablas 3.1.4.x y 3.1.4.xi) es igual al cambio debido a la eliminación de biomasa del uso inicial, antes de la transformación ($L_{conversion}$), más el cambio en el stock de carbono debido al crecimiento en un año de la nueva masa después de la conversión (ΔC_{growth}). El cambio de carbono anual medio por área, ΔC_{LG} , para un determinado cambio de uso del suelo se multiplicará por el área que experimenta la conversión en un determinado año para calcular el cambio total de carbono.

la GPG LULUCF
propone estimar el
cambio de carbono
distinguiendo
entre los bosques
gestionados de
forma extensiva y
los gestionados de
forma intensiva

Ecuación 2.1.1.3. Cambio del carbono anual medio por área.

Tabla 2.1.4.x.
Determinación del cambio de carbono anual en los terrenos que pasan a ser forestales en el periodo 1991-1995.

Tabla 2.1.4.xi.
Determinación del cambio
de carbono anual en los
terrenos que pasan a ser
forestales en el periodo
1996-1999.

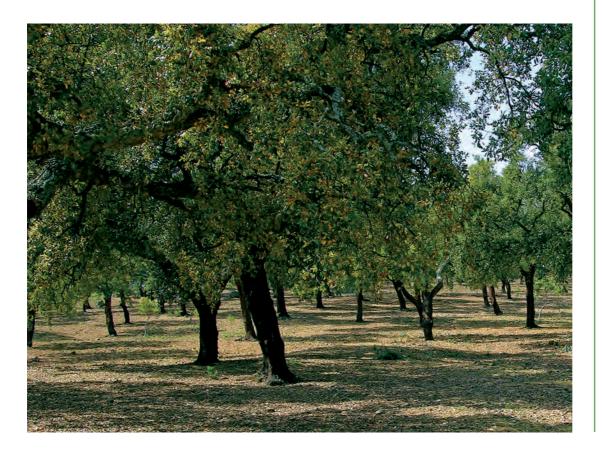
Repoblación en fajas con frondosas.

$$\Delta C_{LG} = L_{conversion} + \Delta C_{growth}$$

Siendo: $L_{conversion} = C_{after} - C_{before}$

Uso inicial	Uso final	L _{conversion} (tC/ha)	Carbono después de cambio (tC/ha) C _{after}	Carbono antes del cambio (tC/ha) C _{before}	Carbono en el primer año del cambio (tC/ha) ΔC_{growth}	Cambio anual de carbono (tC/ha año) ΔC _{LG}
Agrícola Anual	Forestal	0,0	0,0	0,0	1,6	1,60
Agrícola No anual + mixto	Forestal	-10,5	0,0	10,5	1,6	- 8,90
Pastizal	Forestal	0,0	0,0	0,0	1,6	1,60

Uso inicial	Uso final	L _{conversion} (tC/ha)	Carbono después de cambio (tC/ha) C _{after}		Carbono en el primer año del cambio (tC/ha) $\Delta C_{ m growth}$	Cambio anual de carbono (tC/ha año) △C _{LG}
Agrícola Anual	Forestal	0,0	0,0	0,0	1,6	1,60
Agrícola No anual + mixto	Forestal	-2,72	0,0	2,72	1,6	-1,12
Pastizal	Forestal	0,0	0,0	0,0	1,6	1,60


2.1.4.3 Cambio anual total en la Biomasa en terrenos forestales.

El cambio anual total de carbono que ocurre en la biomasa de los terrenos forestales es la suma del cambio ocurrido en los terrenos forestales que permanecen como forestales más el ocurrido en los que cambian de uso. Asimismo, el cambio de los terrenos que no cambian de uso se produce todos los años del periodo, sin embargo, a efectos de cálculo, se ha considerado que el cambio cuando hay una conversión se produce todo el último año de cada periodo, es decir, en 1995 y en 1999. En las tablas 2.1.4.xii y 2.1.4.xiii se presentan los cambios totales de carbono que ocurren en el año en el que se produce la conversión, en 1995 y en 1999 respectivamente, diferenciando los usos iniciales. Debemos recordar que el cambio total en todo el periodo será el cambio debido a la conversión más la suma de los cambios que se producen cada año en los terrenos forestales que no cambian de uso.

	FORESTAL		Cambio en 1995		
Uso inicial	Uso final	Cambio carbono en Biomasa (tC/ha)	Superficie en 1995 (ha)	Cambio total de Carbono en la biomasa (tC)	
Forestal	Forestal	1,85	4.054.180	7.491.778	
Agrícola Anual	Forestal	1,60	3.207	5.140	
Agrícola No anual+mixto	Forestal	-8,90	4.122	-36.677	
Pastizal	Forestal	1,60	5.605	8.982	
TOTAL			4.067.114	7.469.223	

Tabla 2.1.4.xii.

Cambio anual total en
la biomasa de Terrenos
forestales en 1995, en tC.

El cambio total en todo el periodo será el cambio debido a la conversión más la suma de los incrementos que se producen cada año en los terrenos forestales que no cambian de uso.

Dehesa de alcornoques del Real de la Jara. Sevilla.

Tabla 2.1.4.xiii. Cambio anual total en la biomasa de los Terrenos forestales en 1999, en tC.

	FORESTAL		Cambio en 1999			
Uso inicial	Uso final	Cambio carbono en Biomasa (tC/ha)	Superficie en 1999 (ha)	Cambio total de Carbono en la biomasa (tC)		
Forestal	Forestal	1,85	4.018.789	7.426.378		
Agrícola Anual	Forestal	1,60	2.046	3.279		
Agrícola No anual+mixto	Forestal	-1,12	907	-1.017		
Pastizal	Forestal	1,60	13.433	21.529		
TOTAL			4.035.175	7.450.168		

2.1.4.4 Cambios de carbono en suelos de terrenos forestales

El cambio de carbono en suelos es la suma de los cambios en dos tipos de reservorios de carbono: la fracción orgánica de los suelos minerales forestales y los suelos orgánicos. Es necesario aclarar que los suelos orgánicos, considerados separadamente en la GPG LULUCF, no se recogen en este estudio debido a su escasa presencia en Andalucía y a que no se drenan.

La materia orgánica de los suelos es un complejo de moléculas orgánicas procedentes de la humificación de la materia orgánica procedente de la biomasa tanto aérea como radical, y que es incorporada al suelo, bien en forma de partículas libres o bien asociadas a partículas minerales del suelo. También se incluyen ácidos orgánicos, microorganismos vivos o muertos y las sustancias sintetizadas a partir de sus productos en descomposición. La materia orgánica de los suelos forestales se concentra en las capas superiores debido a que la mayor parte de los aportes provienen de la biomasa aérea caída, por eso el estudio considera el carbono en los 30 cm primeros del suelo. Esta materia orgánica del suelo sigue una dinámica continua de entradas y salidas de carbono. Las entradas están determinadas en gran medida por la productividad del bosque, la descomposición de la hojarasca y su incorporación al suelo mineral; y las salidas de carbono hacia la atmósfera se deben a la descomposición de la materia orgánica y a la respiración. En general, la acción del hombre y otras perturbaciones (incendios, plagas, etc) alteran sustancialmente la dinámica del carbono en el suelo.

El método empleado se basa fundamentalmente en la ecuación 2.1.14 otorgada por la GPG LULUCF, que se detalla a continuación:

$$\Delta C_{FF_{MINERAL}} = \sum_{ij} \left[\left(SOC_{j} - SOC_{i} \right) \cdot A_{ij} \right] / T_{ij}$$

Donde:

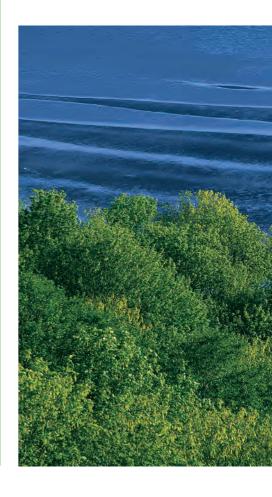
 $\Delta \textit{\textit{C}}_{\textit{FF}_{\textit{MINERAL}}} = \text{cambio anual en el stock de carbono en los suelos forestales minerales (tC · año-1);}$

El cambio de carbono en suelos es la suma de los cambios en dos tipos de reservorios de carbono: la fracción orgánica de los suelos minerales forestales y los suelos orgánicos.

Ecuación 2.1.14.
Cambio anual en el stock
de carbono en los suelos
minerales en terrenos
forestales que permanecen
como terrenos forestales.

 SOC_i ; SOC_j = fracción estable del stock de carbono orgánico del suelo, bajo un estado posterior «j» o anterior «i», (tC · ha-1), siendo:

$$SOC_i = SOC_{ref} \cdot f_{foresttype(i)} \cdot f_{manintensity(i)} \cdot f_{distregime(i)};$$

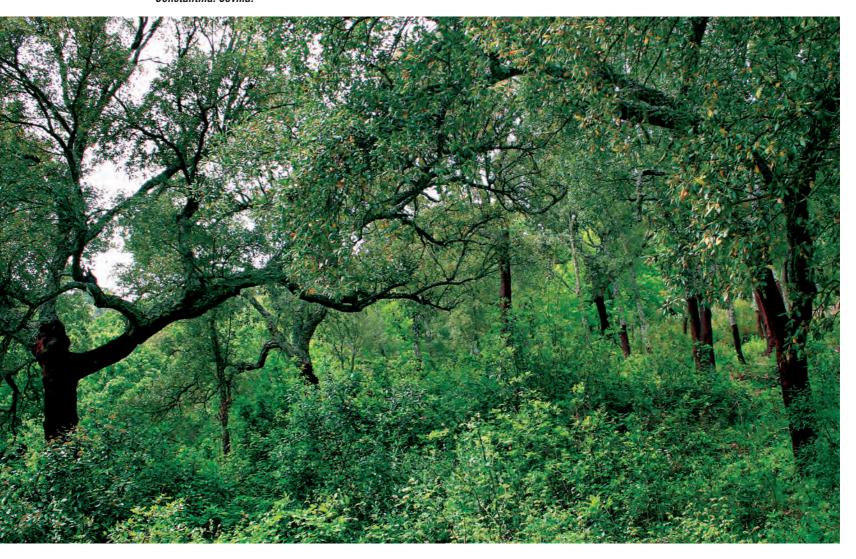

 $SOC_{ref} = el$ stock de carbono de referencia para el bosque original no gestionado (tC \cdot ha $^{-1}$); $f_{foresttype}$; $f_{manintensity}$; $f_{distregime} = factores de ajuste que reflejan el efecto del cambio del bosque no gestionado al tipo de bosque gestionado, la intensidad de la gestión sobre el tipo de bosque, o el cambio en la ocurrencia de perturbaciones respecto del bosque no gestionado, respectivamente (sin unidades);$

 A_{ij} = superficie forestal que experimenta una transición del estado "i" al "j", ha; T_{ii} = periodo de tiempo de la transición desde SOC_i hasta SOC_i , años.

De este modo, el proceso metodológico consta de los siguientes pasos:

- Paso 1. Estimación de la superficie de terrenos forestales en Andalucía, en el año que es realizado el inventario, en este caso se ha tomado el Mapa de Usos de Andalucía de 1999. La estimación se realiza mediante técnicas SIG. Para cada superficie con un código de uso forestal en 1999, hemos tenido en cuenta las superficies de cada tipo de terreno para el año 1995 según el Mapa de Usos y Coberturas Vegetales de Andalucía a escala 1:50.000 de dicho año con el objeto de contar con una valoración de la tendencia de cambio.
- Paso 2. Ponderación de la superficie de cada tipo de suelo dentro de cada tipo de terreno forestal. También tomando como base metodologías SIG, han sido consideradas las superficies de cada tipo de suelo dentro de cada porción del territorio con un tipo de terreno forestal (código de uso), según el Mapa Digital de Suelos IARA CSIC a escala 1:400.000 del año 1989 y el Catálogo de Suelos de Andalucía.
- **Paso 3.** Valoración de los parámetros a emplear en la ecuación de 2.1.14. Se ha aplicado la fórmula 2.1.14 mediante metodologías SIG para obtener el stock C_{MINERAL} y el cambio anual en el stock de carbono $\Delta C_{\text{MINERAL}}$ a cada polígono con un código de uso y una unidad edafológica determinados, de la siguiente manera:
 - SOC_{ref} para cada unidad edafológica se estima según los valores proporcionados por la GPG LULUCF, que son mostrados en la Tabla II.1 del Anexo II.
 - f_{foresttype}, f_{manintensity}, y f_{distregime} para cada código de uso (Cod_uc) se presentan en la Tabla II.6. La obtención de cada factor es incluido en el Anexo II ("Factores de ajuste para el cálculo del cambio de carbono en suelos").
 - SOC₉₅ y SOC₉₉ se calculan con la información disponible, considerando como estado anterior «i» el año 1995 y como estado posterior «j» el año 1999, en función del código de uso y de la unidad edafológica a la que pertenecen:

$$\begin{split} &SOC_{95} = SOC_{ref} \cdot f_{foresttype(95)} \cdot f_{manintensity(95)} \cdot f_{distregime(95)}, \\ &SOC_{99} = SOC_{ref} \cdot f_{foresttype(99)} \cdot f_{manintensity(99)} \cdot f_{distregime(99)}, \end{split}$$


- A₉₅₋₉₉, área para cada polígono se estima mediante SIG;
- T₉₅₋₉₉ para cada zona, se estima en 20 años para terrenos forestales que permanecen como terrenos forestales y en 80 años para terrenos convertidos a terrenos forestales desde otros tipos de uso.

El balance anual durante 1996-1999 que resulta de la aplicación de esta metodología puede verse en la Tabla 2.1.4.xiv, distinguiendo entre terrenos que permanecen como forestales y terrenos convertidos a forestales desde otros usos:

Tabla 2.1.4.xiv.
Resultados preliminares
de balance de carbono
en los suelos de terrenos
forestales en Andalucía.

	Balance anual Carbono (tC/año)	Balance anual CO ₂ (t /año)
Terrenos que permanecen como forestales	93.274	342.315
Terrenos convertidos a forestales	15.580	57.178
TOTAL en Terrenos Forestales	108.854	399.493

Alcornocal de Constantina. Sevilla.

Estos resultados indican que anualmente se captarían de la atmósfera aproximadamente 400.000 t de CO_2 (400 Gg, según las unidades empleadas en los informes del IPCC) por los suelos forestales andaluces debido al uso de la tierra, al cambio de uso de la tierra y a los tratamientos selvícolas. Sin embargo, es imprescindible comparar este estudio con otras estimaciones con el objetivo de obtener una valoración lo más exacta posible de la dinámica del carbono en los suelos forestales andaluces.

En la Tabla 2.2.i del apartado Resultados, se muestran los valores del cambio anual de carbono por hectárea, correspondiente al periodo 1996-1999, para el que se ha hecho la estimación, así como los totales para el periodo 1991-1995. Hemos asumido que el balance de carbono en los suelos no varía entre 1990 y 1999, por lo que el cambio en tC·ha⁻¹ calculado para el segundo periodo se aplicará a las superficies que cambien durante el periodo anterior.

La metodología de la GPG LULUCF constituye una forma razonable de abordar el problema de la cuantificación del balance de carbono en los suelos forestales. Sin embargo, consideramos imprescindible investigar y desarrollar métodos que permitan obtener estimaciones fiables y que se encuentren completamente adaptados a las condiciones particulares de la región de Andalucía. En concreto, sería interesante desarrollar estudios que permitan obtener valoraciones más fiables tanto del contenido en carbono orgánico de referencia (SOC_{ref}) de cada unidad edafológica como de los valores de los factores de ajuste para cada código de uso. Tampoco puede descartarse el desarrollo de una metodología propia que se fundamente sobre otros tipos de parámetros y variables más fáciles de obtener. Por último, es importante incidir en un aspecto metodológico relacionado con las series temporales de datos empleadas en este estudio. La GPG LU-LUCF establece una serie mínima de datos de 20 años, por lo que en este caso, ante la falta de otras fuentes de información disponibles y relevantes, se han extrapolado los datos de una serie temporal de 4 años a una serie de 20 años. Estudios posteriores deberían tomar en consideración esta circunstancia y ampliar la serie de datos de usos y coberturas vegetales del suelo con las existentes del año 1990 y las siguientes.

2.1.4.5 Cambios en el almacenaje de carbono en la materia orgánica muerta de los terrenos forestales.

El segundo sumidero considerado en los terrenos forestales que permanecen forestales es la materia orgánica muerta. El cambio anual en el stock de carbono en la materia orgánica muerta es igual a la suma de los cambios en la madera muerta y los cambios en el stock de carbono en la capa superior del suelo (compuesta por hojarasca, ramillas, frutos, flores y corteza), denominada "litter".

La madera muerta es un sumidero muy diverso con muchos problemas de medición en campo y con muchas incertidumbres acerca de las tasas de transferencia a la capa

indican que
anualmente se
captarían de
la atmósfera
aproximadamente
400.000 t de CO₂ por
los suelos forestales
andaluces debido
al uso de la tierra,
al cambio de uso
de la tierra y a
los tratamientos
selvícolas.

La acumulación de materia orgánica muerta en la capa superficial del suelo es función de la caída anual de hojas, acículas, ramillas, frutos, flores y cortezas menos la tasa anual de descomposición.

más superficial del suelo, al suelo o sobre las emisiones a la atmósfera. Las cantidades de madera muerta dependen del tiempo transcurrido desde la última alteración, la cantidad acumulada durante esa perturbación, la mortalidad natural, la tasa de descomposición y el manejo empleado.

La acumulación de *materia orgánica muerta en la capa superficial del suelo* es función de la caída anual de hojas, acículas, ramillas, frutos, flores y cortezas menos la tasa anual de descomposición. Durante las primeras etapas del desarrollo de una masa, la cantidad de materia de esta capa aumenta rápidamente. Pero el manejo de las masas para extracción de madera, quemas de residuos entre otras actuaciones provocan una importante alteración de sus propiedades.

En este inventario se ha establecido el nivel metodológico básico para la cuantificación de carbono en este sumidero: el IPCC estima que los cambios de carbono en la materia orgánica muerta no son significativos y se consideran cero. No se ha contabilizado el carbono debido a la complejidad de obtención de los datos y a la inexistencia de cifras publicadas al respecto pero sería conveniente desarrollar un estudio para determinar el carbono acumulado en este sumidero, y así conseguir inventarios más precisos y detallados en un futuro, ya que la materia orgánica muerta es un componente muy activo del ciclo del carbono, actuando a la vez de sumidero y de emisor de CO₂.

2.1.5 Terrenos agrícolas

Esta sección proporciona una Guía de Buenas Prácticas para inventariar las emisiones y captaciones en terrenos agrícolas que permanecen como terrenos agrícolas y

Cultivos de la Vega de la Orilla del Guadalquivir.

terrenos que pasan a ser agrícolas. No hay una metodología propia en Andalucía para cuantificar el carbono en zonas agrícolas, por lo que se ha estimado siguiendo la metodología LULUCF. Hemos definido tres subcategorías: "Anual", "No anual" y "Mixto". En la subcategoría "cultivo anual" se incluyen las áreas agrícolas de herbáceos como cereales y arrozales; en la subcategoría "cultivo no anual" están incluidos los viñedos y olivares, entre otros; y en "cultivos mixtos" están incluidos cultivos con especies herbáceas y leñosas. En la Tabla 2.1.5.i se muestran las categorías del Mapa de Usos del Suelo de Andalucía que han sido consideradas como Terreno Agrícola y la correspondiente división en subcategorías utilizadas para realizar la contabilización del cambio en el stock de carbono en las zonas agrícolas.

Código Jerárquico	Denominación Usos Agrícolas	Código Mapa Usos	Subcategoría
3.1.1.1.	Cultivos herbáceos en secano	411	Anual
3.1.1.2.1.	Olivar secano	415	No anual
3.1.1.2.2.	Viñedo	417	No anual
3.1.1.2.3.	Otros cultivos leñosos en secano	419	No anual
3.1.2.1.1.1.	Arrozales	421	Anual
3.1.2.1.1.2.	Cultivos forzados bajo plástico	423	Anual
3.1.2.1.1.3.	Otros cultivos herbáceos regados	425	Anual
3.1.2.1.2.	Regados y no regados	427	Anual
3.1.2.1.3.	No regados	429	Anual
3.1.2.2.1	Parcialmente regados o no regados	430	No anual
3.1.2.2.2.1.	Cítricos	431	No anual
3.1.2.2.2.2	Olivos	433	No anual
3.1.2.2.2.3	Frutales tropicales	435	No anual
3.1.2.2.2.4	Otros cultivos leñosos en regadío	439	No anual
3.2.1.1.	Cultivos herbáceos y leñosos en secano	441	Mixto
3.2.1.2.1.	Olivar-viñedo	445	No anual
3.2.1.2.2.	Otras asociaciones y mosaicos de cultivos leñosos en secano	449	No anual
3.2.2.1.1.	Regados	451	Mixto
3.2.2.1.2.	Parcialmente regados	455	Mixto
3.2.2.1.3.	No regados	457	Mixto
3.2.2.2.	Mosaico de leñosos en regadío	459	Mixto
3.2.3.1.	Con cultivos herbáceos	461	Anual
3.2.3.2.	Con cultivos herbáceos y leñosos	465	Mixto
3.2.3.3.	Con cultivos leñosos	469	No anual
3.2.4.1.	Cultivos herbáceos y pastizales	471	Anual
3.2.4.2.	Cultivos herbáceos y vegetación natural leñosa	473	Mixto
3.2.4.3.	Cultivos leñosos y pastizales	475	No anual
3.2.4.4.	Cultivos leñosos y vegetación natural leñosa	477	No anual
3.2.4.5.	Otros mosaicos de cultivos y vegetación natural	479	Mixto
3.2.4.6.1.	Olivar abandonado	481	No anual
3.2.4.6.2.	Otros cultivos leñosos abandonados	489	No anual

La cantidad de carbono almacenado, emitido o capturado, en zonas de cultivos depende del tipo de cultivo, de la gestión, del suelo y de las condiciones climáticas. Por ejemplo, los cultivos anuales (cereales y vegetales) tienen un periodo de almacenaje

Tabla 2.1.5.i. Clasificación de los usos en subcategorías Agrícolas.

La cantidad de carbono almacenado, emitido o capturado, en zonas de cultivos depende del tipo de cultivo, de la gestión, del suelo y de las condiciones climáticas.

La conversión
de otros tipos
de terrenos en
agrícolas afecta de
muchas maneras en
el stock de carbono
y en otros gases de
efecto invernadero.

Ecuación 2.1.15. Cambio anual en el carbono en terrenos agrícolas que permanecen como agrícolas muy corto porque son cosechados cada año. Sin embargo, los cultivos no anuales leñosos (viñedos, olivares) pueden almacenar una cantidad significativa en la biomasa que permanece después de la cosecha; esta cantidad depende de la especie, densidad, crecimiento, cosechas y podas. El carbono en los suelos es muy significativo y los cambios en el stock están directamente relacionados con el tipo de vegetación y con la mayoría de las prácticas realizadas en los cultivos, incluyendo la rotación, drenaje, laboreos, gestión de residuos y enmiendas.

La conversión de otros tipos de terrenos en agrícolas afecta de muchas maneras en el stock de carbono y en otros gases de efecto invernadero. El cambio de uso de terreno forestal a terreno agrícola provoca una pérdida neta de carbono de la biomasa y del suelo hacia la atmósfera. Sin embargo, los cultivos implantados en zonas poco pobladas de vegetación o muy degradadas resulta en una ganancia neta de carbono tanto en biomasa como en suelo.

2.1.5.1 Cambio anual de carbono en terrenos agrícolas que permanecen como agrícolas

Se contabilizan las emisiones y captaciones en terrenos agrícolas que permanecen como agrícolas en los dos sumideros: cambios en la biomasa viva y cambios en suelos.

$$\Delta C_{\rm CC} = (\Delta C_{\rm CC_{\it LB}} + \Delta C_{\rm CC_{\it Soils}})$$

Siendo:

 ΔC_{cc} = cambio anual de carbono en terrenos agrícolas que permanecen como agrícolas, en toneladas $C \cdot a \tilde{n} o^{-1}$.

 $\Delta C_{\text{CC}_{LB}}$ = cambio anual de carbono en biomasa viva, en toneladas $\text{C}\cdot\text{a}\tilde{\text{n}}\text{o}^{-1}$.

 $\Delta C_{\text{CC}_{\text{Solits}}}$ = cambio anual de carbono en los suelos, en toneladas C·año-1.

2.1.5.1.1 Cambios en el carbono fijado en la biomasa

En este trabajo hemos tenido en cuenta sólo los cambios en la biomasa de los cultivos leñosos *no anuales*. En los cultivos anuales, el incremento anual debido al crecimiento es igual a las pérdidas por cosecha y a la mortalidad de cada año, por esa razón no hay acumulación neta anual en estos terrenos de cultivos.

La ecuación para calcular el carbono en la biomasa viva de los cultivos leñosos no anuales es la ecuación 2.1.15. utilizada anteriormente en el apartado de los terrenos forestales, Actualmente no hay suficiente información que proporcione valores por defecto para estimar los cambios en el stock de carbono en la materia orgánica muerta

en terrenos agrícolas que permanecen como tales, por lo que tampoco se han considerado.

En la metodología descrita en la GPG LULUCF para la estimación del cambio de carbono en cultivos explica la utilización del método por defecto, que es el que emplearemos. Asume la hipótesis de que en la cosecha se elimina toda la biomasa, y por lo tanto se pierde todo el carbono que hay en la superficie que está aprovechándose. En este inventario se considera más adecuado, por el tipo de cultivo (olivar, frutales,...) suponer que las pérdidas son causadas por las podas que se realizan cada año, en las que se extrae una parte de la biomasa.

El cambio anual de carbono es igual a la diferencia entre el crecimiento anual y las pérdidas anuales por cosechas. Acerca de los cultivos no anuales, tenemos datos concretos sobre el olivar en Andalucía, y, ante la falta de otras referencias, las cifras obtenidas para el olivo se han extrapolado al resto de cultivos leñosos. En la Tabla 2.1.5.ii hemos calculado las pérdidas anuales (L) debidas a las podas utilizando los datos de podas anuales del olivo (SODEAN, 2003). Esta cantidad es de **0.69 tC·ha**-¹·año-¹.

Olivares de la Campiña Cordobesa.

Tabla 2.1.5.ii.
Obtención de las pérdidas
anuales de carbono
por poda de olivar en
Andalucía.

	CÁLCULO DE LAS PÉRDIDAS POR PODAS (L) tC/ha año					
	Tabla de rendimientos por tipo de olivar					
PODA ANUAL	Hoja (kg/ha)	Ramón (kg/ha)	Leña (kg/ha)	Total (kg/ha)		
Olivar intenso regadío	893	820	0	1.713		
Olivar intenso secano	892	818	0	1.710		
Olivar intenso regadío	754	892	0	1.646		
Olivar intenso secano	893	819	0	1.712		
PODA BIANUAL	Hoja (kg/ha)	Ramón (kg/ha)	Leña (kg/ha)	Total (kg/ha)		
Olivar intenso regadío	802	2304	337	3.443		
Olivar intenso secano	802	1626	649	3.077		
Olivar intenso regadío	599	1722	668	2.989		
Olivar intenso secano	405	1164	570	2.139		
		Pérdidas por poda (t /	ha año) peso verde	1,58		
	Pérdidas por poda (tC /ha año) 0,69					

Fuente: SODEAN 2003.

El dato empleado de existencias de olivo es que en Andalucía hay 185.653.000 olivos, según las estadísticas del MAPA. Hemos considerado como media que el número de pies de olivo de toda Andalucía está distribuido de manera uniforme en tres clases diamétricas: 15, 20 y 25 cm, atribuyéndolas como las más representativas de los cultivos de olivar. Utilizando los valores modulares de incremento de carbono para el olivo se obtiene que la cantidad de carbono de los olivares se incrementa en 1.390.082 tC cada año, lo que supone un crecimiento de **0.97 tC·ha**-¹·año-¹. El cálculo del cambio anual de carbono es **0.42 tC·ha**-¹·año-¹, reflejado en la Tabla 2.1.5.iii. Está referido al

Olivo centenario de Andalucía.

año 1999, porque han sido consideradas las superficies de producción y las ocupadas por los cultivos no anuales este año, y datos recientes de número de pies. Este cambio se desarrolla constante a lo largo de los años desde 1990 a 1999. La principal razón es que sólo disponemos de las cifras empleadas, no existen otros datos relativos a otros años para poder realizar otras estimaciones de cambio en otros años.

CÁLCULO DEL CAMBIO ANUAL DE CARB	ONO (tC/ha año)	
G acumulación anual de biomasa (tC/ha año)	G	0,97
L pérdidas anuales de biomasa (tC/ha año)	L	0,69
Superficie Cultivo No Anual + Mixto (mapa Usos 1999) (ha)	S1	2.139.159
Superficie de Producción de no herbáceas (AEA2001) (ha)	S2	1.703.665
Acumulación anual de biomasa (tC/año)	G-S1	2.074.984
Pérdidas anuales de biomasa (tC/año)	L·S2	1.175.529
Cambio anual carbono Agrícola no anual a Agrícola no anual (tC/año)	G·S1-L·S2	899.455
Cambio anual carbono Agrícola no anual a Agrícola no anual (tC/ha año)	(G·S1-L·S2)/S1	0,42

Tabla 2.1.5.iii.

Determinación del cambio anual de carbono en terrenos de cultivos agrícolas no anuales.

2.1.5.2 Cambio anual de carbono en terrenos que pasan a ser agrícolas

La conversión a terrenos agrícolas por lo general implica una emisión de CO_2 , así como de N_2O y CH_4 , tanto en la biomasa como en el suelo, excepto los terrenos áridos en los que no existiese vegetación o las áreas degradadas. Precisamos las dos subcategorías: cambios en el carbono de la biomasa y de carbono en los suelos.

Almendros del Marquesado del Cenete al norte de Sierra Nevada.

Ecuación 2.1.16. Cambio anual en el carbono en terrenos que pasan a ser agrícolas

$$\Delta C_{LC} = (\Delta C_{LC_{LB}} + \Delta C_{LC_{LB}})$$

Siendo,

 ΔC_{LC} = cambio anual de carbono en cultivos que permanecen como cultivos, en t $C \cdot a\tilde{n}o^{-1}$.

 $\Delta \textit{\textbf{C}}_{\textit{LC}_\textit{LB}} = \text{cambio anual de carbono en biomasa viva, en } \text{tC-}\text{año-}^{\text{-}1}.$

 $\Delta C_{LC_{LB}}$ = cambio anual de carbono en los suelos, en t $C \cdot a\tilde{n}o^{-1}$.

2.1.5.2.1 Cambios en el carbono fijado en la biomasa

El carbono en la materia orgánica muerta no se ha tenido en cuenta porque no existe suficiente información ni la PGLULUCF da valores por defecto para determinarlo. El cambio total de carbono provocado por la conversión de terrenos forestales y pastos en agrícolas se estima multiplicando el área convertida en un año por el cambio de carbono ocurrido. El cambio de carbono anual medio por área para un determinado cambio de uso es igual al cambio debido a la eliminación de biomasa del uso inicial, antes de la transformación ($L_{conversion}$), más el cambio en el stock de carbono debido al crecimiento en un año del nuevo cultivo después de la conversión (ΔC_{growth}). Igualmente, el cambio de carbono anual medio por área para un determinado cambio de uso del suelo se multiplica por el área que experimenta la conversión en un determinado año ($A_{conversion}$). Por otro lado, el cambio en la biomasa de los cultivos anuales es cero porque, como se ha mencionado anteriormente, la ganancia debida al crecimiento se pierde en las cosechas. Los pasos a seguir son los siguientes:

Girasoles. Cultivo típico de la campiña andaluza.

Paso 1. Estimación del área que experimenta el cambio de no-agrícola a agrícola en un año ($A_{conversion}$), diferenciando cada uso del suelo y el cultivo final (anual o no anual leñoso).

Paso 2. Estimación del cambio total en el stock de carbono debido a todos los cambios de uso sumando las estimaciones individuales para cada conversión.

$$\Delta C_{LC_{LB}} = A_{conversion} \cdot (L_{conversion} + \Delta C_{growth})$$

$$L_{conversion} = C_{after} - C_{before}$$

Siendo,

 $\Delta \textit{\textbf{C}}_{\textit{LC}_{\textit{IB}}} = \text{cambio anual de carbono en terrenos convertidos a agrícolas,} t\text{C} \cdot \text{año}^{-1}.$

A_{conversión} = área convertida anualmente a agrícola, ha ·año⁻¹

 $L_{conversión}$ = cambio anual de carbono para cada tipo de conversión, $tC \cdot ha^{-1}$.

 ΔC_{prowth} = carbono a partir de un año de crecimiento de la vegetación, tC·ha⁻¹.

C_{after} = stock de carbono inmediatamente después de la conversión, tC·ha⁻¹

 C_{before} = stock de carbono inmediatamente antes de la conversión, t $C \cdot \text{ha}^{-1}$

El stock de carbono en la biomasa inmediatamente después de la conversión (C_{after}) se considera cero porque en el año del cambio se elimina toda la biomasa (GPG LULUCF, 2003). De la misma forma, el stock de carbono inmediatamente antes de la conversión de un terreno forestal (C_{before}) se ha considerado como el 50% de la cantidad de biomasa seca por hectárea. La biomasa seca por hectárea ha sido calculada con los datos de volumen total del IFN2 para coníferas y frondosas y la biomasa de las formaciones de matorral, ponderadas con la superficie que ocupan los estratos de cada categoría respecto de

Ecuación 2.1.17. Cambio anual en el carbono en la biomasa en terrenos que pasan a ser agrícolas


Cereal incipiente. Altiplano del municipio de María. Almería.

Tabla 2.1.5.iv.

Cambio anual de carbono
en terrenos convertidos
a Agrícolas en el periodo
1991-1995, en tC·ha⁻¹·año⁻¹.

Tabla 2.1.5.v.
Cambio anual de carbono
en terrenos convertidos
a Agrícolas en el periodo
1996-1999, en tC·ha⁻¹·año⁻¹.

la superficie total de todos los estratos según el IFN2. Han sido realizadas estimaciones en la Tabla 2.1.4.vii y en la Tabla 2.1.3.ii, siendo la biomasa media de los terrenos forestales 29.3 t ms ·ha-1 y la cantidad de carbono es 14.6 tC·ha-1.

En la Tablas 3.1.5.iv y 3.1.5.v. presentamos el cálculo del cambio anual de carbono en la biomasa de terrenos forestales y pastizales que pasan a ser terrenos agrícolas durante el periodo 1991-1995 y 1996-1999 respectivamente.

Uso inicial	Uso final	$L_{conversion}(C_{after}\!\!-\!C_{before})\ (tC\cdotha^{-1})$	C _{after} (tC ·ha ⁻¹)	C _{before} (tC·ha ⁻¹)	ΔC _{growth} (tC ⋅ha ⁻¹)	ΔC _{LG} (tC ·año ⁻¹)
Farastal	Anual	-14,6	0,0	14,6	0,0	- 14.63
Forestal	No anual	-14,6	0,0	14,6	0,88	- 13,75
Dooting	Anual	0,0	0,0	0,00	0,00	0
Pastizal	No anual	0,0	0,0	0,00	0,88	0,88

Uso inicial	Uso final	Lconversion (Cafter— Cbefore) (tC ·ha-1)	Cafter (tC ·ha-1)	Cbefore (tC ·ha-1)	∆Cgrowth (tC ·ha-1)	∆CLG (tC ·año-1)
Forestal	Anual	-22,14	0	22,14	0	- 22.14
roiestai	No anual	-22,14	0	22,14	0,88	- 21,26
Destinal	Anual	0	0	0	0	0
Pastizal	No anual	0	0	0	0,88	0,88

El cambio de uso de forestal a agrícola supone una pérdida de carbono debido a la disminución de la biomasa que este cambio conlleva, y sin embargo la conversión de pastizal a agrícola supone una ganancia, porque se pasa de tener poca biomasa en el pastizal a incrementarla en forma de cultivos.

2.1.5.3 Cambio anual total en la biomasa de terrenos agrícolas

El cambio anual total de carbono que ocurre en la biomasa de los terrenos agrícolas es la suma del cambio ocurrido en los terrenos que permanecen como agrícolas más el ocurrido en los terrenos que cambian de uso. En las tablas 2.1.5.vi a 2.1.5.ix se presentan los cambios totales, diferenciando los usos iniciales, en 1995 y en 1999 respectivamente. Al igual que en la categoría forestal, el cambio de los terrenos que no cambian de uso se produce todos los años del periodo, sin embargo el cambio cuando hay una conversión es atribuible a que se produce todo el último año de cada periodo, es decir, en 1995 y en 1999.

Hemos diferenciado las subcategorías agrícolas anuales y no anuales, por lo que ha sido necesario calcular los cambios de carbono entre estas subcategorías, para cada periodo.

Tabla 2.1.5.vi.
Cambio anual total en la biomasa de los Terrenos agrícolas que no han cambiado de uso, en 1991-1995, en tC.

Tabla 2.1.5.vii. Cambio anual total en la biomasa de los Terrenos agrícolas, en 1995, en tC.

Tabla 2.1.5.viii.
Cambio anual total en la biomasa de los Terrenos agrícolas que no han cambiado de uso, en 1999, en tC.

Tabla 2.1.5.ix.

Cambio anual total en la biomasa de los Terrenos agrícolas, en 1999, en tC.

AGRÍCOLA AGRICOLA			Cambio	en 1991-1995
Uso inicial	Uso final	Cambio carbono en Biomasa (tC/ha)	Superficie en 1995 (ha)	Cambio total de Carbono en la biomasa (tC)
Agrícola Anual	Agrícola Anual	0	2.071.214	0
Agrícola Anual	Agrícola No anual+mixto	0,88	38.846	34.185
Agrícola No anual+mixto	Agrícola Anual	-10,50	14.145	-148.522
Agrícola No anual+mixto	Agrícola No anual+mixto	0,42	1.939.988	808.275
	TOTAL		4.064.193	693.937

	AGRÍCOLA			Cambio en 1995	
Uso inicial	Uso final	Cambio carbono en Biomasa (tC/ha)	Superficie en 1995 (ha)	Cambio total de Carbono en la biomasa (tC)	
Agrícola	Agrícola	(consultar tabla AGRIC-AGRIC)	4.064.193	693.937	
Forestal	Agrícola Anual	-14,63	13.307	-194.735	
ruiestai	Agrícola No anual+mixto	-13,75	11.499	-158.155	
Pastizal	Agrícola Anual	0	15.413	0	
Pastizai	Agrícola No anual+mixto	0,88	1.856	1.633	
	TOTAL		4.106.268	342.680	

AGRÍCOLA AGRICOLA			Cambio en 1996-1999	
Uso inicial	Uso final	Cambio carbono en Biomasa (tC/ha)	Superficie en 1999 (ha)	Cambio total de Carbono en la biomasa (tC)
Agrícola Anual	Agrícola Anual	0	1.954.739	0
Agrícola Anual	Agrícola No anual+mixto	0,88	84.978	74.780
Agrícola No anual+mixto	Agrícola Anual	-2,72	3.381	-9.207
Agrícola No anual+mixto	Agrícola No anual+mixto	0,42	2.054.181	855.852
	TOTAL		4.097.278	921.425

	AGRÍCOLA AGRICOLA			n 1996-1999
Uso inicial	Uso final	Cambio carbono en Biomasa (tC/ha)	Superficie en 1999 (ha)	Cambio total de Carbono en la biomasa (tC)
Agrícola	Agrícola	(consultar tabla AGRIC-AGRIC)	4.097.278	921.425
Forestal	Agrícola Anual	-22,14	8.214	-181.848
	Agrícola No anual+mixto	-21,26	11.635	-247.331
Pastizal	Agrícola Anual	0	13.940	0
	Agrícola No anual+mixto	0,88	2.801	2.465
	TOTAL		4.133.869	494.711

2.1.5.4 Cambios en el carbono de los suelos de terrenos agrícolas

En la Guía IPCC, el carbono en los suelos se mide hasta una profundidad de 30 cm por defecto, sin incluir el carbono de los residuos de la superficie ni los cambios en el carbono inorgánico. Hemos sometido a consideración que, en la mayoría de los suelos de cultivos, los residuos que quedan desaparecen debido a las posteriores labores en el terreno, como por ejemplo el arado, que hacen que se vuelvan a incorporar al suelo o porque representa una cantidad baja.

Ecuación 2.1.18.
Cambio anual en el stock
de carbono en suelos
agrícolas que permanecen
como agrícolas

El cambio anual de carbono en suelos es la suma del cambio de carbono en suelos minerales, emisiones en suelos orgánicos y emisiones debidas a las enmiendas calizas, según se muestra en la ecuación 2.1.18.

$$\Delta C_{\text{CC}_{\text{Soils}}} = \Delta C_{\text{CC}_{\text{Mineral}}} - \Delta C_{\text{CC}_{\text{Organic}}} - \Delta C_{\text{CC}_{\text{Lime}}}$$

Siendo,

 $\Delta C_{\text{CC}_{\text{Soils}}}$ = cambio anual en el carbono en suelos de terrenos agrícolas que permanecen como terreno agrícolas, t $\text{C}\cdot\text{año}^{-1}$..

 $\Delta C_{\text{CC}_{\textit{Mineral}}} = \text{cambio anual en el carbono en suelos minerales, tC} \cdot \text{año}^{\text{-}1}.$

 $\Delta C_{cc}^{nninerau}_{Organic} =$ emisiones anuales de carbono de cultivos en suelos orgánicos, t $C \cdot a$ ño $^{-1}$.

 $\Delta C_{\text{CC}_{\textit{Lime}}}$ = emisiones anuales de carbono debidas a enmiendas calizas, t $C \cdot$ año $^{-1}$.

Determinamos que los cambios en la materia orgánica muerta y el carbono inorgánico son cero en el nivel metodológico que estamos utilizando.

Suelos minerales

El método de estimación en suelos minerales se basa en cambios del stock de carbono durante un periodo finito, que se considera de 20 años por defecto. Se calcula el carbono en el año del inventario (SOC_0), el carbono anterior al inventario (SOC_{0-T}) y los factores de cambio aplicados a los dos momentos. Los factores de cambio tienen en cuenta el tipo de clima, suelo y tratamiento del terreno. La tasa anual de emisionescaptaciones es la diferencia entre ambas cantidades dividido entre el periodo de tiempo del inventario.

El método de estimación en suelos minerales se basa en cambios del stock de carbono durante un periodo de 20 años.

Cultivos de la Vega del Guadalquivir.

Ecuación 2.1.19.
Cambio anual en el stock de carbono en suelos minerales en cada sistema de cultivo

$$\Delta C_{CC_{Mineral}} = \left[\left(SOC_0 - SOC_{0-T} \right) \cdot A \right] / T$$

$$SOC = SOC_{REF} \cdot F_{LU} \cdot F_{MG} \cdot F_{I}$$

Siendo,

 $\Delta C_{\text{CC}_{Mineral}}$ = cambio anual en suelos minerales, t $\text{C} \cdot \text{a}\tilde{\text{n}}\text{o}^{-1}$

 SOC_0^- = carbono en suelos orgánicos en el año del inventario, t $C \cdot año^{-1}$

 SOC_{0-T} = carbono en suelos orgánicos T años antes del inventario, tC·año⁻¹

T = periodo de tiempo que dura el inventario, 20 años por defecto.

A = área de cada parcela, ha

SOC_{REF} = carbono de referencia, tC·año⁻¹

 F_{LU} = factor de cambio para cada uso o cada cambio de uso, refleja los niveles de carbono asociados a cada tipo de uso;

F_{MG} = factor de cambio para cada régimen de cultivo (laboreos, etc), representa diferentes tipos de tratamientos de preparación del suelo;.

F_I = factor de cambio por aportación de materia orgánica. que representa los distintos niveles de carbono aportado al suelo.

Los factores utilizados han sido establecidos según los criterios definidos por el IPCC en la Guía de Buenas Prácticas. En el Anexo II se muestra la Tabla II.1 con los carbonos de referencia según el tipo de suelo y también en la Tabla II.7 se muestran los factores elegidos para cada uso del suelo con su respectiva descripción.

Para el cálculo del cambio de carbono en suelos minerales seguimos el mismo proceso que se ha descrito en los terrenos forestales. Los pasos son los siguientes:

- **Paso 1.** Selección de la cantidad de carbono de referencia (SOC_{REF}) según los tipos de suelos que existen en cada área inventariada. Los SOC_{REF} están descritos en el apartado de suelos forestales.
- **Paso 2.** Selección de las condiciones de manejo de los pastos (F_{MG}) que hay al principio del periodo del inventario, el factor F_{LU} , y la cantidad de carbono aportada (F_I) . Estos factores multiplicados por el carbono de referencia en el suelo, proporcionan una estimación del stock inicial de carbono (SOC_{0-T}) del periodo del inventario.
- **Paso 3.** Cálculo de SOC₀ repitiendo el paso 2°, utilizando el mismo SOC_{REF}, pero con los factores de uso del suelo, gestión y aporte correspondientes al año de realización del inventario.
- **Paso 4.** Cálculo de la media anual de cambio en el carbono del suelo en el área estudiada durante el periodo del inventario ($\Delta C_{CC \, mineral}$).

Realizando todos los cálculos se obtiene que el cambio anual de carbono en los suelos de los terrenos agrícolas que permanecen como agrícolas es de 13.747 tC·ha⁻¹ año⁻¹ y de 20.408 tC·ha⁻¹ año⁻¹ en los terrenos que pasan a ser agrícolas durante el periodo 95-99. El total es 34.154 tC·ha⁻¹ año⁻¹.

Tabla 2.1.5.x.

Balance anual de carbono
en los suelos de los
terrenos agrícolas en
Andalucía, tC-año¹

	Balance anual Carbono (tC∙año¹)
Terrenos que permanecen como agrícolas	13.747
Terrenos convertidos a agrícolas	20.408
TOTAL en terrenos agrícolas	34.154

En esta categoría hemos calculado el carbono del suelo de la misma manera que en el caso de los terrenos forestales, es decir, para el periodo 1996-1999, y suponiendo que el cambio anual resultante para este periodo es el mismo durante 1990 a 1999. Los resultados se muestran en la Tabla 2.2.i del apartado Resultados.

Suelos orgánicos

La metodología básica para estimar el cambio en suelos orgánicos es asignar una pérdida anual de carbono por drenaje y otras perturbaciones, por ejemplo, laboreos del

Cultivo de fresas en Huelva.

terreno para la producción agrícola ya que estas acciones estimulan la oxidación de la materia orgánica acumulada en ambiente anaeróbico durante un largo periodo de tiempo. En este estudio no se ha contabilizado el carbono en estos suelos debido a su escasa presencia en Andalucía.

Enmiendas calizas

La Guía IPCC considera la aplicación de carbonatos como una fuente de emisión de CO₂. Aunque la emisión debida a las enmiendas calizas tiene una duración de varios años (después de los cuales se vuelve a repetir la enmienda) dependiendo del suelo, clima, etc, el IPCC establece que se emite todo el mismo año en el que se aplica. No se han encontrado datos de las cantidades de enmiendas calizas que se realizan en Andalucía por lo que no se ha tenido en cuenta este factor de emisión.

2.1.6 Pastizales

La categoría Pastizal definida en la GPG LULUCF, cubre aproximadamente una cuarta parte de la superficie terrestre y abarca un amplio rango de condiciones climáticas, desde árido hasta húmedo. Puede variar mucho su grado e intensidad de gestión. Hemos considerado las subcategorías de "pastizal continuo" y "pastizal con claros", según la clasificación del Mapa de Usos de Andalucía, ya que el resto de categorías en las que aparece pasto han sido incluidas en la categoría forestal, que es más acorde con las definiciones de bosque establecidas en España.

La categoría Pastizal definida en la GPG
LULUCF, cubre
aproximadamente
una cuarta parte
de la superficie
terrestre y abarca
un amplio rango
de condiciones
climáticas, desde
árido hasta húmedo.

Pastizal del Valle de los Pedroches

Tabla 2.1.6.i. Usos considerados como Pastizales

En la Tabla 2.1.6.i. mostramos las categorías del Mapa de Usos del Suelo de Andalucía que han sido consideradas como pastizales.

	Denominación	Código Mapa Usos
4.3.1	Pastizal continuo	921
4.3.2	Pastizal con claros (roca, suelo)	925

2.1.6.1 Cambios en el carbono de pastizales que permanecen como pastizales

El carbono en los pastos permanentes está influenciado por las actividades humanas y las alteraciones naturales, incluyendo cortas de biomasa leñosa, degradación, fuegos, mantenimiento del pasto, pastoreo, etc. La producción anual de biomasa puede ser grande pero debido a la rápida tasa de renovación y pérdidas por pastoreo y fuegos, el carbono en la biomasa aérea no llega a unas pocas toneladas por hectárea.

La productividad de la pradera natural, ha sido considerada históricamente mala pues, en promedio, su disponibilidad total anual no supera las 2 t·ha-1 de materia seca, siendo en muchos sectores no superior a los 500 kg·ha-1, la situación actual de la pradera no corresponde a su real potencial, su estado es sólo reflejo del mal manejo de los suelos de la región, debido al cultivo repetido de cereales y posterior barbecho del suelo por 2 ó 3 años, permitiendo la invasión de malezas (Olivares, 1997, citado por Saavedra, 2002).

En esta sección proporcionamos una metodología para estimar los cambios en el carbono en pastizales que permanecen como pastizales en dos sumideros: biomasa viva y suelos. Actualmente no existe suficiente información disponible para ofrecer valores medios que puedan ser empleados por defecto para determinarlo en la materia orgánica muerta, por lo que el cambio de carbono en este sumidero no se ha sometido a valoración.

Ecuación 2.1.20.
Cambio anual en el carbono en pastizales que permanecen como pastizales

$$\Delta C_{GG} = (\Delta C_{GG_{LB}} + \Delta C_{GG_{Soils}})$$

Siendo,

 ΔC_{GG} = cambio anual de carbono en pastizales que siguen como pastizales, en t $\mathrm{C}\cdot\mathrm{a}$ ño-1.

 $\Delta C_{\mathrm{GG}_{LB}} =$ cambio anual de carbono en biomasa viva, en t $\mathrm{C}\cdot\mathrm{a}$ ño-1.

 $\Delta C_{GG_{Soils}} =$ cambio anual de carbono en los suelos, en t ${
m C\cdot a\~no^{-1}}.$

2.1.6.1.1 Cambios en el carbono fijado en la biomasa

Ponderamos el nivel básico en el que, según LULUCF, se considera que no hay cambio de carbono de la biomasa viva de los pastizales. El carbono en los pastizales, en los

que las prácticas de gestión no varían, puede deberse a que está en una cantidad prácticamente estable, en la que el carbono acumulado debido al crecimiento se equilibra con las pérdidas por fuego y descomposición. En pastizales en los que la gestión varía a menudo, los cambios en las cantidades de carbono pueden ser significativos pero no es el caso considerado para los pastizales andaluces.

2.1.6.2 Cambio anual de carbono en terrenos convertidos a pastizales

Los terrenos que se convierten a pastizales suelen ser generalmente los forestales, agrícolas y en menor medida humedales y urbanos. Este proceso implica un incremento o disminución del carbono menos claro que en el caso de la conversión a cultivos. La conversión de otros usos y de estados naturales puede ser una fuente de emisión neta tanto en la biomasa como en los suelos. El cambio anual se calcula según la siguiente ecuación.

$$\Delta C_{LG} = (\Delta C_{LG_{LB}} + \Delta C_{LG_{Soils}})$$

Siendo,

 ΔC_{LG} = cambio anual de carbono en terrenos que pasan a ser pastizales, en toneladas de $C \cdot a \tilde{n} o^{-1}$ (t $C \cdot a \tilde{n} o^{-1}$).

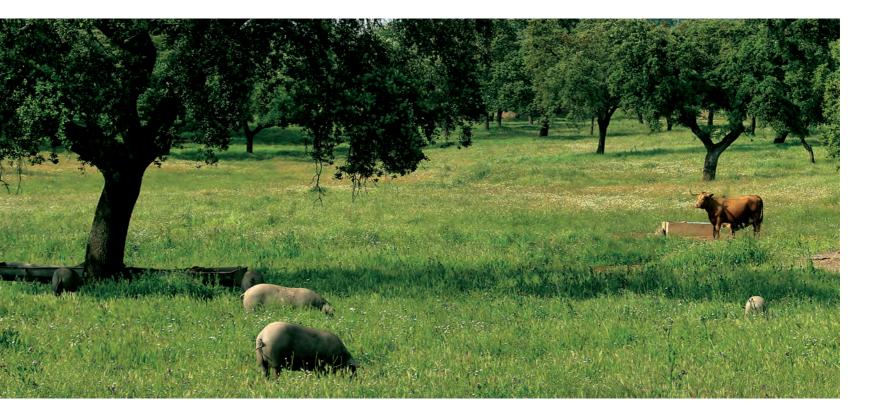
 $\Delta C_{LG_{LB}}$ = cambio anual de carbono en biomasa viva, en t $C \cdot a \tilde{n} o^{-1}$.

 $\Delta C_{LG_{Soils}}$ = cambio anual de carbono en los suelos, en $tC \cdot a \tilde{n} o^{-1}$.

Ecuación 2.1.21. Cambio anual en el carbono en terrenos que pasan a ser pastizales

Dehesa de la Sierra de Aracena.

2.1.6.2.1 Cambios en el carbono fijado en la biomasa


El cambio medio del stock de carbono es igual al cambio del stock de carbono debido a la eliminación de la biomasa del uso inicial (carbono de la biomasa inmediatamente después de la conversión menos el carbono de la biomasa que existía antes), más la acumulación de carbono en la biomasa debida al crecimiento producido después de la conversión. En el nivel básico, se asume que el carbono en la biomasa inmediatamente después de la conversión (C_{before}) es cero, ya que es el momento en el que se ha eliminado toda la vegetación y antes de que la hierba u otras plantas sean plantadas, sembradas o regeneradas de manera natural. En los años siguientes, los cambios en los stocks de carbono en la biomasa viva, serán los correspondientes a los pastos que permanecen como pastos.

Los pasos seguidos para contabilizar el cambio son los siguientes:

- 1. Estimación del área, forestal o agrícola, que pasa a ser pastizal en un año.
- 2. Para cada tipo de terreno convertido a pastizal, se utilizará la ecuación 2.1.22 para ponderar el cambio de carbono.
- 3. El cambio total será la suma de todas las estimaciones individuales.

La suposición por defecto es que todo el carbono de la biomasa se pierde a la atmósfera debido a los procesos de descomposición. Por ello, a este nivel no se diferencian las emisiones inmediatas por quema u otras actividades de conversión.

Dehesa en Sierra Morena.

Ecuación 2.1.22.
Cambio anual en el carbono en la biomasa en terrenos que pasan a ser pastizales

$$\Delta C_{LG_{LB}} = A_{conversion} \cdot (L_{conversion} + \Delta C_{growth})$$

$$L_{conversion} = C_{after} - C_{before}$$

Siendo,

 ΔC_{LG} = cambio anual de carbono en terrenos convertidos a pastos, en t $C \cdot a\tilde{n}o^{-1}$.

A_{conversion} = área convertida anualmente a pastizal, ha∙año¹¹

 $L_{conversion}$ = cambio anual de carbono por área para cada tipo de conversión, $tC \cdot ha^{-1}$.

 ΔC_{growth} = carbono a partir de un año de crecimiento de la vegetación después de la conversión, $tC \cdot ha^{-1}$.

C_{after} = stock de carbono inmediatamente después de la conversión, tC·ha⁻¹

C_{before} = stock de carbono inmediatamente antes de la conversión, tC·ha⁻¹

La biomasa de los nuevos pastizales tiende a estabilizarse en unos cuantos años, por ejemplo, de 1 a 2 años en la biomasa aérea de herbáceas, y de 3 a 5 para la biomasa radical, dependiendo del tipo de conversión (GPG LULUCF).

Utilizando la ecuación 2.1.22. obtenemos las tablas 2.1.6.ii y 2.1.6.iii en las que describimos los cálculos realizados para determinar el cambio anual de carbono y los datos empleados según los usos anteriores, para el periodo 1991-1995 y 1996-1999 respectivamente. El carbono después de la transformación (C_{before}) es cero porque se elimina toda la biomasa; $\Delta C_{growth'}$ para pastizales es cero también porque la biomasa que crece en el nuevo Pastizal desaparece ese mismo año.

Los cambios de uso considerados son los que cambian de forestal y agrícola a Pastizal. La GPG LULUCF no contempla los otros cambios (humedales, urbano y otros terrenos a pastizal) y además las superficies de cambio son pequeñas, por eso no se han tenido en cuenta.

Uso inicial	L _{conversion} (tC·ha ⁻¹)	C _{after} (tC·ha⁻¹)	C _{before} (tC·ha ⁻¹)	∆C _{growth} (tC·ha ⁻¹)	$\Delta \mathbf{C}_{LG}$ (tC·ha ⁻¹ ·año ⁻¹)
Forestal	-14,63	0	14,63	0	-14,63
Agrícola Anual	0	0	0	0	0
Agrícola No anual	-10.50	0	10.50	0	-10.50

Uso inicial	L _{conversion} (tC·ha ⁻¹)	C _{after} (tC·ha ⁻¹)	C _{before} (tC·ha ⁻¹)	ΔC _{growth} (tC·ha ⁻¹)	∆C _{LG} (tC·ha ⁻¹ ·año ⁻¹)
Forestal	-22,14	0	22,14	0	-22,14
Agrícola Anual	0	0	0	0	0
Agrícola No anual	-2,72	0	2,72	0	-2,72

De los resultados obtenidos se observa que los cambios de uso de terrenos forestales y agrícolas a pastizales provocan una pérdida neta de carbono. En el cambio de terreno de agrícola anual a pastizal, no se produce captación de CO_2 .

Tabla 2.1.6.ii.

Cambio anual de carbono en terrenos convertidos a pastos en el periodo 1991-1995, en tC·ha¹·año¹.

Tabla 2.1.6.iii.

Cambio anual de carbono en terrenos convertidos a pastos en el periodo 1996-1999, en tC·ha¹-año¹.

2.1.6.3 Cambio anual total en la biomasa de pastizales

Como hemos explicado en las categorías anteriores, a efectos de cálculo, se ha considerado que los cambios de categoría se producen todos el mismo año. En las tablas 2.1.6.iv y 2.1.6.v siguientes mostramos los cambios de carbono en los que se producen en el año del cambio, considerando que es 1995 para el primer periodo (1991-1995) y 1999 para el segundo periodo (1996-1999). Sin embargo en aquellas superficies que permanecen siendo pastizales durante el periodo, el cambio de carbono se produciría todos los años pero como es cero, concluimos que no hay cambio durante todo el periodo.

196.128 Pastizal Pastizal Forestal Pastizal -14,63 26.051 -381.238 12.272 Agrícola anual Pastizal 0 0 -10,50 1.653 -17.359 Agrícola no anual+mixto Pastizal TOTAL 236.105 -398.596

PASTIZAL			Cambio en 1999		
Uso inicial	Uso final	Cambio carbono en Biomasa (tC/ha)	Superficie en 1999 (ha)	Cambio total de Carbono en la biomasa (tC)	
Pastizal	Pastizal	0	202.472	0	
Forestal	Pastizal	-22,14	10.058	-222.670	
Agrícola anual	Pastizal	0	5.390	0	
Agrícola no anual+mixto	Pastizal	-2,72	115	-314	
	TOTAL		218.036	-222.984	

Tabla 2.1.6.iv.
Cambio anual total en la
biomasa de los Pastizales
en el año en que se
produce el cambio de uso,
en 1995, en tC.

Tabla 2.1.6.v.
Cambio anual total en la
biomasa de los Pastizales
en el año en que se
produce el cambio de uso,
en 1999, en tC.

Quejigos en la Sierra de las Nieves.

2.1.6.4 Cambios de carbono en suelos de pastizales

Como en las anteriores categorías (forestal y agrícola), el carbono en los suelos se contabiliza según IPCC Guidelines, donde se contabiliza el cambio en el carbono orgánico (emisiones o captaciones de CO₂) en suelos minerales y las emisiones de CO₂ de suelos orgánicos (turberas) convertidos a pastos. En la mayoría de los suelos de los pastizales, el carbono de los residuos acumulados en la superficie representa una cantidad muy pequeña en comparación con el carbono acumulado en el suelo.

Las áreas abandonadas tienen un SOC menor que las áreas pastadas. El SOC de los primeros 20 cm del suelo es el 68% del SOC total (Casals, 2004).

$$\Delta C_{\text{GG}_{\text{Soils}}} = \Delta C_{\text{GG}_{\text{Mineral}}} - \Delta C_{\text{GG}_{\text{Organic}}} - \Delta C_{\text{GG}_{\text{Lime}}}$$

Siendo,

 $\Delta C_{GG_{Soils}}$ = cambio anual en el carbono en suelos de pastizales que permanecen como pastizales, t $\mathbb{C} \cdot \tilde{\mathsf{ano}}^{-1}$.

 $\Delta \textit{\textbf{C}}_{\textit{GG}_{\textit{Mineral}}} = \text{cambio anual en el carbono en suelos minerales, tC} \cdot \text{año}^{-1}.$

 ΔC_{GG} = emisiones anuales de carbono en suelos orgánicos, $tC \cdot a\tilde{n}o^{-1}$.

 $\Delta C_{GG_{Lime}}^{Ggainc}$ = emisiones anuales de carbono por enmiendas calizas, tC·año-1.

En el nivel metodológico básico, tenemos asumido que el cambio en el carbono inorgánico y en la materia orgánica muerta es cero.

Ecuación 2.1.23.
Cambio anual en el stock de carbono en suelos de pastizales que permanecen como pastizales

En la mayoría de los suelos de los pastizales, el carbono de los residuos acumulados en la superficie representa una cantidad muy pequeña en comparación con el carbono acumulado en el suelo.

Espartales en Sorbas, Almería.

Ecuación 2.1.24. Cambio anual en el stock de carbono en suelos minerales en cada sistema de pastizal

Suelos minerales

Calculamos de la misma manera que para las categorías forestal y agrícola. El método de estimación en suelos minerales se basa en cambios del stock de carbono durante un periodo finito, considerado de 20 años por defecto. Se calcula el carbono en el año del inventario (SOC₀), el carbono anterior al inventario (SOC_{0-T}) y los factores de cambio aplicados a los dos momentos. Los factores de cambio tienen en cuenta el tipo de clima, suelo y tratamiento del terreno. La tasa anual de emisiones-captaciones es la diferencia entre ambas cantidades dividido entre ese periodo de tiempo.

$$\Delta C_{\text{GG}_{\text{Mineral}}} = \left[\left(SOC_0 - SOC_{0-T} \right) \cdot A \right] / T$$

$$SOC = SOC_{\text{REF}} \cdot F_{\text{LU}} \cdot F_{\text{MG}} \cdot F_{\text{I}}$$

Siendo,

 $\Delta C_{GG_{\mbox{\scriptsize Mineral}}} = \mbox{cambio anual en suelos minerales, $t \mbox{$C$-$a \~no$}^{-1}$}$

SOC₀ = carbono en suelos orgánicos en el año del inventario, tC·año⁻¹

SOC_{0-T} = carbono en suelos orgánicos T años antes del inventario, tC·año⁻¹

T = periodo de tiempo que dura el inventario, 20 años por defecto.

A = área de cada parcela, ha

SOC_{RFF} = carbono de referencia, tC·año⁻¹

F_{III} = factor de uso del suelo (F_{III}), refleja los niveles de carbono relativos a ecosistemas nativos;

F_{MG} = factor de manejo, representa amplias categorías de mejora y degradación de pastizales;

F_I = factor de cambio por aportes, representa los distintos niveles de carbono aportado al suelo, que es aplicado sólo para mejorar el pastizal.

Los factores de cambio, de usos del suelo y manejo están expuestos en la Tabla II.8 del Anexo II.

Los pasos metodológicos son los siguientes:

- 1º. Selección de la cantidad de carbono de referencia (SOC_{REF}) según las condiciones climáticas y tipo de suelo para cada área inventariada.
- 2º. Selección de las condiciones de manejo de los pastos (F_{MG}) que hay al principio del periodo del inventario y la cantidad de carbono aportada (F_{I}). Estos factores multiplicados por el carbono de referencia en el suelo, proporcionan una estimación del stock inicial de carbono (SOC_{0-T}) del periodo del inventario. Hay que tener en cuenta que en pastizales que permanecen como pastizales F_{LU} siempre es igual a 1.
- *3º.* Cálculo de SOC_0 , es decir, el stock en el año del inventario, repitiendo el paso 2º, utilizando el mismo SOC_{REF} y F_{LU} = 1 pero con los factores de gestión y aporte correspondientes al año de realización del inventario.

4°. Cálculo de la media anual de cambio en el carbono del suelo en el área estudiada durante el periodo del inventario ($\Delta C_{GG \, mineral}$).

Realizando todos los cáculos obtenemos que el cambio anual de carbono en pastizales que permanecen como pastizales es de 0 tC·año⁻¹ y de 9.216 tC·año⁻¹ en los terrenos que pasan a ser pastizales durante el periodo 95-99. Por tanto, el balance es 9.216 tC·año⁻¹, como puede observarse en la Tabla 2.1.6.vi. El cambio de forestal a pastizal supone una acumulación anual de 8.536 tC·año⁻¹ y el cambio de agrícola a pastizal supone una acumulación de 1.321 tC·año⁻¹.

	Balance anual Carbono (tC·año ⁻¹)
Terrenos que permanecen como pastizales	0
Terrenos convertidos a pastizales	9.216
TOTAL en pastizales	9.216

No existe cambio en los suelos de pastizales que no cambian de categoría de uso durante el periodo de estudio, esto se debe a que se le han asignado a los distintos códigos de uso los mismos factores de cambio en los dos años, básicamente porque son pastizales en los que no se aplican medidas de mejora para aprovechamiento. Además coincide que tienen el mismo SOC_{ref}, valor que depende del tipo de suelo. Por lo tanto, según el método propuesto por el IPCC en la GPG LULUCF, no existe cambio de carbono.

En esta categoría calculamos el carbono del suelo de la misma manera que en el caso de los terrenos forestales y agrícolas, es decir, para el periodo 1996-1999. En la Tabla 2.2.i del apartado Resultados, mostramos los valores del cambio anual de carbono por hectárea, correspondiente al periodo 1996-1999, para el que se ha hecho la estimación, así como los totales para el periodo 1991-1995. Asumimos que el balance de carbono en los suelos no varía entre 1990 y 1999, por lo que el cambio en tC·ha¹ calculado para el segundo periodo se aplicará a las superficies que han cambiado en el periodo anterior.

A la vista de estos resultados, insistimos en la conveniencia de desarrollar estudios que permitan obtener estimaciones más fiables tanto del contenido en carbono orgánico de referencia (SOC_{ref}) de cada unidad edafológica como de los valores de los factores de ajuste para cada código de uso, o bien el desarrollo de una metodología propia que se fundamente sobre otros tipos de parámetros y variables más fáciles de obtener.

Suelos orgánicos

La metodología para estimar el carbono en suelos orgánicos utilizados como pastos gestionados consiste en asignar una pérdida anual debido al drenaje y otras perturbaciones debidas a los trabajos realizados en ellos. El drenaje y las prácticas de

Tabla 2.1.6.vi.
Balance anual de carbono
en los suelos de los
pastizales en Andalucía, en
t€-año¹

En la categoría
de humedal se
incluyen aquellas
superficies que
están cubiertas
por agua, durante
todo o parte del
año, y que no están
incluidas en las

categorías forestal,

agrícola, pastizal o

urbano.

mantenimiento de los pastos estimulan la oxidación de la materia orgánica acumulada durante un largo periodo en ambiente anaeróbico (aunque las emisiones son menores que en el caso de los cultivos anuales en los que se realizan actuaciones al terreno más frecuentes). Este estudio no ha cuantificado las emisiones en estos suelos debido a su escasa presencia.

Enmiendas calizas

La Guía IPCC define la aplicación de carbonatos como una fuente de emisión de CO_2 . No se han contabilizado las emisiones producidas por estas prácticas al no conocerse las cantidades anuales aplicadas en Andalucía.

2.1.7 Humedales

En la categoría de humedal se incluyen aquellas superficies que están cubiertas por agua, durante todo o parte del año, y que no están incluidas en las categorías forestal, agrícola, pastizal o urbano. Esta categoría puede subdividirse según estén o no gestionadas, de acuerdo con las definiciones nacionales. Los embalses estarían dentro de la categoría de humedales gestionados, y los ríos y lagos dentro de los no gestionados.

En la Tabla 2.1.7.i mostramos las categorías del Mapa de Usos del Suelo de Andalucía consideradas como Humedales.

Humedal de Doñana.

Tabla 2.1.7.i. Usos considerados como Humedales.

Código Jerárquico	Denominación	Código Mapa Usos
2.1.1.1.1.	Marisma mareal con vegetación	211
2.1.1.1.2.	Marisma no mareal con vegetación	215
2.1.1.2	Marisma reciente sin vegetación	217
2.1.2.1	Salinas tradicionales	221
2.1.2.2.	Salinas industriales y parques de cultivos	225
2.1.3.	Albuferas	231
2.1.4.	Estuarios y canales de marea	241
2.1.5.	Mares y océanos	291
2.2.1.1.	Ríos y cauces naturales: lámina de agua	311
2.2.1.2.1.	Ríos y cauces naturales.:bosque galería	315
2.2.1.2.2.	Ríos y cauces naturales: otras formaciones. Riparias	317
2.2.2.	Canales artificiales	321
2.2.3.	Lagunas continentales	331
2.2.4.1.	Embalses	341
2.2.4.2.	Balsas de riego y ganaderas	345

2.1.7.1 Cambio anual de carbono en humedales que permanecen como humedales

Esta es una de las categorías para las que es opcional estimar el carbono según indica el IPCC. Este caso no ha tenido consideración, debido a la escasa disponibilidad de datos y a la gran incertidumbre que tendría esta estimación. En próximos inventarios, estudiaremos la posibilidad de incluir esta categoría si existe una metodología más ajustada a la región de estudio y datos concretos relativos a los humedales andaluces.

En cualquier caso, se describe la metodología propuesta en la GPG LULUCF. El IPCC piensa que la estimación de las emisiones de CO_2 en los humedales se realiza diferenciando dos partes fundamentales, como se presenta en la ecuación.

$$CO_2$$
emission = CO_2 emission peat + CO_2 emission flood

Siendo,

 ${\rm CO_2\,emission}$ = son las emisiones de ${\rm CO_2\,em}$ en humedales que permanecen como tales, ${\rm GgCO_2/a\~no}$. ${\rm CO_2\,emission}$ $_{\rm peat}$ = emisiones de ${\rm CO_2\,em}$ en suelos orgánicos gestionados para la obtención de turba, ${\rm GgCO_2/a\~no}$.

 CO_2 emission $_{flood}$ = emisiones de CO_2 en áreas inundadas, $GgCO_2$ /año.

Para cuantificar las emisiones debidas a la obtención de turba (CO₂ emission _{peat}), es imprescindible, en todos los niveles metodológicos, conocer la superficie que ocupan los suelos orgánicos gestionados para la extracción de turba. Se definen como zonas inundadas ("flood"), a aquellas superficies cubiertas por agua y gestionadas por el hombre para la producción de energía, navegación, recreo, etc, donde existen cambios sustanciales en las áreas inundadas debido a la regulación de los niveles de agua. Son


Ecuación 2.1.25. Emisiones de CO₂ en humedales que permanecen como humedales

atribuidas como áreas inundadas las categorías de uso 221, 225, 341 y 345 definidas en el Mapa de Usos del Suelo, ya que el resto de las categorías de humedales se corresponden a zonas cubiertas de agua de manera natural, en las que no se contabilizan las emisiones. Recientes estudios, citados en la GPG LULUCF, sugieren que las emisiones de CO₂ durante los primeros diez años después de la inundación se deben a la descomposición de la materia viva que existía antes, mientras que las emisiones posteriores son consecuencia de la descomposición de materia que se incorpora a estas zonas inundadas. Asumiendo que esto es cierto, las emisiones atribuidas a las inundaciones están limitadas solamente a los diez años posteriores a que ésta haya tenido lugar.

El método básico que propone la Guía se basa en la utilización de factores de emisión por defecto (13.2 kg ha⁻¹ día⁻¹) y de datos de áreas muy agregados. Se asume, también por defecto, que las emisiones de CO₂ están limitadas hasta aproximadamente 10 años después de que la inundación haya tenido lugar.

Marismas de Sanlucar de Barrameda. Bajo Guadalquivir.

2.1.7.2 Cambio anual de carbono en terrenos convertidos a humedales

El cálculo de las emisiones debidas a los cambios de uso se calcula, al igual que se ha realizado para los cambios de usos a anteriores categorías, como diferencia del carbono contenido en la biomasa en los usos anteriores y en el uso final. La GPG LULUCF asume que todo el carbono en la biomasa viva aérea se convierte en CO_2 en el primer año después del cambio de uso a humedal. Considerándose que el stock de carbono después de la conversión es cero ($C_{\rm después}$). En las tablas 2.1.7.ii y 2.1.7.iii. estimamos el cambio anual de carbono según el uso anterior, para los dos periodos respectivamente.

Uso inicial	L _{conversion} (C _{después} -C _{antes}) tC·ha ⁻¹	C _{despuéss} tC·ha⁻¹	C _{antes} tC·ha⁻¹	ΔC _{LG} (tC·ha ⁻¹ ·año ⁻¹)
Forestal	-14,6	0	14,6	- 14.63
Agrícola Anual	0	0	0	0
Agrícola No anual	-10,5	0	10,5	- 10,5
Pastizal	0	0	0	0

Uso inicial	L _{conversion} (C _{después} -C _{antes}) tC⋅ha ⁻¹	C _{despuéss} tC·ha ⁻¹	C _{antes} tC·ha⁻¹	ΔC_{LG} (tC·ha ⁻¹ ·año ⁻¹)
Forestal	- 22,14	0	22,14	- 22,14
Agrícola Anual	0	0	0	0
Agrícola No anual	- 2,72	0	2,72	- 2,72
Pastizal	0	0	0	0

2.1.7.3 Cambio anual total de carbono en Humedales

En las tablas 2.1.7.iv y 2.1.7.v. se muestran los cambios de carbono producidos en el año del cambio, considerando que es 1995 para el primer periodo (1991-1995) y 1999 para el segundo periodo (1996-1999) respectivamente. Como hemos explicado en las categorías anteriores, a efectos de cálculo, opinamos que los cambios de categoría se producen todos el mismo año, sin embargo, en aquellas superficies que no cambian de categoría durante el periodo, el cambio de carbono se produce todos los años.

	HUMEDAL		Cambio	en 1995
Uso inicial	Uso final	Cambio carbono en Biomasa (tC/ha)	Superficie en 1995 (ha)	Cambio total de Carbono (tC)
Humedal	Humedal	no considerado	126.315	no considerado
Forestal	Humedal	-14,63	324	-4.736
Agrícola Anual	Humedal	0	248	0
Agrícola no anual+mixto	Humedal	-10,50	265	-2.784
Pastizal	Humedal	0	123	0
TOTAL			127.275	-7.520

Tabla 2.1.7.ii.

Cambio anual de carbono en terrenos convertidos a Humedales en el periodo 1991-1995, tC-año-1.

Tabla 2.1.7.iii.

Cambio anual de carbono en terrenos convertidos a Humedales en el periodo 1996-1999, tC·año¹.

Tabla 2.1.7.iv.

Cambio anual total de carbono en Humedales en 1995, tC·año⁻¹.

Tabla 2.1.7.v. Cambio anual total de carbono en Humedales en 1999, tC∙año¹.

	HUMEDAL		Cambi	o en 1999
Uso inicial	Uso final	Cambio carbono en Biomasa (tC/ha)	Superficie en 1999 (ha)	Cambio total de Carbono (tC)
Humedal	Humedal	no considerado	126.171	no considerado
Forestal	Humedal	-22,14	7.792	-172.507
Agrícola Anual	Humedal	0	3.960	0
Agrícola no anual+mixto	Humedal	-2,72	1.443	-3.931
Pastizal	Humedal	0	17.497	0
TOTAL			156.864	-176.438

2.1.8 Terrenos Urbanos

En esta categoría se incluyen todas las áreas desarrolladas por el hombre que influyen en los flujos de CO_2 entre los sumideros terrestres y la atmósfera. En la estimación del carbono es asumido que los cambios en el stock de carbono ocurren sólo en la biomasa arbórea existente dentro de zonas urbanas. Las discusiones, por tanto, estás centradas sólo en el stock de carbono provocado por el crecimiento de los árboles urbanos y la pérdida de biomasa debida a las podas y a la mortalidad. Debe tenerse en cuenta la hipótesis de que las pérdidas de biomasa son cero, al equilibrarse los cambios en el stock con los cambios debidos al crecimiento en estas zonas verdes.

En la Tabla 2.1.8.i. se muestran las categorías del Mapa de Usos del Suelo de Andalucía consideradas Urbanas.

Código Jerárquico	Denominación	Código Mapa Usos
1.1.1.	Tejido urbano	111
1.1.2.1.	Urbanizaciones residenciales	115
1.1.2.2.	Urbanizaciones agrícola / residenciales	117
1.2.1.	Zonas industriales y comerciales	121
1.2.2.1.	Autovías, autopistas y enlaces viarios	131
1.2.2.2.	Complejos ferroviarios	133
1.2.2.3.	Zonas portuarias	135
1.2.2.4.	Aeropuertos	137
1.2.3.	Otras infraestructuras técnicas	141
1.3.1.	Zonas mineras	151
1.3.2.	Escombreras y vertederos	153
1.3.3.	Zonas en construcción	155
1.3.4.	Balsas de alpechín	157
1.4.1.	Zonas verdes urbanas	191
1.4.2.	Equipamiento deportivo y recreativo	193

Se han utilizado los mapas de usos del suelo de Andalucía correspondientes a los años 1991, 1995 y 1999. Mediante ArcGIS hemos determinado las superficies de cambio de uso durante el periodo 1991-1995 y 1996-1999: terrenos urbanos que permanecen como tales y terrenos que pasan a serlo.

Tabla 2.1.8.i. Usos considerados como Urbanos

Parque Municipal de "La Alquería", Dos Hermanas.

2.1.8.1 Cambio anual de carbono en terrenos urbanos que permanecen urbanos

Al igual que en el caso de los humedales, el cambio en este apartado no se ha considerado. Sin embargo, describiremos a continuación cómo sería el cálculo utilizando la información disponible actualmente y estableciendo varias suposiciones. El método propuesto por la GPG LULUCF es un método basado en el área cubierta por la copa de los árboles que pueblan estas zonas, según se muestra en la ecuación.

$$\Delta B_{SS} = A_{copa} \cdot \mathsf{CRW}$$

Siendo,

 ΔB_{SS} = crecimiento anual de biomasa en terrenos urbanos que permanecen urbanos, t $C \cdot a\tilde{n}o^{-1}$. A_{copa} = área cubierta por la copa, ha.

CRW = área de cobertura de la copa basado en la tasa de crecimiento, tC·ha cobertura copa·año⁻¹.

En primer lugar ponderaremos el área total de cobertura de los árboles en zonas urbanas que permanecen urbanas. El segundo paso consiste en multiplicar el área de cobertura de copa por el factor adecuado de área de cobertura de la copa basado en la tasa de crecimiento (CRW). No se dispone de información sobre CRW en las zonas urbanas en Andalucía. Según una estimación hecha en varias ciudades de EEUU, esta

Ecuación 2.1.26. Incremento anual de biomasa basado en el área cubierta por la copa

Tabla 2.1.8.ii. Estimación de la superficie cubierta por arbolado en zonas urbanas, en ha.

cifra oscila entre 1.8 y 3.4 tC·ha cobertura copa⁻¹·año⁻¹, y por defecto se toma 2.9 tC·ha cobertura copa⁻¹·año⁻¹ (GPG LULUCF). Ante la inexistencia de información disponible sobre el grado de cobertura de arbolado en las zonas urbanas, estableceremos un porcentaje aproximado de cubierta en aquellas categorías en las que existe cubierta arbórea, como se presenta en la Tabla 2.1.8.ii.

Código Mapa Usos	Denominación	Porcentaje de cobertura	Superficie cubierta (ha)
115	Urbanizaciones residenciales	15%	4.518
117	Urbanizaciones agrícola / residenciales	15%	989
191	Zonas verdes urbanas	70%	680
193	Equipamiento deportivo y recreativo	15%	804
Superficie total cubie	rta por copas de árboles		6.991

Aplicando la ecuación anterior se obtiene que el incremento anual de biomasa en zonas urbanas es igual a 27.274 tC·año⁻¹, que es el resultado de multiplicar el factor CRW (2.9 tC·ha⁻¹·año⁻¹) por la superficie cubierta por arbolado (6.991 ha). El cambio respecto a la superficie de zonas urbanas que no cambian de uso sería de $0.5 \text{ tC} \cdot \text{ha}^{-1} \cdot \text{año}^{-1}$.

La suposición de que estas zonas estén cubiertas por los porcentajes mencionados implica una sobreestimación o incluso una desestimación del carbono total fijado en terrenos urbanos. Ante la necesidad de realizar inventarios que se adecuen de la manera más precisa a la realidad, debemos disponer para los próximos inventarios, de toda la información necesaria referida a Andalucía, es decir, conocer la superficie de

Jardín Urbano. Dos Hermanas. Sevilla.

las zonas verdes dentro de las zonas urbanas y conocer el grado de cobertura arbórea, así como determinar el factor CRW específico para Andalucía. Por todo esto no se ha considerado el cambio anual de carbono en esta categoría.

2.1.8.2 Cambio anual de carbono en terrenos que pasan a ser urbanos

Respecto a la transformación en zona urbana, el cambio de uso más influyente y el que reconoce la GPG LULUCF, es el cambio de forestal a urbano. En este trabajo también hemos tenido en cuenta el cambio de uso... agrícola urbano porque la superficie afectada es mayor que la forestal. En las tablas 2.1.8.iii y 2.1.8..iv se describe la estimación de este cambio en los dos periodos.

Uso inicial	L _{conversion} (C _{después} -C _{antes}) tC·ha ⁻¹	C _{after} tC∙ha ⁻¹	C _{before} tC·ha⁻¹	ΔC _{LG} (tC·ha ⁻¹ ·año ⁻¹)
Forestal	-14,6	0	14,6	-14,6
Agrícola anual	0	0	0	0
Agrícola no anual	-10,5	0	10,5	-10,5

Uso inicial	L _{conversion} (C _{después} -C _{antes}) tC⋅ha ⁻¹	C _{after} tC∙ha ⁻¹	C _{before} tC·ha⁻¹	ΔC_{LG} (tC·ha ⁻¹ ·año ⁻¹)
Forestal	-22,14	0	22,14	-22,14
Agrícola anual	0	0	0	0
Agrícola no anual	-2,72	0	2,72	-2,72

2.1.8.3 Cambio anual total de carbono en terrenos urbanos

Como hemos explicado en las categorías anteriores, a efectos de cálculo, entenderemos que los cambios de categoría son producidos todos el mismo año. En las tablas 2.1.8.v y 2.1.8.vi. mostramos los cambios de carbono que tienen lugar en el año del cambio, considerando que es 1995 para el primer periodo (1991-1995) y 1999 para el segundo periodo (1996-1999). Aquellas superficies que no cambian de categoría durante el periodo, el cambio de carbono se produce todos los años.

	URBANO		Ca	mbio en 1995
Uso inicial	Uso final	Cambio carbono en Biomasa (tC/ha)	Superficie en 1995 (ha)	Cambio total de Carbono en la biomasa (tC)
Urbano	Urbano	no considerado	140.132	no considerado
Forestal	Urbano	-14,63	4.541	-66.456
Agrícola Anual	Urbano	0,00	4.991	0
Agrícola no anual+mixto	Urbano	-10,50	5.459	-57.317
	TOTAL		155.123	-123.773

Tabla 2.1.8.iii Cambio anual de carbono en terrenos convertidos en urbanos, en el periodo 1991-1995, en tC∙año¹.

Tabla 2.1.8.iv Cambio anual de carbono en terrenos convertidos en urbanos, en el periodo 1996-1999, en tC∙año¹.

Tabla 2.1.8.v.

Cambio anual total de carbono en terrenos

Urbanos en el año en el que se producen los cambios de uso, 1995, tC·año¹.

Tabla 2.1.8.vi.
Cambio anual total de carbono en terrenos
Urbanos en el año en el que se producen los cambios de uso, 1999, tC-año-¹.

Tabla 2.1.9.i.

Usos considerados como "Otros terrenos", en ha.

	URBANO)	Cambio	en 1999
Uso inicial	Uso final	Cambio carbono en Biomasa (tC/ha)	Superficie en 1999 (ha)	Cambio total de Carbono en la biomasa (tC)
Urbano	Urbano	no considerado	160.941	no considerado
Forestal	Urbano	-22,14	2.154	-47.695
Agrícola Anual	Urbano	0	1.413	0
Agrícola no anual+mixto	Urbano	-2,72	1.398	-3.808
	TOTAL		165.907	-51.503

2.1.9 Otros Terrenos

Esta categoría se incluye para completar el estudio de todo el área de Andalucía. En ella incluimos las zonas de roquedos, suelos desnudos y otros terrenos que no han sido contabilizados en las otras en las otras cinco categorías.

Código Jerárquico	Denominación	Código Mapa Usos
4.4.1	Playas, dunas y arenales	931
4.4.2	Roquedos y suelo desnudo	932
4.4.3	Áreas con fuertes procesos erosivos	933

2.1.9.1 Cambio anual de carbono en otros terrenos que permanecen como tales

Los países no están obligados a preparar las estimaciones de esta categoría contenida en el capítulo 3.7 de la GPG LULUCF del IPCC, sin embargo, si lo desean pueden contabilizar sus emisiones.

Paisaje erosionado de Andalucía Oriental.

2.1.9.2 Cambio anual de carbono en terrenos convertidos en "otros terrenos"

El cambio anual de carbono en los terrenos que pasan a ser "otros terrenos" es igual a la suma del cambio anual en la biomasa y el cambio anual en los suelos.

2.1.9.2.1 Cambio en el carbono fijado en la biomasa

Como resultado de la conversión, se asume que toda la vegetación dominante es eliminada por completo, por lo que no hay carbono acumulado en la biomasa después del cambio. Todo el carbono fijado en la biomasa es liberado a la atmósfera por procesos de descomposición. El cambio anual de carbono debido a los cambios de terrenos forestales a la categoría "otros terrenos" es calculado en las tablas 2.1.9.ii. y 2.1.9.iii para los dos periodos respectivamente. Las otras categorías no se han considerado porque la superficie de cambio es muy pequeña (menor de 20 ha o ninguna):

Uso inicial	L _{conversion} (C _{después} -C _{antes})	C _{after}	C _{before}	ΔC _{oτ}
	tC∙ha ⁻¹	tC-ha ⁻¹	tC∙ha ⁻¹	tC∙año¹
Forestal	-14,6	0,0	14,6	- 14.6

Uso inicial	L _{conversion} (C _{después} -C _{antes})	C _{after}	C _{before}	ΔC _{oτ}
	tC·ha ⁻¹	tC∙ha ⁻¹	tC·ha⁻¹	tC∙año¹
Forestal	-22,1	0,0	22,1	- 22.1

Tabla 2.1.9.ii.
Cambio anual de carbono
en la biomasa de terrenos
convertidos en "otras
tierras", durante el periodo
1991-1995, en tC∙año¹.

Tabla 2.1.9.iii.
Cambio anual de carbono
en la biomasa de terrenos
convertidos en "otras
tierras", durante el periodo
1996-1999, en tC∙año¹.

Pinar entre dunas de Doñana.

2.1.9.3 Cambio anual total en la biomasa de Otros terrenos

Como se ha explicado en las categorías anteriores, a efectos de cálculo, se ha considerado que los cambios de categoría son producidos todos el mismo año. En las tablas 2.1.9.iv y 2.1.9.v. siguientes mostramos los cambios de carbono que se producen en el año del cambio, considerando que es 1995 para el primer periodo (1991-1995) y 1999 para el segundo periodo (1996-1999). Sin embargo en aquellas superficies que permanecen como otros terrenos durante el periodo, el cambio de carbono se produce todos los años.

Uso inicial Uso final Cambio carbono en Biomasa (tC/ha) Superficie en 1995 (ha) Cambio total de Carbono (tC)
Otros usos Otros usos no considerado 46.607 no considerado
Forestal Otros usos -14,63 105 -1.534
TOTAL 46.712 -1.534

	OT	ROS TERRENOS	Cambio en 1999			
Uso inicial	Uso final	Cambio carbono en Biomasa (tC/ha)	Superficie en 1999 (ha)	Cambio total de Carbono (tC)		
Otros usos	Otros usos	no considerado	46.780	no considerado		
Forestal	Otros usos	-22,14	255	-5.642		
		TOTAL	47.035	-5.642		

Tabla 2.1.9.iv.
Cambio anual total en la
biomasa de la categoría
Otros Terrenos en el año en
que se producen los cambios
de uso, en 1995, en tC.

Tabla 2.1.9.v.
Cambio anual total en la
biomasa de la categoría
Otros Terrenos en el año en
que se producen los cambios
de uso, en 1999, en tC.

2.1.9.4 Cambios de carbono en suelos de otros terrenos

Hemos seguido la misma metodología que se ha empleado para determinar el carbono en los suelos de otras categorías.

$$\Delta C_{\text{OT}_{\text{Mineral}}} = [(SOC_0 - SOC_{0-T}) \cdot A] / T$$

$$SOC = SOC_{\text{REF}} \cdot F_{\text{LU}} \cdot F_{\text{MG}} \cdot F_{\text{I}}$$

Ecuación 2.1.27.
Cambio anual en el stock
de carbono en suelos
minerales de "otros
terrenos"

Siendo,

 $\Delta C_{\text{OT}_{\text{Mineral}}} = \text{cambio}$ anual en suelos minerales, tC·año-1.

 SOC_0 = carbono en suelos orgánicos en el año del inventario, $tC \cdot año^{-1}$.

 SOC_{0-T} = carbono en suelos orgánicos T años antes del inventario, $tC \cdot año^{-1}$.

T = periodo de tiempo que dura el inventario, 20 años por defecto.

A = área de cada parcela, ha.

SOC_{RFF} = carbono de referencia, tC·año⁻¹.

 F_{LU} = factor de cambio para cada uso o cada cambio de uso.

 F_{MG} = factor de cambio para cada tipo de gestión.

F_I = factor de cambio por aportación de materia orgánica.

Los factores de cambio son los mismos que los considerados en los suelos de pastizales, y que explicamos en el Anexo II.

Realizando todos los cálculos obtenemos que no hay cambio anual de carbono en otros terrenos que permanecen como tales y que se fijan 245 tC·ha⁻¹ año en los terrenos que pasan a ser otros terrenos durante el periodo 95-99. La fijación total de carbono es, por tanto, de 245 tC·ha⁻¹ año⁻¹, como como es mostrado en la Tabla 2.1.9.vi.

	Balance anual Carbono (tC·año-¹)
Terrenos que permanecen como "otros terrenos"	0
Terrenos convertidos a "otros terrenos"	245
TOTAL en "otros terrenos"	245

El cambio de carbono en los suelos que no cambian de uso dentro de esta categoría es cero, como ocurría en el caso de los pastizales. Las causas son las mismas que se comentaron en ese caso, siendo los factores de cambio en los usos son iguales por lo que la diferencia es nula.

Tabla 2.1.9.vi.

Cambio anual de carbono en los suelos de terrenos convertidos en "otras tierras", en tC∙año-1.

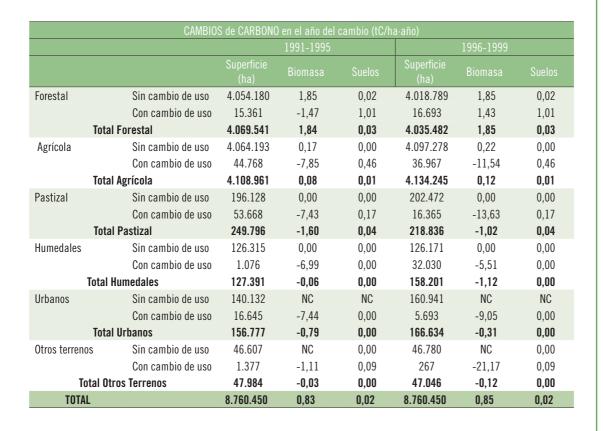
Cultivos de la costa almeriense.

2.2 RESULTADOS de la Metodología GPG LULUCF

2.2.1 Cambios anuales totales en la biomasa y suelos

En la Tabla 2.2.i se muestran los cambios de carbono anuales totales que se producen en los dos periodos considerados (1991-1995 y 1996-1999), contabilizando la biomasa y los suelos. Debemos tener en cuenta que en el caso de los terrenos que no cambian de uso durante el periodo, el cambio se produce todos los años. Sin embargo en el caso de los terrenos que cambian de uso, consideramos que el cambio es producido todo en un año del periodo, concretamente pensamos que se produce en el último año, es decir, en 1995 y en 1999. Este juicio ha sido tenido en cuenta para el cálculo del cambio total de carbono ocurrido a lo largo de los dos periodos, y para el cálculo del stock de carbono en los años 1995 y 1999.

Tabla 2.2.i.
Cambios de carbono
totales ocurridos en los
dos periodos según los
usos y según los cambios
de usos en Andalucía, en
toneladas de carbono.


	C	CAMBIOS de CAF	RBONO TOTAL	.ES durante el pe	eriodo (tC)		
			1991-1995			1996-1999	
		Biomasa	Suelos	Total	Biomasa	Suelos	Total
Forestal	Sin cambio de uso	29.967.112	373.096	30.340.208	29.705.510	277.379	29.982.890
	Con cambio de uso	-22.555	15.579	-6.976	23.791	16.930	40.720
Tota	l Forestal	29.944.557	388.675	30.333.232	29.729.301	294.309	30.023.610
Agrícola	Sin cambio de uso	3.118.761	54.988	3.173.749	3.685.700	41.577	3.727.277
	Con cambio de uso	-351.257	20.408	-330.849	-426.714	16.852	-409.862
Tota	l Agrícola	2.767.504	75.396	2.842.900	3.258.986	58.429	3.317.415
Pastizal	Sin cambio de uso	0	0	0	0	0	0
	Con cambio de uso	-398.596	9.216	-389.380	-222.984	2.810	-220.174
Tota	l Pastizal	-398.596	9.216	-389.380	-222.984	2.810	-220.174
Humedales	Sin cambio de uso	0	0	NC	0	0	NC
	Con cambio de uso	-7.520	0	-7.520	-176.438	0	-176.438
Total	Humedales	-7.520	0	-7.520	-176.438	0	-176.438
Urbanos	Sin cambio de uso	NC	NC	NC	NC	NC	NC
	Con cambio de uso	-123.773	0	-123.773	-51.503	0	-51.503
Tota	l Urbanos	-123.773	0	-123.773	-51.503	0	-51.503
Otros terrenos	Sin cambio de uso	NC	NC	NC	NC	NC	NC
	Con cambio de uso	-1.534	122	-1.412	-5.642	24	-5.619
Total Ot	tros Terrenos	-1.534	122	-1.412	-5.642	24	-5.619
	TOTAL	32.180.638	473.409	32.654.047	32.531.720	355.571	32.887.291

Los Gráficos 2.2.i y 2.2.ii representan las captaciones y emisiones totales de cada categoría tratada en el inventario durante los dos periodos considerados.

Tabla 2.2.ii.

Cambios de carbono
anuales por hectárea
según los usos y según
los cambios de usos en
Andalucía, en toneladas de
carbono.

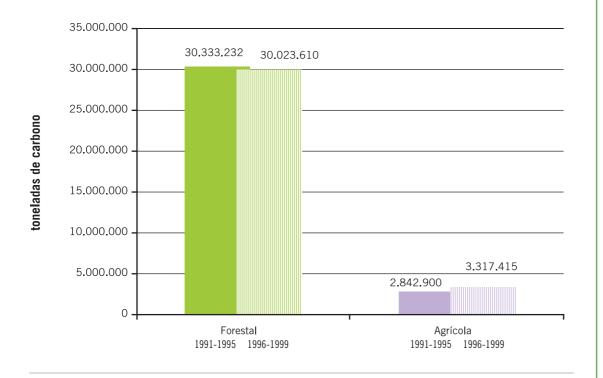
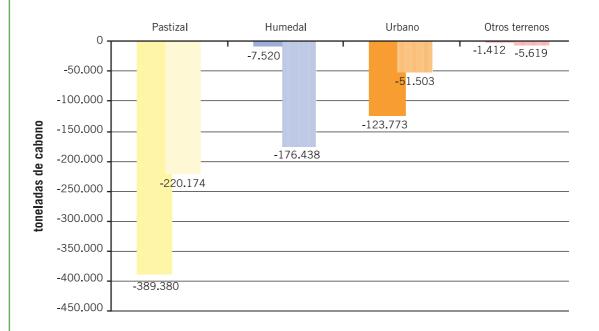



Gráfico 2.2.i.
Captaciones de carbono
en Andalucía en el periodo
1991-1995 y en 1996-1999,
en toneladas.

Gráfico 2.2.ii. Emisiones de carbono en Andalucía en el periodo 1991-1995 y en 1996-1999, en toneladas.

Estos gráficos reflejan la gran diferencia entre la cantidad fijada por los terrenos forestales y agrícolas y la emitida por el resto de las categorías que actúan como emisores (Pastizal, Humedal, Urbano y Otros terrenos), esta diferencia de magnitudes es de aproximadamente del 5%, llegando al 0.01% en el caso de Otros terrenos.

2.2.2 Cálculo de los cambios anuales de carbono.

Las tablas siguientes son una recopilación de todos los resultados obtenidos en este estudio, referidos a la biomasa viva. Las matrices muestran las superficies, los cambios de carbono anuales y los cambios de carbono totales ocurridos entre las siete categorías de uso consideradas durante 1991 y 1999, diferenciando entre los dos periodos 1991-1995 y 1996-1999.

Periodo 1991- 1995

CHDEDEN	SUPERFICIES (1991-1995)		Año 1995								
SUPERFIC			2 Agrícola anual	3 Agrícola no anual	4 Pastizal	5 Humedal	6 Urbano		TOTAL		
	1 Forestal	4.054.180	13.307	11.499	26.051	324	4.541	105	4.110.007		
	2 Agrícola anual	3.207	2.071.214	38.846	12.272	248	4.991	0	2.130.778		
	3 Agrícola no anual	4.122	14.145	1.939.988	1.653	265	5.459	1	1.965.633		
Λ≈ ₀ 1001	4 Pastizal	5.605	15.413	1.856	196.128	123	1.355	36	220.517		
Año 1991	5 Humedal	2.244	1.994	0	13.439	126.315	278	1.231	145.501		
	6 Urbano	109	585	114	252	116	140.132	5	141.312		
	7 Otros	75	0	0	0	0	21	46.607	46.703		
	TOTAL	4.069.541	2.116.658	1.992.302	249.796	127.391	156.777	47.984	8.760.450		

Tabla 2.2.iii.
Superficies de cambio
durante el periodo 1991-
1995. en hectáreas.

Car		Anual de carbono	Año B								
		(tC/ha año)	1 Forestal	2 Agrícola anual	3 Agrícola no anual	4 Pastizal	5 Humedal	6 Urbano	7 Otros		
		1 Forestal	1,85	-14,63	-13,75	-14,63	-14,63	-14,63	-14,63		
		2 Agrícola anual	1,60	0	0,88	0	0	0,0	NC		
		3 Agrícola no anual	-8,90	-10,50	0,42	-10,50	-10,50	-10,50	NC		
Año	Α	4 Pastizal	1,60	0	0,88	0	0	NC	NC		
		5 Humedal	NC	NC	NC	NC	NC	NC	NC		
		6 Urbano	NC	NC	NC	NC	NC	NC	NC		
		7 Otros	NC	NC	NC	NC	NC	NC	NC		

Tabla 2.2.iv.

Cambio anual de carbono en la biomasa viva durante 1991-1995, en tC·ha⁻¹·año⁻¹.

CAMPIO	CAMBIOS TOTALES durante		Año 1995								
1991-1995 (tC)		1 Forestal	2 Agrícola anual	3 Agrícola no anual	4 Pastizal	5 Humedal	6 Urbano	7 Otros			
	1 Forestal	29.967.112	-194.735	-158.155	-381.238	-4.736	-66.456	-1.534			
	2 Agrícola anual	5.140	0	34.185	0	0	0	NC			
	3 Agrícola no anual	-36.677	-148.522	3.233.098	-17.359	-2.784	-57.317	NC			
Año 1991	4 Pastizal	8.982	0	1.633	0	0	NC	NC			
	5 Humedal	NC	NC	NC	NC	NC	NC	NC			
	6 Urbano	NC	NC	NC	NC	NC	NC	NC			
	7 Otros	NC	NC	NC	NC	NC	NC	NC			
Cambio total al final del periodo		29.944.557	-343.257	3.110.761	-398.596	-7.520	-123.773	-1.534			

Tabla 2.2.v.

Cambio total de carbono ocurrido durante los años 1991 y 1995, en toneladas de carbono.

Periodo 1996- 1999

			Año 1999								
SUPERFICIES (1995-1999)		1 Forestal	2 Agrícola anual	3 Agrícola no anual	4 Pastizal	5 Humedal	6 Urbano	7 Otros	TOTAL		
	1 Forestal	4.018.789	8.214	11.635	10.058	7.792	2.154	255	4.058.898		
	2 Agrícola anual	2.046	1.954.739	84.978	5.390	3.960	1.413	0	2.052.526		
	3 Agrícola no anual	907	3.381	2.054.181	115	1.443	1.398	0	2.061.425		
	4 Pastizal	13.433	13.940	2.801	202.472	17.497	701	0	250.844		
Año 1995	5 Humedal	99	110	125	467	126.171	15	12	126.999		
	6 Urbano	67	73	68	215	188	160.941	0	161.552		
	7 Otros	141	0	0	118	1.149	11	46.780	48.199		
	TOTAL	4.035.482	1.980.457	2.153.788	218.836	158.201	166.634	47.046	8.760.444		

Tabla 2.2.vi. Superficies de cambio durante el periodo 1996-1999, en hectáreas.

Tabla 2.2.vii. Cambio anual de carbono en la biomasa viva durante 1996-1999, en tC·ha¹·año¹.

Tabla 2.2.viii. Cambio total de carbono ocurrido durante los años 1996 y 1999, en toneladas de carbono.

Camb	Cambio Anual de carbono (tC/ha año)		Año B								
Gaillu			2 Agrícola anual	3 Agrícola no anual	4 Pastizal	5 Humedal	6 Urbano	7 Otros			
	1 Forestal	1,85	-22,14	-21,26	-22,14	-22,14	-22,14	-22,14			
	2 Agrícola anual	1,60	0	0,88	0	0	0	NC			
	3 Agrícola no anual	-1,12	-2,72	0,42	-2,72	-2,72	-2,72	NC			
Año A	4 Pastizal	1,60	0	0,88	0	0	NC	NC			
	5 Humedal	NC	NC	NC	NC	NC	NC	NC			
	6 Urbano	NC	NC	NC	NC	NC	NC	NC			
	7 Otros	NC	NC	NC	NC	NC	NC	NC			

CAMBIO	CAMBIOS TOTALES durante		Año 1999								
1996-1999 (tC)		1 Forestal	2 Agrícola anual	3 Agrícola no anual	4 Pastizal	5 Humedal	6 Urbano	7 Otros			
	1 Forestal	29.705.510	-181.848	-247.331	-222.670	-172.507	-47.695	-5.642			
	2 Agrícola anual	3.279	0	74.780	0	0	0	NC			
	3 Agrícola no anual	-1.017	-9.207	3.423.407	-314	-3.931	-3.808	NC			
Año 1996	4 Pastizal	21.529	0	2.465	0	0	NC	NC			
	5 Humedal	NC	NC	NC	NC	NC	NC	NC			
	6 Urbano	NC	NC	NC	NC	NC	NC	NC			
	7 Otros	NC	NC	NC	NC	NC	NC	NC			
Cambio tota	al al final del periodo	29.729.301	-191.056	3.253.322	-222.984	-176.438	-51.503	-5.642			

NOTA

En cada categoría, cuando no hay cambio de uso, el cambio de carbono se produce todos los años, sin embargo cuando existe cambio de uso, se ha considerado que el cambio correspondiente se produce todo en un solo año de cada periodo (en 1995 y en 1999 respectivamente).

La tabla 2.2.ix. ofrece las emisiones (con signo negativo) y captaciones totales ocurridas durante los dos periodos de estudio considerados en cada categoría de uso, resultado de sumar los resultados individuales para cada categoría (Tabla 2.2.v y 3.2.viii). El carbono total presente en cada categoría es el carbono que había en el anterior año estudiado más el cambio total ocurrido durante ese periodo de tiempo. El cambio total son las captaciones menos las emisiones ocurridas: 32.180.638 tC entre 1990 y 1995, y 32.335.001 tC entre 1996 y 1999.

Tabla 2.2.ix.
Cambio total de carbono
ocurrido entre 1991-1995
y 1996-1999, en cada
categoría de uso, en
toneladas de carbono.

	Cambio total 91-95 (tC)	Cambio total 96-99 (tC)
Forestal	29.944.557	29.729.301
Agrícola Anual	-343.257	-191.056
Agrícola No Anual+Mixto	3.110.761	3.253.322
Pastizal	-398.596	-222.984
Humedal	-7.520	-176.438
Urbano	-123.773	-51.503
Otros usos	-1.534	-5.642
TOTALES (tC)	32.180.638	32.335.001

En la Tabla 2.2.x. se observa que la fijación de carbono es mucho mayor que las emisiones, siendo muy similares en ambos periodos.

La variación de carbono que ha ocurrido entre el año considerado como año base (1991) y el último año (1999) es el cambio total de carbono captado-emitido por los diferentes usos del suelo, debido a los cambios de usos, es de 64.515.639 toneladas, es decir, 8.064.455 toneladas de carbono al año.

	Peri	odo 1991-1995	Periodo 1996-1999		
	Carbono total (t)	Carbono medio (t/ha·año)	Carbono total (t)	Carbono medio (t/ha·año)	
Captaciones en el periodo	33.055.318	1,34	32.982.623	1,37	
Emisiones en el periodo	-874.680	-0,08	-647.622	-0,06	
CAMBIO TOTAL NETO	32.180.638		32.335.001		

	Periodo 1991-1999	
CAMBIO TOTAL (tC)	64.515.639	
CAMBIO TOTAL ANUAL (tC/año)	8.064.455	

2.2.3 Carbono acumulado en la biomasa viva

Latabla 2.2.xi muestra la cantidad media de carbono por hectárea de cada categoría en los tres años para los que se dispone cartografía digital. Se observa que sólo se acumula carbono en las áreas forestales y agrícolas no anuales. En el resto de las categorías se emite carbono por lo que no hay acumulación neta a lo largo del periodo: el stock de carbono es considerado cero para estas áreas.

Categoría de uso	Stock 91 (tC/ha)	Stock 95 (tC/ha)	Stock 99 (tC/ha)
Forestal	14,63	22,1	29,7
Agrícola Anual	0	0	0
Agrícola No Anual+Mixto	10,50	2,7	4,0
Pastizal	0	0	0
Humedal	0	0	0
Urbano	0	0	0
Otros usos	0	0	0

2.2.4 Evolucion temporal del carbono en la biomasa viva

Hemos calculado el stock sólo hasta al año 1999 porque a partir de este año ya no se dispone de cartografía digital, y es necesario conocer las superficies de cambio de categoría para poder seguir estimando los cambios anuales y el stock en años posteriores.

Tabla 2.2.x.
Captaciones y emisiones de carbono totales y por unidad de superficie ocurridas durante los periodos de estudio.

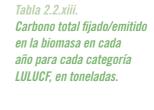
Tabla 2.2.xi. Stock de carbono en cada categoría de uso en los distintos años considerados, en tC·ha⁻¹.

nando, cuando no hay cambio de categoría, existe cambio de carbono todos los años, pero que cuando los terrenos pasan de un uso a otro, se considera que todo el cambio se produce el último año de cada periodo. La cantidad emitida o fijada en cada categoría final depende del uso inicial, y estas cifras las mostramos en la Tabla 2.2.iv para el periodo 1991-1995 y en la Tabla 2.2.vii para el periodo 1996-1999.

Los cambios de carbono en los terrenos que se producen cada año están reflejados en la Tabla 2.2.xii, en la que se observa que, como se ha venido mencio-

Tabla 2.2.xii.

Cambio de carbono
producido en cada año en
las categorías LULUCF, en
t·ha¹·año¹.


CATEGO	CATEGORÍA AÑO									
Uso inicial	Uso final	1991	1992	1993	1994	1995	1996	1997	1998	1999
Forestal		1,85	1,85	1,85	1,85	1,85	1,85	1,85	1,85	1,85
No Forestal	Forestal	0	0	0	0	ver tabla 2.2.iv	0	0	0	ver tabla 2.2.vii
Agrícola	– Agrícola	ver tabla 2.2.iv	ver tabla 2.2.vii	ver tabla 2.2.vii	ver tabla 2.2.vii	ver tabla 2.2.vii				
No Agrícola		0	0	0	0	ver tabla 2.2.iv	0	0	0	ver tabla 2.2.vii
Pastizal		0	0	0	0	0	0	0	0	0
No Pastizal	Pastizal	0	0	0	0	ver tabla 2.2.iv	0	0	0	ver tabla 2.2.vii
Humedal		NC	NC	NC	NC	NC	NC	NC	NC	NC
No Humedal	Humedal	0	0	0	0	ver tabla 2.2.iv	0	0	0	ver tabla 2.2.vii
Urbano		NC	NC	NC	NC	NC	NC	NC	NC	NC
No Urbano	Urbano	0	0	0	0	ver tabla 2.2.iv	0	0	0	ver tabla 2.2.vii
Otros terrenos		NC	NC	NC	NC	NC	NC	NC	NC	NC
No Otros terrenos	Otros terrenos	0	0	0	0	ver tabla 2.2.iv	0	0	0	ver tabla 2.2.vii

*NC: no se considera

En la Tabla 2.2.xiii. presentamos la evolución temporal del carbono total de la biomasa de cada categoría, reflejándose el carbono fijado y el que se emite en cada categoría debido a los cambios de uso. Como resultado final observamos que en el año 1999 el estado actual de carbono es de 128.079.120 toneladas de carbono que son el resultado de contabilizar las captaciones de carbono en los sumideros de Andalucía, menos las emisiones producidas en las categorías que actúan como emisores. En la Tabla 2.3.xi, sin embargo, se han mostrado las cantidades netas fijadas, el stock en los años 91, 95 y 99 (calculado sin restar las emisiones a lo que ya está fijado).

CATEGORÍA			Balance de C	arbono total ca	aptado/emitido	por la biomas	a viva en cada	año del period	o 1991-1999	
Uso inicial	Uso final	1991	1992	1993	1994	1995	1996	1997	1998	1999
Forestal	Forestal	60.146.099	67.637.877	75.129.655	82.621.433	90.113.211	97.539.588	104.965.966	112.392.343	119.818.721
No Forestal	ruiestai	0	0	0	0	-22.555	0	0	0	23.791
Total For	Total Forestal		67.637.877	75.129.655	82.621.433	90.090.656	97.539.588	104.965.966	112.392.343	119.842.511
Agrícola	Agrícola	2.315.429	3.095.119	3.874.809	4.654.499	5.434.190	6.355.614	7.277.039	8.198.464	9.119.889
No Agrícola	Agricula	0	0	0	0	-351.257	0	0	0	-426.714
Total Agri	ícola	2.315.429	3.095.119	3.874.809	4.654.499	5.082.932	6.355.614	7.277.039	8.198.464	8.693.176
Pastizal	Pastizal	0	0	0	0	0	0	0	0	0
No Pastizal	Pastizai 0	0	0	0	0	-398.596	0	0	0	-222.984
Total Pas	stizal	0	0	0	0	-398.596	0	0	0	-222.984
Humedal	Humedal	NC	NC	NC	NC	NC	NC	NC	NC	NC
No Humedal	пишецат	0	0	0	0	-7.520	0	0	0	-176.438
Total Humo	edales	0	0	0	0	-7.520	0	0	0	-176.438
Urbano	Urbano	NC	NC	NC	NC	NC	NC	NC	NC	NC
No Urbano	UIDAIIU	0	0	0	0	-123.773	0	0	0	-51.503
Total Urb	anos	0	0	0	0	-123.773	0	0	0	-51.503
Otros terrenos	Otros tarranas	NC	NC	NC	NC	NC	NC	NC	NC	NC
No Otros terrenos	Otros terrenos	0	0	0	0	-1.534	0	0	0	-5.642
Total Otros terrenos		0	0	0	0	-1.534	0	0	0	-5.642
TOTAL	L	62.461.527	70.732.995	79.004.464	87.275.932	94.642.165	103.895.203	112.243.005	120.590.808	128.079.120

Alcornocal de la Sierra de Córdoba.

n este trabajo hemos estimado el cambio anual de carbono en los principales sumideros de Andalucía. Se ha seguido la Guía de Buenas Prácticas del sector LULUCF que propone metodologías de estimación para que puedan ser aplicadas en los países o regiones que no dispongan de metodologías propias. Este estudio concluye que el cambio total de carbono ocurrido entre 1991 y 1999 es de 64.515.639 toneladas, es decir, 8.064.455 toneladas de carbono al año.

Las fuentes de datos empleadas son referidas a Andalucía siempre que ha sido posible, aunque en ocasiones hemos recurrido a datos medios ofrecidos por la Guía o a datos publicados por diversas fuentes, por falta de cifras específicas relativas a Andalucía. Estos datos medios se han obtenido de multitud de estudios, realizados en muchos países y sirven para aplicarse a gran escala y para múltiples escenarios. Esto significa que puede que no se adecuen a las condiciones concretas de Andalucía. A lo largo del trabajo hemos ido señalando y proponiendo nuevas líneas de investigación para conseguir datos relativos a las provincias andaluzas. Se hace necesario investigar y desarrollar metodologías propias para obtener estimaciones fiables, concretas y adecuadas para las condiciones particulares del territorio andaluz.

La principal conclusión a la que se llega a la vista de los resultados, es la importancia de los *Terrenos Forestales* como fijadores de carbono atmosférico. Esta categoría destaca sobre el resto porque es el mayor sumidero de carbono, la que mayor captación de CO₂ realiza. Esto se debe a la capacidad fijadora de la biomasa viva y a la gran extensión de terreno que ocupa. La segunda categoría en importancia son los Terrenos Agrícolas, en concreto los cultivos no anuales, también fijadores de CO₂.

Hay gran diferencia entre la cantidad fijada por los terrenos forestales y la fijada por los terrenos agrícolas y la emitida por el resto de las categorías que actúan como emisores (Pastizal, Humedal, Urbano y Otros terrenos), esta diferencia de magnitudes es de aproximadamente del 5%, llegando al 0.01% en el caso de Otros terrenos.

Los resultados obtenidos respecto a la fijación del *suelo* concluyen que en todos los casos actúan de sumideros de carbono, el cambio de carbono anual en todas las categorías es positivo, pero con una intensidad mucho menor que la biomasa viva, siendo en algunos casos incluso cero. El cambio de categoría puede hacer que el suelo pierda carbono (por ejemplo el cambio de pastizal a agrícola), pero en este estudio no se han diferenciado los cambios de usos entre unas categorías y otras de modo que como resultado global el balance es positivo. Se hace necesario realizar un estudio del carbono en suelos más específico, con factores de ajuste más adecuados e incluso desarrollar una metodología propia.

Anteriormente a este trabajo ha sido realizado un estudio de cuantificación de biomasa por el *Instituto Nacional de Investigación Agraria y Alimentaria (INIA)*

>>> La principal conclusión a la que se llega a la vista de los resultados, es la importancia de los terrenos forestales como fijadores de carbono atmosférico.

en colaboración con la Consejería de Medio Ambiente, publicado en la monografía n°13-2005 y titulado "Producción de Biomasa y fijación de CO₂ por los bosques españoles". En este estudio se estimó la biomasa, el carbono y el CO₂ para las especies forestales arbóreas más representativas de Andalucía basándose en el Segundo Inventario Forestal Nacional.

Las dos metodologías empleadas, LULUCF e INIA, son dos maneras diferentes de abordar la cuantificación del carbono en sumideros, pero difieren en varios aspectos. En el Inventario del INIA, han sido estimados los valores modulares de biomasa, carbono y el CO₂, y los totales acumulados en Andalucía en el año 1990. Además se han determinado los incrementos por especie, tanto los valores modulares como los totales. El inventario basado en la GPG LULUCF determina el cambio anual de fijación o emisión de carbono, y a partir de este cambio podemos cuantificar el stock de carbono que permanece fijado en los sumideros en distintos años, siempre y cuando conozcamos el stock en un año determinado y las superficies de cada uso.

La metodología INIA está desarrollada para estudiar las especies forestales arbóreas, por lo que no se contabiliza el carbono en otras formaciones vegetales de la categoría forestal, como son los matorrales, ni tampoco contabiliza el resto de sumideros (agrícola, pastizal, etc.) La Metodología LULUCF, además de estimar el carbono en las especies forestales arbóreas, se estima en otras formaciones vegetales y en otras categorías de usos, cubriendo la totalidad del área de la comunidad de Andalucía.

En la metodología LULUCF es establecido el cambio anual de carbono por diferencia entre el incremento de biomasa debido al crecimiento menos las pérdidas debidas a cortas e incendios entre otras causas, basándose siempre en las superficies de uso. Sin embargo, la peculiaridad de la metodología del INIA reside en que no se tiene en cuenta la superficie que ocupa sino el número de pies por clase diamétrica de cada especie.

El trabajo *Cuantificación del CO*₂ *fijado por las principales especies forestales arbóreas en Andalucía* se incluye en el Anexo III. Hemos realizado una comprobación de la aproximación entre los resultados obtenidos en los dos trabajos. La comparación entre ambos estudios está limitada a dos factores:

- 1. Puede compararse sólo la biomasa forestal arbórea, ya que es lo que se cuantifica con la metodología INIA.
- 2. Se puede comparar sólo en los años 1991, 1995 y 1999, que son los años para los que existe cartografía, necesaria para realizar el inventario LULUCF.

El año más reciente para el que se podrán comparar ambos métodos es 1999. Siguiendo la metodología INIA es posible cuantificar el carbono fijado por las especies forestales

3. CONCLUSIONES 95

arbóreas en cualquier año, ya que se conoce el carbono en 1990 y el incremento anual neto.

El punto común de ambos son los incrementos de masas arbóreas forestales: el incremento de CO₂ anual en 1990 es 7.781.504 t·año·1 (Tabla 3.4.25 del Anexo III). Por otro lado, según el Inventario LULUCF, el incremento de carbono anual debido al crecimiento, tomando como referencia el año 1991 (aproximado a 1990) es 2.145.954 tC · año-1, que supone una fijación de 7.875.650 t·año-1 de CO₂ y de 1.887.269 t·año-1 (6.926.278 t·año-1 de CO₂) para el periodo 1996-1999. La diferencia entre los dos resultados se debe a la acumulación de errores que van desde la toma de datos de campo hasta la utilización de fuentes de datos muy variadas pero sin embargo es visible la proximidad entre ambos. Para el segundo periodo la diferencia es mayor, pero sigue siendo bastante ajustada.

A la vista de la pequeña diferencia que existe entre estos resultados podemos concluir que ambos métodos son válidos para determinar el incremento de la biomasa forestal arbórea en Andalucía.

Guía Buenas Prácticas LULUCF (1991-1995) 2.145.954 7.875.650 Guía Buenas Prácticas LULUCF (1996-1999) 1.887.269 6.926.278 Metodología INIA (1990-...) 2.120.300 7.781.504

Por otro lado se van a comparar los resultados para dos años: 1990 y 1999, que corresponden al año inicial y final del periodo de estudio considerado en la metodología LULUCF. En el capítulo 3.4. del Anexo III se exponen los balances de carbono para las especies forestales estudiadas, calculando el CO₂ neto debido al crecimiento menos las extracciones, así como el total acumulado para cada especie en varios años: 1999, 2008 y 20127.

Según el estudio del INIA, las especies forestales arbóreas de Andalucía tienen fijadas 188.573.900 t de CO₂ en la biomasa en 1999, cantidad equivalente a 51.382.534 toneladas de carbono (Tabla III.3.4.25). Por otro lado, en el inventario según LULUCF se ha concluido que la categoría forestal en el año 1999 contiene 29.7 tC·ha-1; la superficie forestal arbolada en ese año es de 1.850.264 ha, calculada a partir del Mapa de Usos del Suelo de 1999. Aplicando la densidad de carbono de los terrenos forestales a la superficie forestal arbolada se obtiene que el carbono total acumulado en la biomasa forestal arbórea es 54.952.840 toneladas. Del mismo modo se han comparado los resultados relativos a 1990. La comparativa entre estos valores se muestra en la Tabla 4.ii. En esa misma tabla 4.ii se muestra la fijación anual de carbono del periodo 1990-1999 estimada con ambas metodologías: en el caso del estudio del INIA es de 1.131.567 t·año-1 (determinada en la Tabla III.3.4.26), mientras que en el caso LULUCF es 7.459.077 t·año-1,

Tabla 3.i. Comparación de los resultados de incremento anual de carbono y CO2, en toneladas.

^{2008-2012:} Primer periodo de compromiso del Protocolo de Kioto.

obtenida sumando el cambio total de carbono en la biomasa de la categoría forestal que permanece como forestal en ambos periodos y dividiéndolo entre el número de años. La diferencia es grande pero debemos recordar que en el caso de LULUCF, este cambio se refiere a las superficies forestales arboladas y no arboladas, mientras que en el estudio del INIA se refiere sólo a arbolado.

	Stock total de carbono (t) en 1999	Stock relativo de carbono (t·ha-1) en 1999				
Guía Buenas Prácticas LULUCF	54.952.840	29.7				
Metodología INIA	51.382.534	27.8				
	Stock total de carbono (t) en 1990	Stock relativo de carbono (t·ha-1) en 1990				
Guía Buenas Prácticas LULUCF	33.454.389	14.6				
Metodología INIA	41.198.428	18.0				
	Cambio anual de carbono en	Forestal entre 1990-1999 (t∙año-¹)				
Guía Buenas Prácticas LULUCF	7.459.077					
Metodología INIA	1.131.567					

Tabla 3.ii.
Comparación de los resultados del stock de carbono en la biomasa viva forestal en 1999 y 1990 obtenido con ambas metodologías, en toneladas.

En este caso los resultados del stock total forestal de ambos estudios, también son similares, como ocurría con los incrementos. En el año 1999 son casi iguales pero sin embargo para 1990 existe mayor diferencia. Debemos recordar que el método INIA se refiere sólo a forestal arbolado. Revisando el procedimiento de cálculo se puede explicar esta diferencia:

Por un lado, en el stock medio de la categoría forestal en LULUCF están incluidos los matorrales por lo que en la cantidad de carbono por hectárea que hemos tenido en cuenta no es específica para el arbolado. Otro factor que ha influido es la consideración de las pérdidas de biomasa ya que en el estudio del INIA sólo son ponderadas las extracciones para madera, sin embargo en LULUCF son sometidas a valoración también las pérdidas por extracción de leñas y las debidas a incendios y plagas. La utilización de estimaciones medias, por ejemplo densidades básicas, factores de expansión, etc., conlleva un error que se va acumulando a lo largo del estudio. Es importante mencionar que se ha visto que los datos publicados de extracciones por especie en Andalucía son diferentes según la fuente que los publica. Con ello se quiere decir que puede que las cifras elegidas, aunque estén publicadas por fuentes estadísticas fiables (Anuario de Estadísticas Agrarias y Alimentarias), no sean demasiado exactas.

Con este trabajo obtenemos una primera aproximación a los sumideros de carbono en Andalucía, estimando cuáles son las emisiones y las captaciones según las directrices del Panel Intergubernamental del Cambio Climático publicadas en la Guía de Buenas Prácticas del Sector LULUCF. Además, hemos localizado los puntos para los que se debe mejorar la metodología y aquellos para los que sería necesario conseguir nuevos datos más ajustados a Andalucía, y así poder mejorar los resultados de inventarios futuros.

Con este trabajo

se ha obtenido

una primera

aproximación a

los sumideros

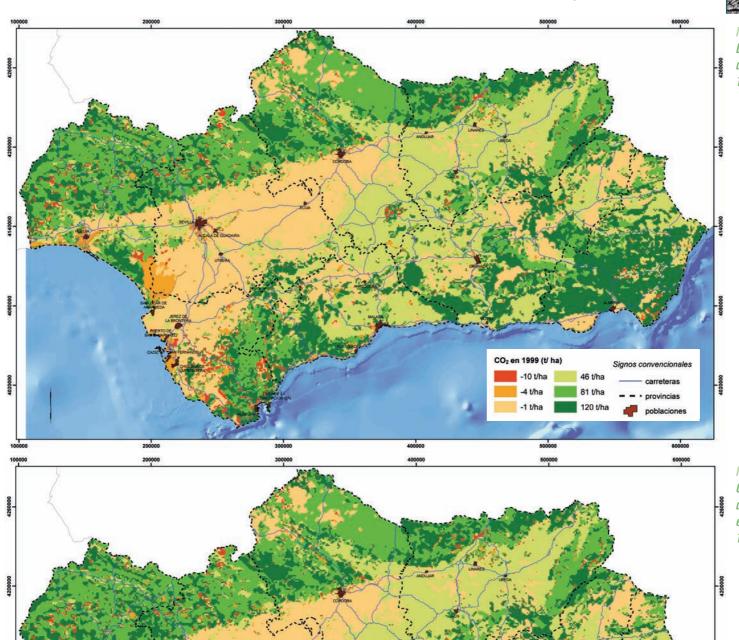
de carbono

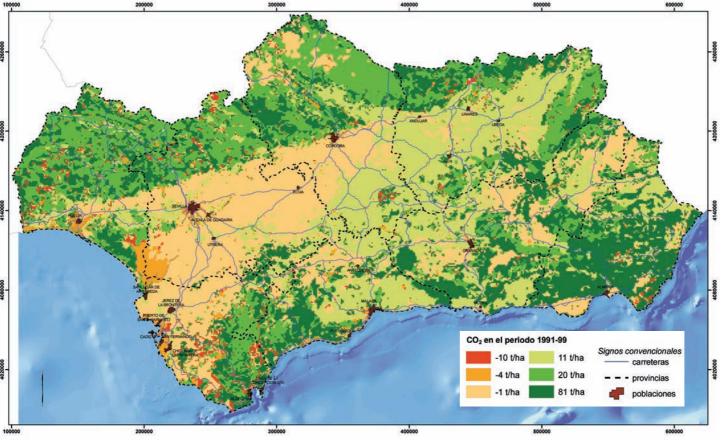
en Andalucía,

estimando cuáles

son las emisiones y

las captaciones.


3. CONCLUSIONES 97


Mapa 1. CO₂ fijado por las
principales
especies
forestales arbóreas. Existencias de CO₂ Hasta 25 t CO₂/ha 60 a 100 t CO₂/ha 25 a 45 t CO₂/ha Más de 100 t CO₂/ha 45 a 60 t CO₂/ha Мара 2. Balance total de CO₂, en 1991. CO₂ en 1991 0 t/ha

Mapa 3.
Balance total
de CO₂, en
1999.

Mapa 4. Cambio total de CO₂, en el periodo 1991-1999.

3. CONCLUSIONES 99

urante la realización de este estudio se han ido viendo las necesidades de datos así como las posibles mejoras que serían necesarias para mejorar la precisión y representatividad de los próximos inventarios de sumideros en Andalucía. A lo largo del documento hemos ido mencionando estos puntos que se van a exponer de nuevo a continuación, analizando cada categoría estudiada.

La categoría *Forestal* ha sido diferenciada en varias subcategorías para obtener resultados disgregados y por lo tanto más ajustados a la realidad que si consideramos el terreno forestal como una única unidad. Los datos estadísticos publicados que se necesitan para realizar el inventario no son homogéneos respecto a las subcategorías, es decir, a veces sólo distingue entre arbolado y matorral, otras entre coníferas, frondosas y mixto, y otras veces incluso entre especies. Esto provoca que nos veamos obligados a ir modificando la división inicial. Sería conveniente para futuros estudios poder disponer de datos con mayor detalle de modo que el inventario se

Monte Mediterráneo en la Sierra de Hornachuelos.

pueda realizar de forma más ajustada. Estos datos mencionados son, entre otros, extracciones de madera y leñas, y superficies afectadas por incendios. Asimismo, sería interesante conseguir datos de superficies que hayan sufrido pérdidas de biomasa debidas a plagas, viento, etc. para incluir estas pérdidas en el balance total.

Las formaciones de *matorral* ocupan una importante extensión en Andalucía, sin embargo, la información disponible referida a los matorrales de esta comunidad, es escasa y se ha tenido que recurrir a publicaciones referidas a otras zonas. Por ello es interesante plantear un estudio específico sobre estas formaciones, en el que se cuantifique la biomasa, tanto aérea como radical, en función de variables fácilmente medibles, así como el crecimiento anual diferenciando entre las especies o entre formaciones de matorral, según se plantee. De este modo tendríamos estimaciones adecuadas de la captación de los matorrales presentes en Andalucía.

Los productos de madera también son considerados almacenes de carbono porque mantienen secuestrado el carbono durante el tiempo que permanecen en uso, después se eliminan, según el destino final, liberando el carbono contenido en forma de CO₂. En este inventario no hemos tenido en cuenta los productos, se ha supuesto que todo el carbono de la madera extraída se libera a la atmósfera, es un factor de emisión. En la actualidad existen modelos informáticos, por ejemplo CO₂FIX, que contabilizan el carbono almacenado en productos, además del que está almacenado en la biomasa y en el suelo. Esta tarea no es sencilla, entre otras razones, porque la fijación depende de la vida media que tiene cada producto, además debemos conocer qué cantidad se descompone en los vertederos, cuánto se quema para producir energía y cúanto es quemado aunque no se utilice para producir energía. Además, en los procesos de transformación se producen emisiones y todos estos factores habría que tenerlos en cuenta en la contabilización. Existe una tendencia al aumento de la cantidad de productos en uso y en vertederos, por lo que habría que empezar a plantearse el estudio del ciclo del carbono en los productos.

El tercer sumidero de carbono en los ecosistemas terrestres es la *materia orgánica muerta* que está constituida por el carbono en la madera muerta y el carbono en la materia orgánica muerta en la capa superficial del suelo, compuesta por hojarasca, ramillas, etc. En este estudio hemos establecido, siguiendo las consideraciones del IPCC, que el cambio anual de carbono en este sumidero no es significativo, por lo que no se contabiliza. La materia orgánica muerta presenta gran actividad en el ciclo del carbono, porque es sumidero y emisor a la vez. Toda su actividad depende de muchos factores, entre ellos el clima. Sería interesante proponer un estudio de captación-emisión de CO₂ en la materia orgánica muerta en áreas representativas del territorio andaluz, con distinta vegetación y en distintas zonas climáticas, para conocer si su grado de influencia en el ciclo global es lo suficientemente relevante como para incluirlo en próximos inventarios.

4. OBSERVACIONES Y NECESIDADES 103

Los *Terrenos Agrícolas* es la segunda categoría en importancia como fijadora de carbono. También ocupa una gran extensión como las áreas forestales. Sin embargo los datos necesarios para cuantificar el cambio de carbono, es decir, producción de biomasa, podas, etc, son escasos y se han tenido que asimilar todos los tipos de cultivos leñosos a los datos del olivar, ya que es del único para el que hay más estudios. Se ha visto la necesidad de desarrollar una metodología apropiada para Andalucía, en la que se diferencien los tipos de cultivos, se estime la biomasa en pie, considerando el turno de cosecha y la biomasa cosechada, así como una estimación de las pérdidas de biomasa debidas a podas u otras causas que afectan a la contabilización total para disponer de las resultados adecuados. Se utiliza esta metodología porque el método propuesto por el IPCC no resulta muy preciso. Una hipótesis considerada es que en el momento de la cosecha se pierde todo el carbono acumulado en la biomasa, lo que supone una sobreestimación de pérdidas, porque en realidad se extrae una parte de la biomasa pero queda en pie otra gran parte.

Humedal en el Paraje Natural Brazo del Este.

La cuarta categoría definida por el IPCC es la de *Humedales*, para la que no se ha estimado el cambio anual, debido a la ausencia de suficientes datos y la consiguiente incertidumbre que esto provoca. El IPCC no obliga a estimar el carbono que se emite por esta categoría, aunque deja opción a que se haga si se considera conveniente. Las zonas de turberas son importantes almacenes de carbono, debido a la gran cantidad de materia orgánica de la que están constituidos. La eliminación de turberas supone una gran emisión neta de CO₂. Se plantea la necesidad de investigar el flujo de carbono en este tipo de humedales y determinar la manera más adecuada de cuantificar las emisiones producidas, tanto las debidas a la inundación como las producidas en las turberas, para disminuir la incertidumbre que tiene el método propuesto por el IPCC en la GPG LULUCF.

Los *Terrenos Urbanos* actúan como emisores de carbono pero esto se debe a los cambios de uso a urbano, ya que no se ha considerado la fijación de las zonas urbanas cuando permanecen como tales. Con ello estamos desestimando la fijación de carbono por las zonas arboladas de los áreas urbanas (es lo que se considera Urbano, según LULUCF), que podría ser importante.

Por último, y de gran importancia, la metodología LULUCF para el cálculo de carbono en el *suelo* es una manera razonable de estimar los cambios de carbono en los suelos pero es indiscutible que, para que sea lo más precisa posible, debemos desarrollar estudios que permitan obtener estimaciones más fiables de los valores considerados, como es el contenido en carbono orgánico de referencia (SOC_{ref}) de cada unidad edafológica y los valores de los factores de ajuste para cada código de uso. Incluso sería interesante desarrollar una metodología propia que se fundamente en otras variables del suelo más fáciles de medir.

4. OBSERVACIONES Y NECESIDADES 105

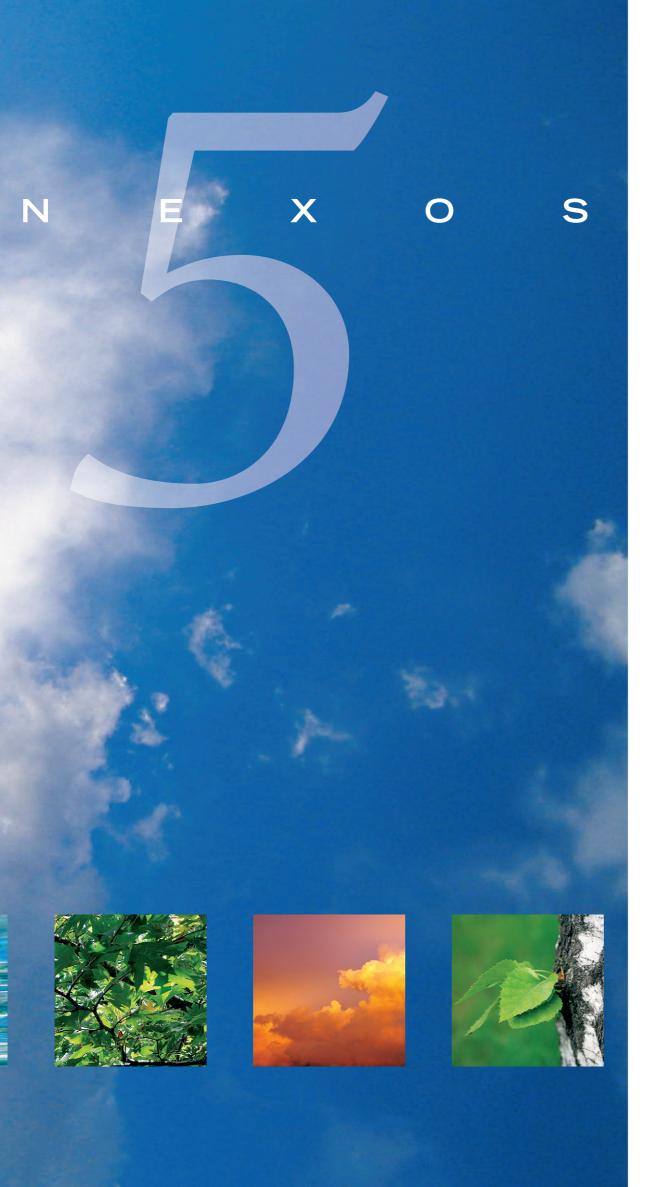


Tabla I.1.
Densidad de masa.
Existencias por hectárea
de cada estrato y
categoría.

Anexo I: Datos del IFN2

Código Provincia	Estrato	VCC (m³)	IAVC (m³)	Cabida (ha)	CATEGORIA
4	1	26,41	1,27	12.291	Coníferas
4	2	19,12	0,85	7.157	Coníferas
4	3	11,49	0,73	13.153	Coníferas
4	4	2,26	0,21	7.991	Coníferas
4	5	24,78	2,31	10.387	Coníferas
4	6	21,70	1,71	4.493	Coníferas
4	7	33,35	2,88	11.092	Coníferas
11	1	38,02	1,80	9.973	Coníferas
11	2	112,32	1,93	524	Coníferas
14	1	28,11	1,48	23.838	Coníferas
14	3	36,14	2,23	25.182	Coníferas
14	4	31,35	1,88	11.114	Coníferas
18	1	42,56	1,86	10.409	Coníferas
18	2	53,40	3,12	16.339	Coníferas
18	3	37,63	1,61	10.939	Coníferas
18	4	60,49	2,28	10.230	Coníferas
18	5	23,64	1,68	10.155	Coníferas
18	6	4,71	0,30	11.544	Coníferas
18	9	29,03	1,21	13.985	Coníferas
18	10	17,54	0,67	10.081	Coníferas
18	11	20,42	0,98	9.035	Coníferas
18	12	12,65	0,74	7.680	Coníferas
21	1	65,91	2,18	20.551	Coníferas
21	2	52,38	1,89	15.118	Coníferas
21	3	21,13	0,77	7.502	Coníferas
21	4	20,29	1,10	23.978	Coníferas
21	5	2,99	0,17	10.992	Coníferas
21	6	48,92	3,05	10.217	Coníferas
23	1	96,49	2,73	26.425	Coníferas
23	2	56,67	1,46	23.421	Coníferas
23	3	35,20	1,63	11.258	Coníferas
23	4	73,31	2,27	14.346	Coníferas
23	5	44,59	1,64	16.167	Coníferas
23	6	8,55	0,39	20.029	Coníferas
23	7	87,43	2,25	9.530	Coníferas
23	8	51,32	1,46	21.181	Coníferas
23	9	20,91	1,29	13.154	Coníferas
23	10	26,54	1,39	9.777	Coníferas
23	11	21,78	1,34	10.762	Coníferas
23	12	60,95	1,87	10.664	Coníferas
23	13	30,52	1,05	14.566	Coníferas
23	14	19,12	0,82	9.720	Coníferas
29	1	69,78	3,44	4.805	Coníferas
29	2	24,46	1,45	10.554	Coníferas
29	3	26,25	1,32	7.360	Coníferas
29	4	72,93	2,80	5.561	Coníferas

			101/0	0.1:1	
Código Provincia	Estrato	VCC (m³)	IAVC (m³)	Cabida (ha)	CATEGORIA
29	5	24,50	1,18	4.563	Coníferas
29	6	19,04	1,13	9.641	Coníferas
29	7	95,50	1,88	1.783	Coníferas
41	3	23,85	1,16	19.724	Coníferas
4	8	12,84	0,92	13.156	Frondosas
4	9	5,87	0,06	7.634	Frondosas
11	3	52,85	2,54	2.324	Frondosas
11	4	37,93	0,19	25.891	Frondosas
11	5	21,67	0,08	12.471	Frondosas
11	6	47,44	0,60	7.635	Frondosas
11	7	21,46	0,14	8.246	Frondosas
11	8	31,77	0,26	29.123	Frondosas
11	9	10,64	0,26	11.696	Frondosas
11	10	16,05	0,11	15.691	Frondosas
14	5	10,24	0,06	127.074	Frondosas
14	6	12,96	0,15	49.413	Frondosas
18	13	13,07	0,33	7.195	Frondosas
18	14	8,33	0,17	9.830	Frondosas
18	15	5,96	0,17	12.727	Frondosas
18	16	6,24	0,14	10.432	Frondosas
18	17	149,05	16,90	6.314	Frondosas
21	7	14,90	0,04	33.440	Frondosas
21	8	9,76	0,03	73.998	Frondosas
21	9	21,36	0,09	24.999	Frondosas
21	10	13,25	0,02	34.476	Frondosas
21	11	49,69	0,78	6.933	Frondosas
21	12	25,65	8,41	31.303	Frondosas
21	13	11,22	4,22	26.454	Frondosas
21	14	24,90	5,93	16.056	Frondosas
21	15	3,73	1,80	12.224	Frondosas
21	16	4,53	1,86	24.211	Frondosas
21	17	0,10	0,06	39.506	Frondosas
21	18	16,67	4,63	25.440	Frondosas
21	19	2,08	0,75	15.758	Frondosas
23	15	9,31	0,12	33.150	Frondosas
29	9	21,40	0,04	7.829	Frondosas
29	10	42,79	0,33	5.189	Frondosas
29	11	47,64	0,53	6.128	Frondosas
29	12	11,65	0,02	7.656	Frondosas
29	14	41,07	2,30	2.868	Frondosas
41	1	6,17	1,83	12.571	Frondosas
41	2	21,05	0,98	10.064	Frondosas
41	4	5,84	0,03	76.731	Frondosas
41	5	8,83	0,03	18.073	Frondosas
41	6	10,80	0,02	37.059	Frondosas
41	7	15,38	0,04	20.625	Frondosas
14	2	18,75	0,33	7.386	Mixto
18	7	30,45	0,00	9.369	Mixto

ANEXO I. DATOS DEL IFN2

Código Provincia	Estrato	VCC (m³)	IAVC (m³)	Cabida (ha)	CATEGORIA
18	8	21,76	0,75	8.221	Mixto
29	8	24,35	0,75	8.234	Mixto
29	13	10,69	0,20	5.303	Mixto
4	10	3,46	0,18	11.008	Otros
11	11	4,21	0,03	21.258	Otros
11	12	3,36	0,10	22.842	Otros
14	7	6,99	0,05	127.626	Otros
18	18	5,64	0,21	34.887	Otros
21	20	4,26	0,01	45.774	Otros
21	21	4,46	0,01	11.951	Otros
21	22	2,62	0,26	9.389	Otros
23	16	6,50	0,14	66.978	Otros
29	15	8,88	0,38	21.973	Otros
41	8	2,03	0,02	43.283	Otros
41	9	3,83	0,06	21.451	Otros
4	11	14,87	0,87	3.486	Quemado
18	19	14,37	0,56	12.350	Quemado
21	23	13,50	2,18	19.651	Quemado
29	16	8,08	0,26	4.592	Quemado
29	17	2,15	0,14	1.688	Quemado
41	10	3,20	0,00	17.011	Quemado

Fuente: Segundo Inventario Forestal Nacional. Tabla 301." Densidad de masa"

Tabla 1.2.
Cálculo del Volumen
con corteza medio y del
incremento de volumen
anual medio para las
distintas categorías de las
provincias de Andalucía.

Categoría	VCC (m³/ha)	IAVC (m³/ha año)	Cabida (Ha)
Coníferas			
Almería 4	19,87	1,42	66.564
diz 11 75,17		1,86	10.497
Cordoba 14	31,87	1,86	60.134
Granada 18	30,21	1,44	110.398
Huelva 21	35,27	1,53	88.358
Jaen 23	45,24	1,54	211.000
Málaga 29	47,49	1,89	44.268
Sevilla 41	23,85	1,16	19.724
	38,62	1,59	610.945
Frondosas			
Almería 4	9,36	0,49	20.791
Cádiz 11	29,98	0,52	113.077
Cordoba 14	11,60	0,11	176.487
Granada 18	36,53	3,54	46.498
Huelva 21	15,22	2,20	364.798
Jaen 23	9,31	0,12	33.150
Málaga 29	32,91	0,64	29.670
Sevilla 41	11,34	0,54	175.122
	19,53	1,02	959.595
Mixto			
Almería 4			
Cádiz 11			
Cordoba 14	18,75	0,88	7.386
Granada 18	26,11	0,85	17.590
Huelva 21			
Jaen 23			
Málaga 29	17,52	0,48	13.537
Sevilla 41			
	20,79	0,74	38.514
Otros			
Almería 4	3,46	0,18	11.008
Cádiz 11	3,79	0,06	44.100
Cordoba 14	6,99	0,05	127.626
Granada 18	5,64	0,21	34.887
Huelva 21	3,78	0,09	67.114
Jaen 23	6,50	0,14	66.978
Málaga 29	8,88	0,38	21.973
Sevilla 41	2,93	0,04	64.734
	5,24	0,15	438.420
Quemados			
Almería 4	14,87	0,87	3.486
Cádiz 11			
Cordoba 14			
Granada 18	14,37	0,56	12.350
Huelva 21	13,50	2,18	19.651
Jaen 23			
Málaga 29	5,11	0,20	6.279
Sevilla 41	3,20	0,00	17.011
	10,21	0,76	58.778

ANEXO I. DATOS DEL IFN2 111

Anexo II: Factores de ajuste para el cálculo del cambio de carbono en suelos

1. Factor de ajuste según el tipo de formación forestal (f_{forest type}):

En Mendoza-Vega *et al.* (2003) se presentan algunos resultados sobre el contenido en carbono orgánico del suelo para la zona de Chiapas en México en función del tipo de suelo y del uso de la tierra (Tabla II.1). Estos resultados, en términos absolutos, no son asimilables a las condiciones de la región andaluza, aunque sí pueden conformar una estimación de los niveles de variación relativa en el contenido en carbono orgánico del suelo.

149 31.8 180.8 Bosques de quercíneas — perennifolias Bosques de coníferas o de coníferas — quercíneas 133 33.5 166.5 118 27.3 145.3 Bosques fragmentados Terrenos abiertos (pastizales y cultivos) 84 3.2 87.2

Tabla II.1.
Contenido en carbono
orgánico del suelo en los
primeros 30 cm de suelo
(mendoza-Vega et al., 2003)

2. Factor de ajuste según la intensidad de las actuaciones antrópicas (f_{forest type}):

Los tratamientos selvícolas y otras actividades desarrolladas por el hombre en los ecosistemas forestales constituyen un aporte de materia orgánica al suelo más rápido y en mayores cantidades de los que se producirían en condiciones naturales. Esto se debe a la producción de residuos selvícolas que si no se eliminan mediante quema o se sacan del monte, pueden incorporarse en parte al suelo. Sin embargo, también algunos tratamientos implican una extracción.

En este sentido, se han estimado unos factores de ajuste relacionados con las extracciones de madera y con la producción de residuos selvícolas asociadas generalmente al desarrollo de los distintos tratamientos selvícolas y aprovechamientos de los montes (Tabla II.2).

Tabla II.2. Factores de ajuste según los tratamientos selvícolas

Tratamiento selvícola	${\sf f}_{\sf man\ intensity}$
Podas	1,05
Clareos, claras y cortas	0,80
Podas, clareos, claras y cortas	0,85
Desbroces	1,05
Podas y desbroces	1,10
Clareos, claras, cortas y desbroces	0,85
Podas, clareos, claras, cortas y desbroces	0,90
Gradeos	1,00
Podas y gradeos	1,05
Repoblaciones	1,00
Sin tratamiento	1,00

100

92.1

80.4

48.2

Dichos factores se han estimado proporcionalmente a la producción cuantitativa de madera y de residuos selvícolas en cada tratamiento, siendo dicha producción relacionada con el peso de las distintas fracciones de la biomasa total del árbol que son aprovechadas o que constituyen los residuos.

3. Factor de ajuste según el régimen de perturbaciones (f_{dist regime}):

En este factor se tendrán en cuenta dos cuestiones de gran relevancia en el territorio andaluz: los incendios forestales y los problemas ocasionados por la "seca" que afecta a las especies del género *Quercus*. Con respecto a los incendios forestales, se considerará el factor de ajuste como un factor del tipo de incendio en términos de probabilidad de sufrir un siniestro severo que afecte al contenido de materia orgánica en el suelo a corto o medio plazo, según el modelo de combustible al que se podría asimilar cada código de uso (Tabla II.3).

Modelo de combustible	%Arb	%Mat	%Past	
Modelo 0	-	<66	>35	0,90
Modelos 1 al 3	-	<66	>35	0,90
Modelos 4 al 7	<30	>70	-	0,80
Modelos 8 al 13	>40	<10	-	0,75

Tabla II.3.

Factor de ajuste según el modelo de combustible

Con respecto a la "seca", se aplicará una modificación en los códigos de uso que contengan un dosel arbóreo de quercíneas. Este síndrome provoca la muerte de los árboles, por lo que se producen a largo plazo cambios de uso hacia formaciones arboladas cada vez más dispersas, sobre todo con los problemas de regeneración de las quercíneas. En consecuencia, se propone una modificación del factor de ajuste que consistirá en multiplicar el factor de riesgo de incendios por un factor de 0,95.

Tabla II.4. Recopilación de los factores de ajuste para cada uso forestal.

Código Mapa Usos	DESCRIPCION	Frorest type	USO DE LA TIERRA DE MENDOZA- VEGA	F _{MAN} INTENSISTY	ACTIVIDADES	FDISTREGIME	MODELO DE COMBUSTIBLE
510	formaciones arboladas densas: quercíneas	1,00	Bosques quercíneas — perennifolias	1,05	Podas	0,71	Modelos 8 al 13
520	formaciones arboladas densas: coníferas	0,90	Bosques coníferas/mixto	0,80	Clareos, claras y cortas	0,75	Modelos 8 al 13
530	formaciones arboladas densas. eucaliptos	0,90	Bosques coníferas/mixto	0,80	Clareos, claras y cortas	0,75	Modelos 8 al 13
540	formaciones arboladas densas: otras frond	1,00	Bosques quercíneas perennifolias	1,05	Podas	0,75	Modelos 8 al 13
550	formaciones arboladas densas: querc+coníf	0,90	Bosques coníferas/mixto	0,85	Podas, clareos, claras y cortas	0,71	Modelos 8 al 13
560	formaciones arboladas densas: querc+eucal	0,90	Bosques coníferas/mixto	0,85	Podas, clareos, claras y cortas	0,71	Modelos 8 al 13
570	formaciones arboladas densas: coníf+eucal	0,90	Bosques coníferas/mixto	0,80	Clareos, claras y cortas	0,75	Modelos 8 al 13
580	formaciones arboladas densas: otras mezclas	0,90	Bosques coníferas/mixto	0,85	Podas, clareos, claras y cortas	0,75	Modelos 8 al 13
611	matorral denso arbolado: quercíneas densas	1,00	Bosques quercíneas perennifolias	1,10	Podas y desbroces	0,71	Modelos 8 al 13
615	matorral denso arbolado: quercíneas disp	0,80	Bosques fragmentados	1,10	Podas y desbroces	0,76	Modelos 4 al 7
621	matorral denso arbolado: coníferas densas	0,90	Bosques coníferas/mixto	0,85	Clareos, claras, cortas y desbroces	0,75	Modelos 8 al 13

Código Mapa Usos	DESCRIPCION	FORESTTYPE	USO DE LA TIERRA DE MENDOZA- VEGA	F MAN INTENSISTY	ACTIVIDADES	FDIST REGIME	MODELO DE COMBUSTIBLE
625	matorral denso arbolado: coníferas disp	0,80	Bosques fragmentados	0,85	Clareos, claras, cortas y desbroces	0,80	Modelos 4 al 7
630	matorral denso arbolado: eucaliptos	0,90	Bosques coníferas/mixto	0,85	Clareos, claras, cortas y desbroces	0,75	Modelos 8 al 13
640	matorral denso arbolado: otras frondosas	0,90	Bosques coníferas/mixto	0,90	Podas, clareos, claras, cortas y desbroces	0,75	Modelos 8 al 13
650	matorral denso arbolado: quercíneas + coníf	0,90	Bosques coníferas/mixto	0,90	Podas, clareos, claras, cortas y desbroces	0,71	Modelos 8 al 13
660	matorral denso arbolado: quercíneas + eucal	0,90	Bosques coníferas/mixto	0,85	Clareos, claras, cortas y desbroces	0,71	Modelos 8 al 13
670	matorral denso arbolado: coníf+eucal	0,90	Bosques coníferas/mixto	0,85	Clareos, claras, cortas y desbroces	0,75	Modelos 8 al 13
680	matorral denso arbolado: otras mezclas	0,90	Bosques coníferas/mixto	0,90	Podas, clareos, claras, cortas y desbroces	0,75	Modelos 8 al 13
711	matorral disperso arbolado: querc denso	1,00	Bosques quercíneas perennifolias	1,10	Podas y desbroces	0,71	Modelos 8 al 13
715	matorral disperso arbolado: querc disperso	0,80	Bosques fragmentados	1,10	Podas y desbroces	0,86	Modelos 1 al 3
721	matorral disperso arbolado: coníferas denso	0,90	Bosques coníferas/mixto	0,85	Clareos, claras, cortas y desbroces	0,75	Modelos 8 al 13
725	matorral disperso arbolado: coníf disperso	0,80	Bosques fragmentados	0,85	Clareos, claras, cortas y desbroces	0,90	Modelos 1 al 3
730	matorral disperso arbolado: eucaliptos	0,90	Bosques coníferas/mixto	0,85	Clareos, claras, cortas y desbroces	0,75	Modelos 8 al 13
740	matorral disperso arbolado: otras frondosas	0,90	Bosques coníferas/mixto	0,90	Podas, clareos, claras, cortas y desbroces	0,75	Modelos 8 al 13
750	matorral disperso arbolado: querc+coníf	0,90	Bosques coníferas/mixto	0,90	Podas, clareos, claras, cortas y desbroces	0,71	Modelos 8 al 13
760	matorral disp arbolado: quercíneas+eucal	0,90	Bosques coníferas/mixto	0,90	Podas, clareos, claras, cortas y desbroces	0,71	Modelos 8 al 13
770	matorral disp arbolado: coníf+eucal	0,90	Bosques coníferas/mixto	0,85	Clareos, claras, cortas y desbroces	0,75	Modelos 8 al 13
780	matorral disperso arbolado: otras mezclas	0,90	Bosques coníferas/mixto	0,90	Podas, clareos, claras, cortas y desbroces	0,75	Modelos 8 al 13
811	pastizal arbolado: quercíneas denso	1,00	Bosques quercíneas — perennifolias	1,05	Podas	0,71	Modelos 8 al 13
815	pastizal arbolado: quercíneas disperso	0,80	Bosques fragmentados	1,05	Podas	0,86	Modelos 1 al 3
821	pastizal arbolado: coníferas denso	0,90	Bosques coníferas/mixto	0,80	Clareos, claras y cortas	0,75	Modelos 8 al 13
825	pastizal arbolado: coníferas disperso	0,80	Bosques fragmentados	0,80	Clareos, claras y cortas	0,90	Modelos 1 al 3
830	pastizal arbolado: eucaliptos	0,90	Bosques coníferas/mixto	0,80	Clareos, claras y cortas	0,90	Modelos 1 al 3
840	pastizal arbolado: otras frondosas	0,90	Bosques coníferas/mixto	1,05	Podas	0,90	Modelos 1 al 3
850	pastizal arbolado: quercíneas+coníferas	0,90	Bosques coníferas/mixto	0,85	Podas, clareos, claras y cortas	0,86	Modelos 1 al 3
860	pastizal arbolado: quercíneas+eucaliptos	0,90	Bosques coníferas/mixto	0,85	Podas, clareos, claras y cortas	0,86	Modelos 1 al 3
870	pastizal arbolado: coníferas+eucaliptos	0,90	Bosques coníferas/mixto	0,80	Clareos, claras y cortas	0,90	Modelos 1 al 3
880	pastizal arbolado: otras mezclas	0,90	Bosques coníferas/mixto	0,85	Podas, clareos, claras y cortas	0,90	Modelos 1 al 3
891	cultivo herbáceo arbolado: quercíneas denso	1,00	Bosques quercíneas — perennifolias	1,05	Podas y gradeos	0,71	Modelos 8 al 13
895	cultivo herbáceo arbolado: quercíneas disp	0,80	Bosques fragmentados	1,05	Podas y gradeos	0,86	Modelos 1 al 3
901	talas y plantaciones forestales recientes	0,50	Terrenos abiertos (pastizales y cultivos)	1,00	Sin tratamiento	0,90	Modelos 1 al 3
911	matorral denso	0,50	Terrenos abiertos (pastizales y cultivos)	1,00	Sin tratamiento	0,80	Modelos 4 al 7
915	matorral disperso con pastizal	0,50	Terrenos abiertos (pastizales y cultivos)	1,00	Sin tratamiento		Modelos 1 al 3
917	matorral disperso con pasto y roca o suelo	0,50	Terrenos abiertos (pastizales y cultivos)	1,00	Sin tratamiento	0,90	Modelos 1 al 3
934	zonas incendiadas	0,50	Terrenos abiertos (pastizales y cultivos)	1,00	Repoblaciones	0,90	Modelos 1 al 3
935	zonas sin vegetación por roturación	0,50	Terrenos abiertos (pastizales y cultivos)	1,00	Repoblaciones	1,00	Modelo 0

Tabla II.5.
Factores de ajuste
aplicados para cada
código de uso forestal

Código Jerárquico	Descripción	Código Mapa Usos	f _{forest type}	f _{man intensity}	f _{dist regime}	f _{total}
4.1.1.1	Formaciones arboladas densas: quercíneas	510	1,00	1,05	0,71	0,75
4.1.1.2.	Formaciones arboladas densas: coníferas	520	0,90	0,80	0,75	0,54
4.1.1.3.	Formaciones arboladas densas. Eucaliptos	530	0,90	0,80	0,75	0,54
4.1.1.4.	Formaciones arboladas densas: otras frondosas	540	1,00	1,05	0,75	0,79
4.1.1.5.	Formaciones arboladas densas: quercíneas+coníferas	550	0,90	0,85	0,71	0,54
4.1.1.6.	Formaciones arboladas densas: quercíneas +eucaliptos	560	0,90	0,85	0,71	0,54
4.1.1.7.	Formaciones arboladas densas: coníferas + eucaliptos	570	0,90	0,80	0,75	0,54
4.1.1.8.	Formaciones arboladas densas: otras mezclas	580	0,90	0,85	0,75	0,57
4.1.2.1.1	Matorral denso arbolado: quercíneas densas	611	1,00	1,15	0,71	0,82
4.1.2.1.2	Matorral denso arbolado: quercíneas dispersas	615	0,80	1,15	0,76	0,70
4.1.2.2.1	Matorral denso arbolado: coníferas densas	621	0,90	0,90	0,75	0,61
4.1.2.2.2	Matorral denso arbolado: coníferas dispersas	625	0,80	0,90	0,80	0,58
4.1.2.3	Matorral denso arbolado: eucaliptos	630	0,90	0,90	0,75	0,61
4.1.2.4	Matorral denso arbolado: otras frondosas	640	0,90	0,95	0,75	0,64
4.1.2.5	Matorral denso arbolado: quercíneas+coníferas	650	0,90	0,95	0,71	0,61
4.1.2.6	Matorral denso arbolado: quercíneas + eucaliptos	660	0,90	0,90	0,71	0,58
4.1.2.7	Matorral denso arbolado: coníferas + eucaliptos	670	0,90	0,90	0,75	0,61
4.1.2.8	Matorral denso arbolado: otras mezclas	680	0,90	0,95	0,75	0,64
4.1.3.1.1	Matorral disperso arbolado: quercíneas denso	711	1,00	1,15	0,71	0,82
4.1.3.1.2	Matorral disperso arbolado: quercíneas disperso	715	0,80	1,15	0,86	0,79
4.1.3.2.1	Matorral disperso arbolado: coníferas denso	721	0,90	0,90	0,75	0,61
4.1.3.2.2	Matorral disperso arbolado: coníferas disperso	725	0,80	0,90	0,90	0,65
4.1.3.3	Matorral disperso arbolado: eucaliptos	730	0,90	0,90	0,75	0,61
4.1.3.4	Matorral disperso arbolado: otras frondosas	740	0,90	0,95	0,75	0,64
4.1.3.5	Matorral disperso arbolado: quercíneas+coníferas	750	0,90	0,95	0,71	0,61
4.1.3.6	Matorral disperso arbolado: quercíneas + eucaliptos	760	0,90	0,95	0,71	0,61
4.1.3.7	Matorral disperso arbolado: coníferas + eucaliptos	770	0,90	0,90	0,75	0,61
4.1.3.8	Matorral disperso arbolado: otras mezclas	780	0,90	0,95	0,75	0,64
4.1.4.1.1	Pastizal arbolado: quercíneas denso	811	1,00	1,05	0,71	0,75
4.1.4.1.2	Pastizal arbolado: quercíneas disperso	815	0,80	1,05	0,86	0,72
4.1.4.2.1	Pastizal arbolado: coníferas denso	821	0,90	0,80	0,75	0,54
4.1.4.2.2	Pastizal arbolado: coníferas disperso	825	0,80	0,80	0,90	0,58
4.1.4.3	Pastizal arbolado: eucaliptos	830	0,90	0,80	0,90	0,65
4.1.4.4	Pastizal arbolado: otras frondosas	840	0,90	1,05	0,90	0,85
4.1.4.5	Pastizal arbolado: quercíneas+coníferas	850	0,90	0,85	0,86	0,66
4.1.4.6	Pastizal arbolado: quercíneas + eucaliptos	860	0,90	0,85	0,86	0,66
4.1.4.7	Pastizal arbolado: coníferas + eucaliptos	870	0,90	0,80	0,90	0,65
4.1.4.8	Pastizal arbolado: otras mezclas	880	0,90	0,85	0,90	0,69
4.1.5.1	Cultivo herbáceo arbolado: quercíneas denso	891	1,00	1,10	0,71	0,78
4.1.5.2	Cultivo herbáceo arbolado: quercíneas disperso	895	0,80	1,10	0,86	0,76
4.1.6	Talas y plantaciones forestales recientes	901	0,50	1,00	0,90	0,45
4.2.1	Matorral denso	911	0,50	1,00	0,80	0,40
4.2.2.1	Matorral disperso con pastizal	915	0,50	1,00	0,90	0,45
4.2.2.2	Matorral disperso con pasto y roca o suelo	917	0,50	1,00	0,90	0,45
4.4.4	Zonas incendiadas	934	0,50	1,00	0,90	0,45
4.4.5	Zonas sin vegetación por roturación	935	0,50	1,00	1,00	0,50

Tabla II.6. Factores de ajuste para cada código de uso agrícola

Código Jerárquico	Denominación	Código Mapa Usos	F _{LU}	F _{MG}	F _L	F _{TOTAL}
3.1.1.1.	Cultivos herbáceos en secano	411	0,82	1	1	0,82
3.1.1.2.1.	Olivar	415	0,82	1,03	1	0,84
3.1.1.2.2.	Viñedo	417	0,82	1,03	1	0,84
3.1.1.2.3.	Otros cultivos leñosos en secano	419	0,82	1,03	1	0,84
3.1.2.1.1.1.	Arrozales	421	1,1	1	1	1,10
3.1.2.1.1.2.	Cultivos forzados bajo plástico	423	0,82	1	1	0,82
3.1.2.1.1.3.	Otros cultivos herbáceos regados	425	0,82	1	1	0,82
3.1.2.1.2.	Regados y no regados	427	0,82	1,03	1	0,84
3.1.2.1.3.	No regados	429	0,82	1,03	1	0,84
3.1.2.2.1	Parcialmente regados o no regados	430	0,82	1,03	1	0,84
3.1.2.22.1.	Cítricos	431	0,82	1,03	1	0,84
3.1.2.2.2.2	Olivos	433	0,82	1,03	1	0,84
3.1.2.2.2.3	Frutales tropicales	435	0,82	1,03	1	0,84
3.1.2.2.2.4	Otros cultivos leñosos en regadío	439	0,82	1,03	1	0,84
3.2.1.1.	Cultivos herbáceos y leñosos en secano	441	0,82	1,03	1	0,84
3.2.1.2.1.	Olivar-viñedo	445	0,82	1,03	1	0,84
3.2.1.2.2.	Otras asociaciones y mosaicos de cultivos leñosos secano	449	0,82	1,03	1	0,84
3.2.2.1.1.	Regados	451	0,82	1,03	1	0,84
3.2.2.1.2.	Parcialmente regados	455	0,82	1,03	1	0,84
3.2.2.1.3.	No regados	457	0,82	1,03	1	0,84
3.2.2.2.	Mosaico de leñosos en regadío	459	0,82	1,03	1	0,84
3.2.3.1.	Con cultivos herbáceos	461	0,82	1,03	1	0,84
3.2.3.2.	Con cultivos herbáceos y leñosos	465	0,82	1,03	1	0,84
3.2.3.3.	Con cultivos leñosos	469	0,82	1,03	1	0,84
3.2.4.1.	Cultivos herbáceos y pastizales	471	0,82	1,03	1	0,84
3.2.4.2.	Cultivos herbáceos y vegetación natural leñosa	473	0,82	1,03	1	0,84
3.2.4.3.	Cultivos leñosos y pastizales	475	0,82	1,03	1	0,84
3.2.4.4.	Cultivos leñosos y vegetación natural leñosa	477	0,82	1,03	1	0,84
3.2.4.5.	Otros mosaicos de cultivos y vegetación natural	479	0,82	1,03	1	0,84
3.2.4.6.1.	Olivar abandonado	481	0,82	1,1	1	0,90
3.2.4.6.2.	Otros cultivos leñosos abandonados	489	0,82	1,1	1	0,90

Tabla II.7.

Descripción de cada factor
elegido para Terrenos
Agrícolas.

Factor	Nivel	Régimen Climático	Valor por defecto GPG LULUCF	Error	Descripción
Uso del suelo (F _{LU})	Largo tiem- po de cultivo	Templado seco	0.82	± 10%	Cultivadas durante un largo periodo de tiempo (>20 años) con cultivos anuales. Tiene en cuenta el laboreo total y aportes medios de carbono.
Uso del suelo (F _{LU})	Arrozal	Templado	1.1	± 90%	Cultivos de arroz de más de 20 años. No tiene en cuenta los laboreos y aportes al suelo.
Laboreo (F _{MG})	Completo	Templado	1.0	Sin determinar	Alteración sustancial del suelo con inversión total de horizontes. En la plantación, $<$ 30% de la superficie está cubierta por residuos.
Laboreo (F _{MG})	Reducido	Templado seco	1.03	± 6%	Laboreos superficiales, sin inversión total del suelo. En la plantación, $>$ 30% de la superficie está cubierta por residuos
Laboreo (F _{MG})	Sin laboreo	Templado seco	1.1	± 6%	Sembrado directo sin laboreos previos: no hay alteración del suelo. Uso de herbicidas.
Aportes (F _I)	Medio	Templado seco	1.0	Sin determinar	Representa los cultivos anuales de cereales en los que los residuos se devuelven al suelo o, si se extraen, se realizan aportes de materia orgánica suplementarios

Los datos han sido tomados de la tabla 3.3.4 "Relative stock change factors for different management activities on cropland". de la GPG LULUCF.:

Código Jerárquico	Denominación	Código Mapa Usos		F_{MG}		F _{TOTAL}
4.3.1	Pastizal continuo	921	1	0,95	1	0,95
4.3.2	Pastizal con claros (roca, suelo)	925	1	0,95	1	0,95

Factor	Nivel	Régimen Climático	Valor por defecto GPG LULUCF	Error	Descripción
Uso del suelo (F _{LU})	Todos	Todos	1.0	Sin determinar	A todos los pastos permanentes se le asigna el valor 1
Laboreo (F _{MG})	Pastizales moderadamente degradados	Templado	0.95	± 12%	Representa pastos sobrepastoreados o mode- radamente degradados, con la productividad algo reducida (relativa al pasto original) y que no reciben aportes para el mantenimiento
Laboreo (F _{MG})	Severamente degradados	Todos	0.7	± 50%	Representa la pérdida durante largo periodo de productividad y cubierta de vegetación debido a severos daños mecánicos a la vege- tación y/o severa erosión del suelo
Aportes (F _I)	Básico	Todos	1.0	Sin determinar	Se aplica a los pastos donde no se realizan aportes adicionales para su manejo

Código Jerárquico	Denominación	Código Mapa Usos		F_{MG}		F _{TOTAL}
4.4.1	Playas, dunas y arenales	931	1	0,70	1	0,95
4.4.2	Roquedos y suelo desnudo	932	1	0,70	1	0,95
4.4.3	Áreas con fuertes procesos erosivos	933	1	0,70	1	0,95

Tabla II.8. Factores de ajuste para cada código de uso de pastizal.

Tabla II.9.
Descripción de cada factor elegido para Pastizales (datos tomados de la tabla 3.4.5. "Relative stock change factors for grasslands management" de la GPG LULUCF).

Tabla II.10. Factores de ajuste para cada código de uso "otros terrenos"

Anexo III: Cuantificación del CO₂ fijado por las principales especies forestales en Andalucía

Resumen

En este trabajo se ha determinado el CO₂ fijado por las especies forestales arbóreas más importantes de Andalucía. Para ello se ha utilizado una metodología desarrollada por el Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) para determinar la biomasa aérea y radical arbórea y a partir de ésta se ha calculado el carbono fijado. Esta metodología permite utilizar los datos del Segundo Inventario Forestal Nacional (IFN2), herramienta básica para gestión forestal en España. En este proyecto ha colaborado la Consejería de Medio Ambiente de la Junta de Andalucía.

La estimación de la biomasa de una especie forestal se consigue a partir de un muestreo destructivo realizado en una muestra de varios árboles de diferentes diámetros. En estos muestreos se apeó cada árbol y se dividió en sus distintas fracciones de biomasa (fuste, ramas, ramillas y raíces) que se pesaron en campo. Se calculó el peso seco en laboratorio y se ajustaron unos modelos de regresión que relacionan la biomasa seca de cada fracción de biomasa con el diámetro normal. Aplicando estos modelos a las clases diamétricas establecidas en el IFN2 se han obtenido los valores modulares de biomasa y carbono. Con estos valores modulares y los datos del número de pies por clase diamétrica del inventario se obtienen los resultados de fijación totales para toda Andalucía, por clase diamétrica y especie. En las masas forestales arbóreas de Andalucía hay fijadas 112 millones de toneladas de CO₂ en la biomasa aérea.

Con los mismos modelos se han calculado los incrementos anuales de biomasa y, conociendo los datos de extracciones, se han realizado balances de fijación de ${\rm CO_2}$ para el periodo 2008-2012, que es el primer periodo de compromiso establecido en el Protocolo de Kioto.

Resultados

Las especies estudiadas son las siguientes:

- 1. Pinus sylvestris L.
- 2. Pinus pinaster Ait.
- 3. Pinus nigra Arn.
- 4. Pinus pinea L.
- **5.** Pinus halepensis Mill.
- **6.** Ouercus ilex L.
- 7. Quercus suber L.
- 8. Eucalyptus sp.

- 9. Quercus faginea Lamk.
- 10. Quercus pyrenaica Willd.
- 11. Quercus canariensis Willd.
- 12. Olea europaea L.
- 13. Pinus radiata D. Don.
- 14. Juniperus thurifera L.
- 15. Populus sp
- 16. Fraxinus sp.
- 17. Alnus glutinosa L.
- 18. Abies pinsapo Boiss.
- 19. Castanea sativa Mill.
- **20.** Ceratonia siliqua L.
- 21. Juniperus oxycedrus L.
- 22. Juniperus phoenicea L.
- 23. Otras frondosas

Valores modulares de CO₂ por clase diamétrica y fracción para cada especie

En las tablas III.1.a III.23 se presentan los valores modulares de CO_2 fijado por las especies estudiadas. Los valores modulares representan la cantidad de CO_2 que mantiene fijada un árbol medio de cada clase diamétrica.

			Pi	nus sylvestris	s L			
			Biomas	sa aérea				
CD			Ramas				Biomasa	Biomasa
(cm)	Fuste	R > 7 cm	R 2-7 cm	R < 2 cm	Acículas	Total aérea	radical	total
5	2,7	-	0,8	2,2	1,6	7,3	1,3	8,6
10	21,2	-	4,4	7,5	5,7	38,8	8,2	46,9
15	66,7	-	10,9	14,5	11,0	103,1	23,7	126,8
20	146,4	-	20,4	22,6	17,1	206,4	50,4	256,8
25	263,6	2,9	32,3	31,2	23,5	353,6	90,7	444,2
30	424,3	6,9	46,9	40,3	30,4	548,8	146,4	695,2
35	630,5	14,2	63,8	49,8	37,6	796,0	219,5	1.015,5
40	884,5	26,4	83,0	59,6	44,9	1.098,4	311,8	1.410,3
45	1.187,8	45,4	104,3	69,5	52,4	1.459,3	425,0	1.884,3
50	1.541,3	73,5	127,5	79,4	59,9	1.881,6	560,6	2.442,2
55	1.945,3	113,2	152,4	89,4	67,5	2.367,9	720,2	3.088,1
60	2.399,8	167,6	179,0	99,4	75,0	2.920,8	905,3	3.826,0
65	2.904,2	239,9	207,0	109,3	82,4	3.542,8	1.117,2	4.660,0
70	3.457,5	333,5	236,2	119,1	89,8	4.236,1	1.357,5	5.593,6

Tabla III.1.

Valores modulares de CO₂

para Pinus sylvestris, en kg.

Tabla III.2. Valores modulares de CO₂ para Pinus pinaster, en kg.

			Pinus pii	naster Ait			
			Biomasa aérea				
CD (cm)	Fuste		Ramas		- Total aérea	Biomasa radical	Biomasa total
	ruste	R > 7 cm	R 2-7 cm	R < 2 cm	TULAI AETEA	TaulGal	totai
5	4,0	-	0,2	0,9	5,1	1,8	6,8
10	23,1	-	1,1	4,4	28,6	9,3	37,8
15	64,1	-	3,1	11,3	78,6	24,3	102,8
20	132,4	-	6,6	22,2	161,1	48,1	209,2
25	232,0	0,2	11,7	37,3	281,2	81,7	362,9
30	366,8	0,8	18,7	57,1	443,3	126,0	569,3
35	539,8	2,1	27,9	81,6	651,4	181,7	833,1
40	753,7	5,1	39,3	111,1	909,2	249,6	1.158,7
45	1.010,3	10,8	53,2	145,7	1.219,9	330,1	1.550,1
50	1.310,8	21,3	69,5	185,4	1.587,0	424,1	2.011,0
55	1.655,6	39,2	88,4	230,1	2.013,3	531,8	2.545,1
60	2.044,2	68,2	109,8	279,5	2.501,7	654,0	3.155,7
65	2.474,6	113,4	133,7	333,4	3.055,1	790,9	3.846,0
70	2.944,0	180,8	160,0	391,2	3.675,9	943,2	4.619,1

Tabla III.3. Valores modulares de CO₂ para Pinus nigra, en kg.

			Pinus n	igra Arn			
CD			Biomasa aérea			Biomasa	Biomasa
(cm)	Fuste	Ramas			- Total aérea	radical	total
	Tusto	R > 7 cm	R 2-7 cm	R < 2 cm	iotai acica	raaroar	
5	3,8	-	0,2	2,5	6,5	2,0	8,5
10	24,0	-	2,0	11,5	37,4	10,4	47,8
15	69,3	-	6,8	27,7	103,8	27,4	131,2
20	146,5	-	16,2	51,3	214,0	54,5	268,5
25	256,8	5,9	31,2	81,3	375,1	92,9	468,0
30	407,4	13,7	53,5	118,8	593,4	143,5	737,0
35	599,4	28,1	84,1	163,0	874,6	207,4	1.082,0
40	834,2	52,1	123,9	213,5	1.223,7	285,3	1.509,0
45	1.112,6	89,3	173,8	270,0	1.645,7	378,0	2.023,7
50	1.434,6	144,3	234,4	331,9	2.145,2	486,1	2.631,3
55	1.799,4	222,0	306,2	398,8	2.726,4	610,3	3.336,8
60	2.206,0	327,9	389,6	470,0	3.393,6	751,3	4.144,8
65	2.652,6	467,9	484,9	545,1	4.150,6	909,5	5.060,1
70	3.137,3	648,6	591,9	623,5	5.001,2	1.085,5	6.086,7

Tabla III.4. Valores modulares de CO₂ para Pinus pinea, en kg.

				Pinus pinea	L			
0.0			Biomas	sa aérea			D:	D:
CD (cm)	Fuste		Ramas		- Acículas	Total aérea	Biomasa radical	Biomasa total
	ruste	R > 7 cm	R 2-7 cm	R < 2 cm	ACICUIAS	IULAI AEI EA	Tauloai	totai
5	4,1	-	1,5	3,6	1,2	10,3	1,8	12,0
10	25,8	-	8,5	15,1	5,7	55,0	9,8	64,8
15	60,6	28,1	18,9	28,0	11,5	147,0	26,5	173,6
20	126,5	59,9	38,0	49,3	21,5	295,3	54,0	349,3
25	223,2	107,5	65,1	76,4	35,0	507,2	93,8	601,0
30	354,3	173,0	100,9	108,9	51,9	789,1	147,1	936,2
35	522,9	258,3	146,0	146,9	72,5	1.146,6	215,3	1.361,9
40	732,0	365,2	200,9	190,1	96,6	1.584,8	299,4	1.884,3
45	984,1	495,4	266,1	238,6	124,4	2.108,6	400,5	2.509,1
50	1.281,8	650,3	341,9	292,2	155,8	2.722,1	519,6	3.241,7
55	1.627,4	831,6	428,8	350,8	191,1	3.429,6	657,6	4.087,2
60	2.022,9	1.040,4	527,2	414,4	230,1	4.235,0	815,2	5.050,2
65	2.470,5	1.278,3	637,3	482,9	272,8	5.141,9	993,5	6.135,3
70	2.972,2	1.546,4	759,4	556,3	319,5	6.153,8	1.193,0	7.346,8

			Pinus hale	pensis Mill			
0.0			Biomasa aérea			D:	D:
CD (cm)	Fuste		Ramas		- Total aérea	Biomasa radical	Biomasa total
(GIII)	า แรเซ	R > 7 cm	R 2-7 cm	R < 2 cm	iulai acica	Taulvai	totai
5	4,3	-	0,7	2,9	7,9	1,9	9,8
10	20,3	-	3,5	12,9	36,7	9,2	45,8
15	49,9	-	9,4	30,5	89,8	23,3	113,1
20	94,6	-	18,8	56,1	169,6	45,2	214,8
25	146,9	15,0	30,6	85,3	277,7	75,4	353,1
30	216,5	28,9	46,7	123,4	415,5	114,7	530,2
35	299,3	50,1	66,6	168,1	584,1	163,5	747,6
40	394,9	80,5	90,3	218,9	784,6	222,2	1.006,8
45	502,8	121,9	117,7	275,4	1.017,8	291,3	1.309,1
50	622,3	176,2	148,7	337,4	1.284,7	371,1	1.655,7
55	752,8	245,4	183,3	404,3	1.585,8	462,0	2.047,8
60	893,7	331,2	221,4	475,8	1.922,1	564,2	2.486,3
65	1.044,1	435,4	262,8	551,5	2.294,0	678,2	2.972,2
70	1.203,6	559,9	307,5	631,2	2.702,2	804,1	3.506,3

Tabla III.5. Valores modulares de CO₂ para Pinus halepensis, en kg.

Tabla III.6. Valores modulares de CO₂ para Quercus ilex, en kg.

			l l	Quercus ilex L				
CD			Biomas	a aérea			Diamasa	Diamaga
(cm)	Fuste		Ramas		Hojas	Total aérea	Biomasa radical	Biomasa total
(6111)	Tuste	R > 7 cm	R 2-7 cm	R < 2 cm	110]45	iotai acica	Tauloui	totai
5	4,3	-	2,5	2,1	0,5	9,3	15,0	24,2
10	24,1	-	13,7	11,2	2,6	51,6	51,7	103,3
15	52,4	29,6	29,7	23,9	5,5	141,0	106,8	247,8
20	100,0	75,8	56,4	45,1	10,3	287,6	178,7	466,3
25	163,1	155,5	91,7	72,9	16,7	499,9	266,4	766,3
30	241,3	277,3	135,2	107,0	24,5	785,3	369,2	1.154,5
35	333,8	449,3	186,6	147,1	33,7	1.150,5	486,4	1.637,0
40	440,0	679,2	245,5	192,8	44,1	1.601,7	617,7	2.219,4
45	559,2	974,1	311,5	243,8	55,7	2.144,4	762,6	2.907,0
50	690,7	1.340,6	384,2	299,8	68,5	2.784,0	920,8	3.704,8
55	834,0	1.785,1	463,3	360,6	82,4	3.525,4	1.092,0	4.617,5
60	988,6	2.313,4	548,4	425,8	97,3	4.373,5	1.276,0	5.649,5
65	1.153,8	2.931,2	639,4	495,3	113,2	5.332,8	1.472,5	6.805,3
70	1.329,2	3.643,7	735,8	568,8	129,9	6.407,5	1.681,3	8,880.8

 $\begin{tabular}{ll} \it Tabla \it III.7. \\ \it Valores modulares de \it CO_2 \\ \it para \it Quercus suber, en kg. \\ \end{tabular}$

			Q	uercus suber	L			
CD			Biomas	a aérea			Diamaga	Diamana
(cm)	Fuste		Ramas		Hojas	Total	Biomasa radical	Biomasa total
(0111)		R > 7 cm	R 2-7 cm	R < 2 cm	Hujas	aérea	Tuuloui	totui
5	0,7	0,0	0,3	0,1	0,0	1,1	0,8	1,9
10	4,4	0,0	1,7	0,3	0,2	6,6	3,4	10,0
15	10,0	4,5	3,4	0,7	0,4	19,0	7,8	26,8
20	20,1	11,7	6,4	1,3	0,7	40,1	14,3	54,4
25	33,9	24,5	10,2	2,1	1,1	71,8	22,7	94,5
30	51,5	44,4	14,8	3,1	1,7	115,5	33,1	148,6
35	73,0	72,9	20,2	4,2	2,4	172,6	45,6	218,3
40	98,1	111,4	26,2	5,6	3,2	244,5	60,2	304,7
45	127,0	161,4	32,9	7,1	4,0	332,4	76,9	409,3
50	159,4	224,2	40,2	8,8	5,0	437,5	95,7	533,2
55	195,2	300,9	48,0	10,6	6,1	560,9	116,7	677,5
60	234,5	392,9	56,4	12,6	7,2	703,7	139,8	843,5
65	277,1	501,3	65,3	14,7	8,5	866,9	165,1	1032,0
70	323,0	627,3	74,7	16,9	9,8	1051,7	192,6	1244,3

Tabla III.8. Valores modulares de CO₂ para Eucalyptus, en kg.

			Eucalyp	tus sp.			
CD			Biomasa aérea			Biomasa	Biomasa
(cm)	Fuste	Rar	nas	Hojas	Total aérea	radical	total
(0111)	R > 7 cm	R 2-7 cm	R < 2 cm	Hojas	Iotal acica	radioai	totai
5	8,8	2,4	1,6	3,0	15,8	296,8	312,6
10	48,0	9,3	5,3	9,6	72,1	296,8	368,9
15	126,9	19,9	10,2	18,5	175,4	296,8	472,3
20	250,4	33,9	16,1	29,3	329,8	296,8	626,6
25	422,4	51,0	22,9	41,7	538,1	347,7	885,8
30	645,8	71,1	30,4	55,5	802,8	347,7	1.150,5
35	922,8	93,9	38,6	70,5	1.125,9	347,7	1.473,6
40	1.255,7	119,4	47,4	86,6	1.509,1	347,7	1.856,8
45	1.646,2	147,4	56,8	103,8	1.954,1	399,8	2.354,0
50	2.095,9	177,8	66,7	121,9	2.462,3	399,8	2.862,2
55	2.606,4	210,6	77,1	140,9	3.035,0	399,8	3.434,9
60	3.178,9	245,7	88,0	160,8	3.673,5	399,8	4.073,3
65	3.814,8	283,1	99,3	181,6	4.378,7	399,8	4.778,5
70	4.515,1	322,6	111,0	203,1	5.151,8	399,8	5.551,6

			Quer	<i>cus faginea</i> L	amk.			
CD			Biomas	asa aérea			Biomasa	Biomasa
CD (cm)	Fuste		Ramas		Hojas	Total aérea	radical	total
(0111)	า นงเธ	R > 7 cm	R 2-7 cm	R < 2 cm	Hujas	Total acica	Tuuloui	totui
5	3,0	-	1,0	1,0	0,6	5,7	3,5	9,1
10	18,2	-	6,6	4,9	2,9	32,6	17,6	50,3
15	50,7	2,1	19,0	12,0	7,0	90,8	45,6	136,4
20	103,2	9,9	39,4	22,2	13,0	187,8	89,4	277,2
25	174,5	32,2	67,7	34,9	20,5	329,8	150,9	480,7
30	260,4	82,0	102,2	49,1	28,8	522,5	231,3	753,8
35	354,5	175,0	140,6	63,6	37,3	771,1	332,0	1.103,1
40	449,7	327,9	180,0	77,2	45,3	1.080,2	453,9	1.534,1
45	539,7	555,2	217,7	89,2	52,4	1.454,2	598,3	2.052,4
50	620,2	867,9	252,0	99,0	58,2	1.897,2	765,8	2.663,0
55	688,9	1.273,4	281,7	106,6	62,6	2.413,2	957,5	3.370,7
60	745,3	1.776,3	306,5	112,1	65,9	3.006,0	1.174,1	4.180,0
65	790,0	2.378,7	326,6	115,8	68,0	3.679,1	1.416,3	5.095,4
70	824,3	3.081,9	342,5	117,9	69,3	4.435,9	1.684,9	6.120,8

Tabla III.9. Valores modulares de CO₂ para Quercus faginea, en kg.

Tabla III.10. Valores modulares de CO₂ para Quercus pyrenaica, en kg.

		Que	rcus pyrenaica V	Villd.		
OD		Biomas	sa aérea		D:	
CD (cm)	LG	LF	СН	Total	Biomasa radical	Biomasa total
(6111)	F+R>7	R 2-7 cm	R < 2 cm	aérea	Tauloai	
5	2,9	4,1	0,6	7,7	4,6	12,3
10	25,3	15,6	3,6	44,5	20,4	64,8
15	83,2	31,6	9,4	124,3	48,4	172,7
20	188,6	50,9	18,1	257,7	89,4	347,0
25	351,2	72,8	29,7	453,6	143,9	597,5
30	579,3	96,7	44,1	720,1	212,3	932,3
35	880,5	122,4	61,3	1.064,3	294,9	1.359,2
40	1.261,8	149,7	81,4	1.492,9	392,1	1.885,0
45	1.729,5	178,4	104,3	2.012,3	504,1	2.516,4
50	2.289,7	208,4	130,0	2.628,2	631,2	3.259,4
55	2.948,1	239,7	158,6	3.346,4	773,5	4.119,9
60	3.710,2	272,0	189,9	4.172,1	931,3	5.103,3
65	4.581,1	305,4	223,9	5.110,4	1.104,7	6.215,1
70	5.565,8	339,8	260,8	6.166,4	1.293,9	7.460,3

Tabla III.11. Valores modulares de CO₂ para Quercus canariensis, en kg.

	Quercus canariensis Willd.										
CD			Biomas	a aérea				Diamasa			
(cm)	Fuste		Ramas		Hojas	Total aérea	Biomasa radical	Biomasa total			
	านงเธ	R > 7 cm	R 2-7 cm	R < 2 cm	110jas	Total acica	Tuuloul	totai			
5	10,4	-	1,3	0,9	0,2	12,8	1,7	14,5			
10	43,7	-	7,1	3,4	0,9	55,1	10,1	65,3			
15	79,8	26,9	15,4	6,1	1,6	129,8	28,9	158,7			
20	138,2	56,8	30,2	10,3	2,6	238,2	60,8	298,9			
25	210,5	101,0	50,5	15,5	4,0	381,4	108,2	489,6			
30	295,7	161,0	76,8	21,5	5,5	560,5	173,2	733,7			
35	393,2	238,3	109,1	28,3	7,2	776,1	258,0	1.034,0			
40	502,4	334,0	147,5	35,8	9,2	1.028,8	364,2	1.393,0			
45	622,6	449,1	192,3	44,0	11,3	1.319,2	493,7	1.812,9			
50	753,4	584,6	243,4	52,8	13,5	1.647,8	648,1	2.296,0			
55	894,3	741,4	301,0	62,3	16,0	2.015,1	829,1	2.844,1			
60	1.045,1	920,2	365,1	72,4	18,5	2.421,4	1.038,0	3.459,4			
65	1.205,2	1.121,8	435,8	83,0	21,3	2.867,1	1.276,4	4.143,5			
70	1.374,5	1.346,8	513,0	94,2	24,1	3.352,6	1.545,7	4.898,3			

Tabla III.12. Valores modulares de CO₂ para Olea europaea, en kg.

			01	ea europaea	L.			
CD	CD		Biomas	a aérea			Biomasa	Diamaga
(cm)	Fuste		Ramas		Hojas	Total aérea	radical	Biomasa total
(0111)	Tusto	R > 7 cm	R 2-7 cm	R < 2 cm	Hojas	Total acica	- uuioui	
5	6,8	-	4,5	3,6	0,5	15,4	6,1	21,4
10	26,6	-	17,4	13,3	1,9	59,1	11,7	70,8
15	47,9	24,1	31,2	23,3	3,3	129,8	17,2	146,9
20	78,9	54,1	51,2	37,5	5,3	226,9	22,5	249,4
25	114,6	100,0	74,2	53,5	7,5	349,8	27,8	377,7
30	154,1	163,8	99,5	71,0	10,0	498,4	33,1	531,5
35	196,6	246,8	126,7	89,6	12,6	672,3	38,3	710,5
40	241,5	350,1	155,4	108,9	15,3	871,2	43,4	914,6
45	288,3	474,6	185,2	128,9	18,1	1.095,0	48,6	1.143,6
50	336,6	620,8	215,9	149,3	20,9	1.343,5	53,7	1.397,2
55	386,0	789,3	247,4	170,0	23,8	1.616,6	58,7	1.675,3
60	436,5	980,4	279,4	191,0	26,8	1.914,1	63,8	1.977,8
65	487,7	.194,3	311,9	212,1	29,8	2.235,8	68,8	2.304,6
70	539,6	1.431,3	344,7	233,4	32,7	2.581,8	73,8	2.655,6

			Pint	us radiata D.	Don			
CD			Biomas	a aérea			Diamaga	Diamasa
CD (cm)	Fuste		Ramas		Acículas	Total	Biomasa radical	Biomasa total
(CIII)	ruste	R > 7 cm	R 2-7 cm	R < 2 cm	ACICUIAS	aérea	Taulvai	totai
5	5	0	1	1	0	7	4	11
10	33	0	4	3	1	41	16	57
15	94	1	9	6	3	114	38	151
20	196	3	17	11	6	232	70	302
25	346	6	27	16	9	405	113	517
30	550	12	40	21	13	637	167	803
35	812	20	56	28	18	934	232	1.166
40	1.137	33	73	35	24	1.302	309	1.611
45	1.529	50	93	43	30	1.745	398	2.143
50	1.990	74	116	51	37	2.268	498	2.767
55	2.525	104	141	60	45	2.875	611	3.487
60	3.137	142	169	70	53	3.570	737	4.307
65	3.827	188	198	80	62	4.357	875	5.231
70	4.599	245	231	91	72	5.238	1.026	6.264

Tabla III.13. Valores modulares de CO₂ para Pinus radiata, en kg.

Tabla III.14. Valores modulares de CO₂ para Juniperus thurifera, en kg.

			Juni	perus thurife	ra L.			
CD			Biomas	a aérea			Diamasa	Diamaga
CD (cm)	Fuste		Ramas		Hojas	Total aérea	Biomasa radical	Biomasa total
(6111)	านงเซ	R > 7 cm	R 2-7 cm	R < 2 cm	110jas	iotai acica	Tautout	totai
5	5,4	-	1,0	2,1	1,9	10,4	5,3	15,7
10	22,9	-	5,5	7,4	6,8	42,6	17,8	60,4
15	52,6	-	15,0	15,3	14,1	97,0	36,0	133,1
20	93,2	2,5	30,2	25,1	23,2	174,1	59,5	233,6
25	144,8	7,0	51,6	36,7	33,9	273,9	87,7	361,6
30	205,8	16,1	79,3	49,7	45,8	396,8	120,4	517,2
35	274,8	32,4	113,1	63,6	58,7	542,7	157,4	700,1
40	350,1	58,7	152,7	78,2	72,2	711,8	198,6	910,4
45	429,8	98,5	197,2	93,0	85,8	904,2	243,8	1.148,0
50	512,0	155,1	245,8	107,7	99,4	1.120,1	292,8	1.412,9
55	595,1	232,0	297,7	122,0	112,6	1.359,4	345,6	1.705,0
60	677,2	332,4	351,7	135,6	125,2	1.622,2	402,1	2.024,4
65	757,0	459,3	407,0	148,4	137,0	1.908,7	462,2	2.370,9
70	833,2	615,2	462,5	160,1	147,8	2.218,8	525,8	2.744,6

Tabla III.15. Valores modulares de CO₂ para Populus spp. , en kg.

				Populus spp				
CD		Biomasa aérea					- Diamaca	Biomasa
(cm)	Fuste		Ramas		Hojas	Total	Biomasa radical	total
	า น่วเซ	R > 7 cm	R 2-7 cm	R < 2 cm	Hujas	aérea	radioai	totai
5	3,5	-	0,2	1,6	0,6	6,0	1,2	7,2
10	25,1	-	2,1	6,2	2,3	35,7	8,2	43,9
15	76,3	-	7,3	12,8	4,8	101,2	25,6	126,8
20	161,5	5,0	16,8	20,8	7,8	211,8	57,7	269,5
25	288,7	13,3	32,1	30,2	11,3	375,5	108,2	483,7
30	460,3	29,5	54,1	40,6	15,1	599,7	180,9	780,6
35	678,6	57,4	83,6	51,9	19,3	890,7	279,5	1.170,2
40	944,6	101,7	121,1	63,8	23,7	1.254,9	407,3	1.662,1
45	1.258,5	167,8	167,1	76,2	28,2	1.697,8	567,7	2.265,6
50	1.619,9	261,3	222,0	88,9	32,9	2.225,1	764,2	2.989,3
55	2.027,7	388,6	286,0	101,9	37,6	2.841,8	999,9	3.841,6
60	2.480,2	556,4	359,0	114,9	42,4	3.552,9	1.278,0	4.830,9
65	2.975,4	771,5	441,1	128,0	47,2	4.363,2	1.601,7	5.964,9
70	3.511,2	1.041,1	532,3	141,0	51,9	5.277,4	1.974,1	7.251,4

Tabla III.16. Valores modulares de CO₂ para Fraxinus, en kg.

			Fraxin	us spp			
CD			Biomasa aérea			Diamaga	Diamana
์ (cm)	Fuste		Ramas		Total	Biomasa radical	Biomasa total
(GIII)	า แรเซ	R > 7 cm	R 2-7 cm	R < 2 cm	aérea	Tauloai	totai
5	8,7	-	1,6	4,7	15,0	16,2	31,1
10	40,4	-	10,5	18,8	69,7	64,1	133,8
15	87,6	18,3	28,2	37,3	171,3	143,6	314,9
20	158,8	42,8	59,3	63,5	324,4	254,4	578,7
25	249,9	82,2	104,8	95,2	532,2	396,3	928,5
30	360,1	139,5	166,1	131,8	797,5	569,4	1.366,9
35	488,5	217,1	244,1	173,0	1.122,7	773,6	1.896,2
40	634,3	317,6	339,7	218,2	1.509,8	1.008,7	2.518,5
45	796,7	443,1	453,6	267,2	1.960,7	1.274,8	3.235,4
50	975,1	595,8	586,4	319,6	2.477,0	1.571,7	4.048,7
55	1.168,8	777,6	738,6	375,3	3.060,3	1.899,5	4.959,8
60	1.377,2	990,2	910,6	434,0	3.711,9	2.258,1	5.970,0
65	1.599,7	1.235,4	1.102,6	495,4	4.433,3	2.647,5	7.080,8
70	1.835,9	1.514,9	1.315,1	559,6	5.225,5	3.067,7	8.293,2

			All	nus glutinosa	L.			
CD			Biomas	a aérea			Diamasa	Diamana
	(cm) Fuste	Ramas		Hojas	Total aérea	Biomasa radical	Biomasa total	
(6111)	Tuste	R > 7 cm	R 2-7 cm	R < 2 cm	Hujas	IULAI AGIGA	Tautoai	totai
5	11,9	-	2,5	1,8	1,0	17,1	17,6	34,8
10	47,3	-	9,1	4,9	2,7	64,0	65,4	129,4
15	105,5	-	19,2	8,8	4,8	138,4	140,8	279,2
20	185,9	-	32,6	13,3	7,3	239,1	242,7	481,7
25	280,7	9,4	47,7	17,8	9,8	365,4	370,1	735,5
30	399,4	15,4	66,3	23,0	12,6	516,7	522,4	1.039,2
35	537,8	23,3	87,5	28,5	15,6	692,7	699,3	1.392,0
40	695,3	33,3	111,1	34,3	18,8	892,8	900,2	1.793,0
45	871,6	45,7	137,1	40,4	22,1	1.116,9	1.124,8	2.241,7
50	1.066,3	60,6	165,4	46,6	25,6	1.364,6	1.372,9	2.737,4
55	1.279,1	78,1	196,0	53,2	29,2	1.635,6	1.644,1	3.279,7
60	1.509,8	98,5	228,7	59,9	32,9	1.929,8	1.938,2	3.868,0
65	1.758,1	121,9	263,5	66,8	36,7	2.246,9	2.255,0	4.501,9
70	2.023,6	148,4	300,3	73,9	40,6	2.586,8	2.594,3	5.181,1

Tabla III.17. Valores modulares de CO₂ para Alnus glutinosa, en kg.

Tabla III.18. Valores modulares de CO₂ para Abies pinsapo, en kg.

			Biomasa aérea				
CD			Ramas				
(cm)	Fuste	R > 7 cm	R 2-7 cm	R < 2 cm	Total aérea		
5	1,4	0,0	0,3	4,4	6,1		
10	11,0	0,0	3,0	16,3	30,3		
15	34,2	0,0	10,7	32,5	77,4		
20	74,0	0,0	25,3	51,3	150,6		
25	128,9	6,2	47,3	70,1	252,5		
30	200,9	16,5	78,2	89,5	385,1		
35	287,5	37,0	117,6	108,1	550,3		
40	386,0	73,5	164,7	125,4	749,6		
45	492,8	132,6	218,4	140,7	984,5		
50	604,3	221,5	276,9	153,8	1.256,5		
55	716,6	347,4	338,5	164,3	1.566,7		
60	826,1	516,9	401,2	172,2	1.916,3		
65	929,9	735,7	463,3	177,5	2.306,4		
70	1.025,7	1.008,6	523,3	180,5	2.738,1		

Tabla III.19. Valores modulares de CO₂ para Castanea sativa, en kg.

Castanea sativa Mill.							
0.0			Biomasa aérea			Diamasa	Diamasa
CD (cm)	Fuste		Ramas		- Total aérea	Biomasa radical	Biomasa total
	Tuste	R > 7 cm	R 2-7 cm	R < 2 cm	IULAI AGIGA	Tautout	totai
5	4	0	3	5	12	3	15
10	22	0	14	18	55	24	78
15	54	10	33	38	134	75	209
20	104	27	58	64	254	170	424
25	170	60	91	95	416	321	736
30	252	112	129	130	623	538	1.161
35	347	191	171	167	876	833	1.709
40	455	299	217	206	1.178	1.218	2.395
45	574	442	266	246	1.529	1.701	3.230
50	703	623	317	287	1.931	2.294	4.225
55	839	846	371	329	2.385	3.007	5.391
60	983	1.113	425	370	2.891	3.849	6.741
65	1.132	1.428	481	411	3.452	4.831	8.284
70	1.287	1.793	536	452	4.069	5.963	10.031

Tabla III.20.
Valores modulares de CO₂
para Ceratonia siliqua,
en kg.

			Се	ratonia siliqua	L.			
OD			Biomas	a aérea			D:	D:
(cm)	CD Fuste		Ramas		Hojas	Total aérea	Biomasa radical	Biomasa total
(6111)	ruste	R > 7 cm	R 2-7 cm	R < 2 cm	пијаѕ	IULAI AEIEA		lulai
5	5,1	0,0	2,2	3,5	2,4	13,1	16,2	29,3
10	25,9	0,0	10,1	13,5	9,3	58,8	64,3	123,1
15	54,1	26,0	20,2	24,3	16,7	141,2	144,3	285,5
20	99,2	60,5	35,8	40,0	27,5	263,0	256,1	519,0
25	157,1	115,2	55,2	58,4	40,1	426,0	399,4	825,4
30	227,0	193,5	78,1	78,9	54,2	631,8	574,4	1.206,1
35	308,2	298,5	104,1	101,3	69,5	881,6	780,9	1.662,5
40	400,0	432,6	133,0	125,1	85,9	1.176,6	1.018,9	2.195,5
45	501,7	598,2	164,5	150,3	103,2	1.517,8	1.288,4	2.806,2

	Juniperus	oxycedrus L.	
CD (cm)	Total aérea	Biomasa radical	Biomasa total
5,0	24,7	14,5	39,2
10,0	60,5	94,1	154,6
15,0	102,1	281,4	383,5
20,0	148,1	611,9	760,0
25,0	197,6	1.117,9	1.315,5
30,0	250,1	1.829,0	2.079,0
35,0	305,2	2.773,2	3.078,4
40,0	362,7	3.977,2	4.339,9
45,0	422,3	5.466,5	5.888,7

Tabla III.21.
Valores modulares de CO₂
para Juniperus oxycedrus,
en kg.

Juniperus phoenicea L.						
CD (cm)	Total aérea	Biomasa radical	Biomasa total			
5	15,3	8,1	23,4			
10	49,5	24,6	74,1			
15	98,4	47,2	145,6			
20	160,2	75,0	235,2			
25	233,8	107,3	341,1			
30	318,5	143,7	462,2			
35	413,5	184,1	597,7			
40	518,5	228,2	746,7			
45	633,0	275,7	908,7			

Tabla III.22. Valores modulares de CO₂ para Juniperus phoenicea, en kg.

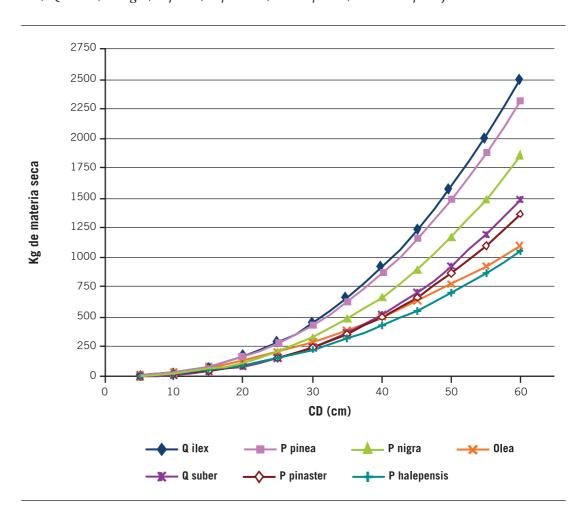


Tabla III.23. Valores modulares de CO₂ para Otras frondosas, en kg.

	Otras i	frondosas	
CD (cm)	Total aérea	Biomasa radical	Biomasa total
5	11,0	7,5	18,5
10	53,5	32,7	86,2
15	134,5	77,6	212,1
20	258,8	143,2	402,0
25	430,0	230,3	660,3
30	651,1	339,6	990,7
35	924,6	471,5	1.396,2
40	1.253,0	626,6	1.879,5
45	1.638,1	805,2	2.443,2
50	2.081,9	1.007,7	3.089,5
55	2.586,1	1.234,4	3.820,4
60	3.152,3	1.485,6	4.637,9
65	3.782,0	1.761,7	5.543,7
70	4.476,7	2.062,8	6.539,5

En el gráfico III.1 se muestran los pesos de biomasa aérea, en kilogramos de materia seca, para cada clase diamétrica (valores modulares) de varias especies estudiadas (*Q. ilex, Q. suber, P nigra, P pinea, P pinaster, P halepensis, Olea europaea*).

Gráfico III.1. Valores modulares de biomasa aérea total por clases diamétricas, en kg de materia seca.

Valores modulares de incremento de CO₂

En las tablas III.3.3.1 a III.3.3.22 se presentan los valores modulares de incremento de CO_2 para todas las especies estudiadas, en kilogramos.

			Pi	inus sylvestri	s L			
0.0			Biomas	sa aérea			- Diamaca	n:
CD (cm)	Fuste		Ramas		Acículas	Total	- Biomasa radical	Biomasa total
(6111)	ruste	R > 7 cm	R 2-7 cm	R < 2 cm	ACICUIAS	aérea	Tauloai	totai
5	0,8	0,0	0,2	0,3	0,3	1,6	0,3	1,9
10	2,7	0,0	0,4	0,5	0,4	4,1	0,9	5,0
15	7,3	0,0	0,9	0,9	0,7	9,7	2,4	12,1
20	11,5	0,0	1,2	1,0	0,7	14,4	3,8	18,2
25	16,8	0,3	1,6	1,1	0,8	20,7	5,8	26,5
30	21,7	0,6	1,9	1,1	0,9	26,2	7,6	33,8
35	15,5	0,6	1,2	0,7	0,5	18,6	5,6	24,2
40	19,1	1,0	1,4	0,7	0,5	22,7	7,0	29,8
45	21,4	1,5	1,5	0,7	0,5	25,6	8,1	33,7
50	24,9	2,1	1,6	0,7	0,5	29,9	9,7	39,6
55	24,8	2,6	1,5	0,6	0,5	30,1	10,0	40,0
60	27,2	3,4	1,6	0,6	0,5	33,3	11,2	44,5
65	23,0	3,4	1,3	0,5	0,4	28,5	9,8	38,4
70	30,6	5,3	1,7	0,6	0,4	38,6	13,5	52,1

Tabla III.3.3.1. Valores modulares de incremento de CO₂ para Pinus sylvestris, en kg.

			Pinus pir	<i>naster</i> Ait			
0.0			Biomasa aérea			D:	D:
CD (cm)	Fuste		Ramas		Total aérea	Biomasa radical	Biomasa total
(GIII)	ruste	R > 7 cm	R 2-7 cm	R < 2 cm	TULAI AETEA	Taulvai	totai
5	0,8	0,0	0,3	0,1	1,2	0,4	1,6
10	2,2	0,0	0,8	0,4	3,3	1,0	4,4
15	5,5	0,0	0,9	0,9	7,3	2,1	9,4
20	8,5	0,0	0,4	1,3	10,3	2,9	13,2
25	11,9	0,0	0,6	1,8	14,4	4,0	18,3
30	16,5	0,1	0,9	2,4	19,8	5,3	25,1
35	17,8	0,2	0,9	2,5	21,4	5,7	27,1
40	18,2	0,3	1,0	2,5	22,0	5,7	27,7
45	22,8	0,6	1,2	3,1	27,7	7,1	34,8
50	21,6	0,9	1,2	2,8	26,5	6,7	33,2
55	26,3	1,6	1,4	3,4	32,7	8,2	41,0
60	32,5	2,8	1,8	4,1	41,2	10,3	51,5
65	29,5	3,5	1,6	3,7	38,3	9,4	47,8
70	28,7	4,5	1,6	3,5	38,3	9,4	47,7

Tabla III.3.3.2. Valores modulares de incremento de CO₂ para Pinus pinaster, en kg.

Tabla III.3.3.3.

Valores modulares de incremento de CO₂ para

Pinus nigra, en kg.

			Pinus n	<i>igra</i> Arn			
CD			Biomasa aérea			Diamaga	Diamasa
(cm)	Fuste		Ramas		Total	Biomasa radical	Biomasa total
(6111)	Tuste	R > 7 cm	R 2-7 cm	R < 2 cm	aérea	rauioai	totai
5	1,0	0,0	0,1	0,5	1,5	0,4	2,0
10	2,8	0,0	0,3	1,1	4,2	1,1	5,3
15	5,6	0,0	0,6	1,8	8,0	2,0	10,0
20	8,1	0,0	1,1	2,3	11,5	2,8	14,3
25	10,8	0,5	1,5	2,8	15,5	3,6	19,2
30	11,7	0,7	1,8	2,8	17,1	3,9	21,0
35	13,4	1,2	2,2	3,0	19,7	4,4	24,2
40	16,8	2,0	2,9	3,5	25,2	5,6	30,8
45	18,4	2,8	3,4	3,6	28,2	6,1	34,3
50	19,4	3,7	3,7	3,7	30,5	6,6	37,1
55	19,5	4,5	3,9	3,5	31,4	6,7	38,1
60	21,7	6,0	4,5	3,8	35,9	7,6	43,5
65	19,2	6,3	4,1	3,2	32,8	6,8	39,6
70	20,7	8,0	4,6	3,4	36,6	7,5	44,2

Tabla III.3.3.4. Valores modulares de incremento de CO₂ para Pinus pinea, en kg.

				<i>Pinus pinea</i> L					
CD		Biomasa aérea							
(cm)	Fuste	Ramas		Acículas	Total aérea	Biomasa radical	Biomasa total		
	Tuste	R>7 cm	R 2-7 cm	R < 2 cm	Aciculas	iotai acica	radioai	totai	
5	1,2	0,0	0,4	0,8	0,3	2,8	0,5	3,3	
10	3,7	0,0	1,1	1,6	0,7	7,2	1,3	8,5	
15	5,4	2,6	1,6	1,9	0,9	12,4	2,3	14,6	
20	7,6	3,7	2,2	2,3	1,1	16,9	3,1	20,0	
25	10,3	5,1	2,8	2,7	1,4	22,3	4,2	26,5	
30	14,3	7,2	3,9	3,4	1,8	30,6	5,8	36,4	
35	18,1	9,2	4,8	3,9	2,1	38,2	7,3	45,5	
40	24,1	12,4	6,3	4,8	2,7	50,2	9,7	59,9	
45	28,8	14,9	7,4	5,3	3,1	59,6	11,5	71,1	
50	33,7	17,6	8,5	5,9	3,5	69,1	13,5	82,6	
55	35,9	18,9	9,0	5,9	3,6	73,3	14,3	87,6	
60	37,4	19,8	9,3	5,9	3,6	76,0	14,9	90,9	
65	40,6	21,6	9,9	6,1	3,8	82,1	16,2	98,2	
70	35,5	19,0	8,6	5,1	3,3	71,4	14,1	85,5	

Tabla III.3.3.5.

Valores modulares de incremento de CO₂ para Pinus halepensis, en kg.

			Pinus hale	<i>pensis</i> Mill			
CD			Biomasa aérea			Diamasa	Diamaga
(cm)	Fuste		Ramas	Ramas		Biomasa radical	Biomasa total
(0111)	Tuste	R > 7 cm	R 2-7 cm	R < 2 cm	– Total aérea	radioai	totai
5	0,7	0,0	0,1	0,5	1,3	0,3	1,6
10	1,6	0,0	0,3	1,0	2,9	0,8	3,6
15	2,7	0,0	0,6	1,6	4,9	1,3	6,2
20	4,5	0,0	1,0	2,5	8,0	2,2	10,2
25	5,7	1,0	1,3	3,2	11,2	3,2	14,4
30	5,7	1,3	1,4	3,1	11,5	3,3	14,8
35	6,3	1,8	1,5	3,4	13,1	3,8	16,9
40	7,8	2,7	1,9	4,1	16,5	4,9	21,3
45	9,1	3,7	2,3	4,7	19,9	5,9	25,8
50	9,9	4,8	2,6	5,1	22,3	6,7	29,1
55	9,5	5,2	2,5	4,8	22,1	6,7	28,8
60	12,8	8,1	3,5	6,5	30,9	9,4	40,4
65	9,5	6,7	2,6	4,8	23,6	7,3	30,9
70	7,8	6,1	2,2	3,9	20,0	6,2	26,2

			ı	<i>Quercus ilex</i> L				
CD			Biomas	a aérea			Diamasa	Diamaga
(cm)	Fuste		Ramas		Hojas	Total aérea	Biomasa radical	Biomasa total
(0111)	านงเซ	R > 7 cm	R 2-7 cm	R < 2 cm	Hujas	Total acica	Tuurour	totai
5	0,7	0,0	0,4	0,3	0,1	1,4	1,6	3,1
10	1,8	0,0	1,0	0,8	0,2	3,9	2,8	6,7
15	1,5	1,3	0,9	0,7	0,2	4,5	2,5	7,0
20	1,7	2,0	1,0	0,8	0,2	5,7	2,5	8,2
25	2,7	3,9	1,5	1,2	0,3	9,5	3,6	13,1
30	3,6	6,3	2,0	1,6	0,4	13,9	4,7	18,6
35	3,4	7,0	1,9	1,5	0,3	14,2	4,3	18,5
40	5,7	13,2	3,1	2,4	0,6	25,0	7,0	32,0
45	7,3	19,2	4,0	3,1	0,7	34,4	8,8	43,2
50	4,1	12,0	2,3	1,7	0,4	20,5	4,9	25,4
55	5,8	18,8	3,2	2,5	0,6	30,8	6,9	37,7
60	5,7	20,0	3,1	2,4	0,5	31,7	6,7	38,4
65	5,4	20,7	3,0	2,3	0,5	31,9	6,3	38,2
70	7,6	31,5	4,2	3,2	0,7	47,2	8,9	56,2

Tabla III.3.3.6. Valores modulares de incremento de CO₂ para Quercus ilex, en kg.

Tabla III.3.3.7. Valores modulares de incremento de CO₂ para Quercus suber, en kg.

			Q	uercus suber	L			
CD.			Biomas	a aérea			Biomasa	Diamasa
CD (cm)	Fuste		Ramas		Hojas	Total aérea	radical	Biomasa total
(6111)	Tuste	R > 7 cm	R 2-7 cm	R < 2 cm	110]45	IULAI ACIGA	Tautout	totai
5	0,6	0,0	0,2	0,0	0,0	0,8	0,5	1,3
10	1,7	0,0	0,6	0,1	0,1	2,5	1,0	3,5
15	2,2	1,4	0,7	0,1	0,1	4,5	1,5	6,0
20	2,3	2,0	0,7	0,1	0,1	5,2	1,5	6,7
25	4,1	4,3	1,1	0,2	0,1	9,9	2,5	12,4
30	8,6	10,6	2,2	0,5	0,3	22,1	5,0	27,1
35	9,5	13,6	2,3	0,5	0,3	26,3	5,5	31,8
40	7,8	12,7	1,8	0,4	0,2	23,0	4,5	27,5
45	7,4	13,5	1,7	0,4	0,2	23,2	4,3	27,5
50	7,5	15,2	1,7	0,4	0,2	25,0	4,4	29,4
55	9,0	19,7	2,0	0,5	0,3	31,4	5,2	36,6
60	9,1	21,9	1,9	0,5	0,3	33,7	5,3	39,0
65	9,9	25,6	2,1	0,5	0,3	38,3	5,8	44,1
70	9,9	27,4	2,0	0,5	0,3	40,1	5,8	45,9

Tabla III.3.3.8.

Valores modulares de incremento de CO₂ para Eucalyptus, en kg.

		ntus sp.	Eucaly						
	Biomasa aérea								
Total aérea	Hojas	nas	uste Ramas		CD (cm)				
iulai acica	Hujas	R < 2 cm	R 2-7 cm	R > 7 cm					
9,3	1,3	0,7	1,2	6,1	5				
15,6	1,5	0,8	1,7	11,6	10				
38,8	2,9	1,6	3,7	30,6	15				
42,0	2,7	1,5	3,6	34,3	20				
65,2	3,6	2,0	5,1	54,6	25				
96,1	4,7	2,6	7,0	81,8	30				
103,8	4,6	2,5	7,1	89,7	35				
129,2	5,2	2,8	8,3	112,8	40				
215,5	8,0	4,4	13,2	190,0	45				
194,2	6,7	3,7	11,4	172,4	50				
341,1	11,0	6,0	19,1	305,0	55				
236,4	7,2	3,9	12,8	212,4	60				
140,1	4,1	2,2	7,3	126,5	65				
153,0	4,2	2,3	7,8	138,7	70				

Tabla III.3.3.9. Valores modulares de incremento de CO₂ para Quercus faginea, en kg.

			Quer	<i>cus faginea</i> L	amk.			
CD.			Biomas	a aérea			Diamasa	Diamasa
CD (cm)	Fuste		Ramas		Hojas	Total	Biomasa radical	Biomasa total
(OIII)	Tuste	R > 7 cm	R 2-7 cm	R < 2 cm	Hujas	aérea	radioai	totai
5	0,13	0,00	0,05	0,04	0,02	0,24	0,14	0,38
10	0,39	0,00	0,15	0,09	0,05	0,68	0,34	1,03
15	1,78	0,17	0,69	0,36	0,21	3,21	1,50	4,71
20	3,07	0,68	1,21	0,57	0,33	5,87	2,59	8,46
25	3,78	1,61	1,51	0,65	0,38	7,92	3,36	11,28
30	4,79	3,47	1,94	0,77	0,45	11,44	4,70	16,13
35	5,12	5,81	2,09	0,79	0,46	14,27	5,70	19,97
40	4,85	8,11	2,00	0,71	0,42	16,08	6,27	22,35
45	4,05	9,53	1,68	0,57	0,34	16,18	6,18	22,35
50	4,34	13,91	1,82	0,59	0,35	21,01	7,87	28,89
55	5,36	22,72	2,26	0,71	0,42	31,47	11,59	43,05
60	4,77	26,01	2,02	0,61	0,36	33,78	12,24	46,02
65	2,82	19,37	1,20	0,35	0,21	23,95	8,56	32,51
70	2,75	23,43	1,17	0,34	0,20	27,89	9,83	37,72

		Que	rcus pyrenaica\	Willd.		
CD		Biomas		Diamaga	Biomasa	
טט (cm)	LG	LF	СН	- Total aérea	Biomasa radical	total
	F+R>7	R 2-7 cm	R < 2 cm	IULAI AEIEA	Tautoai	totai
5	0,3	0,2	0,0	0,5	0,3	0,78
10	1,0	0,4	0,1	1,5	0,6	2,05
15	4,6	1,0	0,4	6,0	2,0	8,00
20	8,2	1,3	0,6	10,2	3,0	13,12
25	13,2	0,5	0,9	14,6	3,9	18,50
30	15,5	1,5	0,9	18,0	4,5	22,48
35	21,1	1,8	1,2	24,1	5,6	29,69
40	26,1	1,8	1,4	29,3	6,5	35,73
45	30,9	1,9	1,5	34,3	7,2	41,47
50	37,8	2,1	1,7	41,5	8,4	49,93
55	42,8	2,1	1,9	46,8	9,1	55,87
60	44,8	2,0	1,8	48,6	9,1	57,74
65	38,1	1,5	1,5	41,1	7,5	48,61
70	58,5	2,1	2,2	62,8	11,1	73,88

Tabla III.3.3.10.

Valores modulares de incremento de CO₂ para Quercus pyrenaica, en kg.

Tabla III.3.3.11.

Valores modulares de incremento de CO₂ para Quercus canariensis, en kg.

			Querci	ıs canariensis	s Willd.			
OD			Biomas	a aérea			Diamasa	Diamasa
CD (cm)	Fuste		Ramas		Hojas	Total aérea	Biomasa radical	Biomasa total
(6111)	ruste	R > 7 cm	R 2-7 cm	R < 2 cm	пијаѕ	TULAT ACTEA	Tauluai	totai
5	1,3	0,0	0,2	0,1	0,0	1,6	0,3	1,9
10	2,7	0,0	0,5	0,2	0,1	3,5	0,8	4,3
15	3,0	1,4	0,7	0,2	0,1	5,4	1,5	6,9
20	5,6	3,3	1,5	0,4	0,1	10,9	3,4	14,4
25	5,8	3,9	1,7	0,4	0,1	12,0	4,2	16,2
30	5,5	4,2	1,8	0,4	0,1	12,1	4,6	16,6
35	4,6	3,9	1,6	0,3	0,1	10,5	4,3	14,7
40	4,6	4,3	1,7	0,3	0,1	11,0	4,8	15,8
45	5,9	5,9	2,3	0,4	0,1	14,6	6,7	21,2
50	6,7	7,3	2,7	0,4	0,1	17,2	8,3	25,5
55	5,5	6,4	2,3	0,4	0,1	14,7	7,4	22,2
60	7,2	8,9	3,1	0,5	0,1	19,8	10,4	30,2
65	7,6	10,0	3,4	0,5	0,1	21,7	11,8	33,5
70	6,9	9,5	3,2	0,5	0,1	20,2	11,4	31,7

Tabla III.3.3.12. Valores modulares de incremento de CO₂ para Olea europaea, en kg.

			01	ea europaea	<u>.</u>			
CD.			Biomas	a aérea			Diamasa	Diamasa
CD (cm)	Fuste		Ramas		Hojas	Total aérea	Biomasa radical	Biomasa total
	1 uste	R > 7 cm	R 2-7 cm	R < 2 cm	Hujas	TULAI AGIGA	Tuuloui	totai
5	1,1	0,0	0,7	0,5	0,1	2,4	0,4	2,8
10	3,0	0,0	2,0	1,4	0,2	6,6	0,6	7,2
15	4,5	3,9	2,9	2,1	0,3	13,6	0,9	14,4
20	4,4	5,1	2,8	2,0	0,3	14,7	0,7	15,4
25	13,8	21,0	8,9	6,2	0,9	50,7	1,9	52,6
30	7,7	13,9	4,9	3,4	0,5	30,4	1,0	31,4
35	6,3	13,4	4,0	2,7	0,4	26,9	0,7	27,7
40	7,0	17,2	4,5	3,0	0,4	32,1	0,8	32,9
45	10,7	29,8	6,8	4,5	0,6	52,4	1,1	53,6
50	14,9	46,6	9,5	6,3	0,9	78,2	1,5	79,7
55	3,9	13,4	2,5	1,6	0,2	21,7	0,4	22,0
60	3,6	13,5	2,3	1,5	0,2	21,1	0,3	21,4
65	3,7	15,0	2,3	1,5	0,2	22,7	0,3	23,0
70	3,7	16,5	2,4	1,5	0,2	24,3	0,3	24,7

Tabla III.3.3.13.

Valores modulares de incremento de CO₂ para Pinus radiata, en kg.

<i>Pinus radiata</i> D. Don										
CD			Biomas	a aérea			Biomasa radical	D:		
CD (cm)	Fuste		Ramas		Acículas	Total aérea		Biomasa total		
	ruste	R>7 cm	R 2-7 cm	R < 2 cm	Aciculas	IUIAI AGIGA	Tautout	totai		
5	2,1	0,0	0,3	0,2	0,1	2,7	1,1	3,8		
10	6,0	0,1	0,6	0,4	0,2	7,2	2,4	9,6		
15	14,8	0,2	1,2	0,7	0,4	17,3	4,9	22,2		
20	20,8	0,4	1,5	0,8	0,5	23,9	6,2	30,1		
25	28,7	0,7	1,9	0,9	0,6	32,8	7,8	40,7		
30	38,6	1,2	2,3	1,0	0,7	43,9	9,9	53,8		
35	50,5	1,8	2,8	1,2	0,9	57,3	12,2	69,5		
40	63,3	2,6	3,3	1,3	1,1	71,6	14,6	86,2		
45	73,8	3,5	3,7	1,4	1,2	83,6	16,4	100,0		
50	78,5	4,2	3,8	1,4	1,2	89,0	16,8	105,9		
55	96,6	5,7	4,4	1,6	1,4	109,6	20,1	129,7		
60	120,9	7,8	5,3	1,8	1,6	137,6	24,4	162,0		
65	146,7	10,4	6,3	2,1	1,9	167,4	28,9	196,3		
70	171,0	13,1	7,1	2,3	2,1	195,6	32,9	228,5		

	Juniperus thurifera L.										
CD			Biomas	a aérea			Biomasa	Diamasa			
(cm)	Fuste	Ramas			Hojas	Total aérea	radical	Biomasa total			
(0111)	Tuste	R > 7 cm	R 2-7 cm	R < 2 cm	Hojas	Total acica	, aaioai	total			
5	0,5	0,0	0,1	0,2	0,1	0,9	0,4	1,2			
10	1,1	0,0	0,3	0,3	0,3	2,0	0,7	2,8			
15	1,3	0,0	0,5	0,3	0,3	2,5	0,8	3,3			
20	4,7	0,3	1,9	1,1	1,0	8,9	2,6	11,5			
25	4,2	0,5	1,8	0,9	0,8	8,2	2,2	10,5			
30	4,3	0,8	2,0	0,9	0,8	8,8	2,3	11,1			
35	4,4	1,2	2,2	0,9	0,8	9,5	2,4	11,9			
40	4,1	1,6	2,2	0,8	0,7	9,5	2,3	11,8			
45	3,2	1,8	1,8	0,6	0,6	8,0	1,8	9,8			
50	3,3	2,4	2,0	0,6	0,6	8,9	2,0	10,8			
55	3,4	3,1	2,1	0,6	0,6	9,8	2,1	11,9			
60	3,4	4,0	2,2	0,6	0,5	10,7	2,3	13,0			
65	3,4	4,9	2,2	0,6	0,5	11,6	2,4	14,0			
70	3,3	5,8	2,3	0,6	0,5	12,5	2,5	15,1			

Tabla III.3.3.14.
Valores modulares de incremento de CO₂ para Juniperus thurifera, en kg.

Tabla III.3.3.15. Valores modulares de incremento de CO₂ para Populus, en kg.

				Populus spp				
CD			Biomas	a aérea			Diamasa	D:
CD (cm)	Fuste		Ramas		Hojas	Total aérea	Biomasa radical	Biomasa total
	Tuste	R > 7 cm	R 2-7 cm	R < 2 cm	Hujas	iotai acica		totui
5	11,57	0,00	0,98	2,60	0,98	16,12	3,67	19,79
10	30,05	0,00	2,98	4,03	1,51	38,58	10,08	48,66
15	54,24	0,00	5,99	5,23	1,95	67,40	19,26	86,67
20	73,83	4,48	8,80	5,61	2,08	94,79	28,91	123,70
25	79,08	6,82	9,99	5,01	1,85	102,75	32,93	135,68
30	46,02	5,22	6,09	2,53	0,93	60,79	20,25	81,04
35	20,51	3,00	2,83	0,99	0,36	27,69	9,56	37,26
40	24,56	4,58	3,53	1,05	0,39	34,01	12,18	46,28
45	28,63	6,59	4,26	1,09	0,40	40,97	15,07	56,04
50	32,65	9,09	5,01	1,13	0,42	48,29	18,24	66,53
55	36,58	12,09	5,77	1,16	0,43	56,03	21,69	77,72
60	40,40	15,62	6,55	1,18	0,43	64,19	25,39	89,58
65	44,08	19,70	7,31	1,20	0,44	72,73	29,36	102,09
70	47,61	24,32	8,08	1,21	0,44	81,66	33,59	115,25

Tabla III.3.3.16.

Valores modulares de incremento de CO₂ para Fraxinus, en kg.

Fraxinus spp										
CD				Diamasa	Diamaga					
(cm)	Fuste		Ramas		- Total aérea	Biomasa radical	Biomasa total			
	Tuste	R > 7 cm $R 2-7$ cm		R < 2 cm	iotai acica	radioai	totai			
5	4,8	0,0	1,2	2,2	8,2	7,7	15,9			
10	21,6	0,0	7,5	8,7	37,8	30,4	68,2			
15	23,5	7,5	9,9	8,8	49,6	36,7	86,3			
20	24,1	9,8	11,6	8,5	54,1	37,7	91,7			
25	39,6	19,7	21,5	13,3	94,1	62,3	156,4			
30	50,3	29,3	29,9	16,2	125,7	79,8	205,4			
35	48,8	32,3	31,3	15,3	127,6	78,3	205,9			
40	54,7	40,7	37,5	16,7	149,6	89,1	238,7			
45	60,4	49,8	44,0	17,9	172,2	99,8	272,0			
50	65,9	59,6	50,7	19,1	195,3	110,6	305,9			
55	71,2	70,0	57,5	20,3	218,9	121,3	340,3			
60	76,3	81,0	64,4	21,3	243,1	132,0	375,1			
65	81,3	92,6	71,4	22,3	267,6	142,7	410,3			
70	86,1	104,7	78,6	23,3	292,6	153,4	446,0			

Tabla III.3.3.17. Valores modulares de incremento de CO₂ para Alnus glutinosa, en kg.

	Alnus glutinosa L.										
OD.	Biomasa aérea							Diamasa			
CD (cm)	Fuste		Ramas		Hojas	Total aérea	Biomasa radical	Biomasa total			
(GIII)	Tuste	R > 7 cm	R 2-7 cm	R < 2 cm	110345	IULAI AGIGA	Tautout	totai			
5	7,7	0,0	1,5	0,8	0,4	10,4	10,6	21,0			
10	13,5	0,0	2,4	1,0	0,5	17,4	17,7	35,1			
15	20,2	0,0	3,4	1,2	0,7	25,5	25,8	51,3			
20	23,7	0,0	3,9	1,2	0,7	29,4	29,7	59,1			
25	25,5	1,2	4,0	1,2	0,6	32,5	32,7	65,2			
30	26,0	1,4	4,0	1,1	0,6	33,2	33,3	66,5			
35	26,4	1,6	4,0	1,0	0,6	33,5	33,7	67,2			
40	36,0	2,4	5,4	1,3	0,7	45,7	45,9	91,6			
45	35,1	2,6	5,2	1,2	0,6	44,7	44,8	89,4			
50	17,0	1,3	2,5	0,5	0,3	21,6	21,6	43,2			
55	18,5	1,6	2,6	0,6	0,3	23,5	23,5	47,0			
60	19,9	1,8	2,8	0,6	0,3	25,4	25,4	50,8			
65	21,4	2,1	3,0	0,6	0,3	27,3	27,3	54,6			
70	22,8	2,3	3,2	0,6	0,3	29,2	29,1	58,3			

Abies pinsapo Boiss											
CD											
(cm)	Fuste			Total aérea							
(GIII)	ruste	R > 7 cm	R 2-7 cm	R < 2 cm	IULAI ACIGA						
5	0,9	0,0	0,2	1,4	2,5						
10	2,8	0,0	0,9	2,2	5,9						
15	7,0	0,0	2,5	3,6	13,1						
20	7,7	0,0	3,0	2,9	13,6						
25	10,5	1,2	4,4	3,1	19,1						
30	12,9	2,4	5,7	3,2	24,2						
35	15,1	4,4	7,0	3,1	29,6						
40	16,8	7,2	8,1	3,0	35,2						
45	18,1	11,0	9,1	2,8	41,0						
50	19,0	15,6	9,8	2,7	47,0						
55	19,4	21,0	10,4	2,5	53,3						
60	19,5	27,2	10,7	2,2	59,7						
65	19,3	34,0	10,9	2,0	66,2						
70	13,1	28,6	7,6	1,3	50,6						

Tabla III.3.3.18.
Valores modulares de incremento de CO₂ para Abies pinsapo, en kg.

Tabla III.3.3.19. Valores modulares de incremento de CO₂ para Castanea sativa, en kg.

Castanea sativa Mill.										
0.0				D:	Diamasa					
CD (cm)	Fuste		Ramas		- Total aérea	Biomasa radical	Biomasa total			
	Tuste	R > 7 cm R 2-7 cm		R < 2 cm	iulai acica	Taulvai	totai			
5	0,6	0,0	0,2	0,2	1,1	0,4	1,5			
10	0,9	0,0	0,9	0,6	2,4	1,4	3,8			
15	3,6	1,0	1,1	2,0	7,7	5,6	13,2			
20	7,3	3,1	3,6	3,6	17,7	15,4	33,0			
25	9,3	5,4	4,4	4,1	23,2	23,1	46,4			
30	10,5	7,7	4,7	4,2	27,1	30,2	57,3			
35	6,9	6,2	3,0	2,6	18,6	22,7	41,3			
40	4,4	4,7	1,8	1,6	12,4	16,5	28,9			
45	5,4	6,8	2,2	1,8	16,2	23,2	39,4			
50	6,7	9,7	2,7	2,2	21,3	32,6	53,9			
55	6,3	10,4	2,5	2,0	21,2	34,3	55,5			
60	6,1	11,2	2,3	1,8	21,4	36,5	57,9			
65	5,9	12,1	2,2	1,7	21,9	39,3	61,2			
70	6,9	15,6	2,6	1,9	27,0	50,7	77,7			

Tabla III.3.3.20. Valores modulares de incremento de CO₂ para Ceratonia siliqua, en kg.

	Ceratonia siliqua L.										
CD		Biomasa aérea									
(cm)	Fuete		Ramas		Hojas	Total aérea	Biomasa radical	Biomasa total			
(GIII)	Fuste	R > 7 cm	R 2-7 cm	R < 2 cm	појаѕ	Tutai aerea	TaulGal	totai			
5	1,6	0,0	0,6	0,8	0,6	3,6	4,1	7,7			
10	4,3	0,0	1,6	1,8	1,2	9,0	9,0	18,0			
15	6,3	4,3	2,2	2,3	1,6	16,6	15,6	32,2			
20	6,2	5,4	2,1	2,0	1,4	17,1	15,3	32,4			
25	10,2	10,7	3,4	3,1	2,1	29,4	25,4	54,8			
30	10,6	12,8	3,4	3,0	2,1	31,8	26,7	58,5			
35	12,1	16,7	3,8	3,2	2,2	38,0	31,0	69,0			
40	13,5	20,8	4,2	3,4	2,4	44,3	35,4	79,7			
45	14,9	25,2	4,6	3,6	2,5	50,8	39,7	90,5			

Tabla III.3.3.21.

Valores modulares de incremento de CO₂ para Juniperus oxycedrus, en kg.

	Juniperus	oxycedrus L.							
CD (cm) Total aérea Biomasa radical Biomasa total									
5	1,01	1,38	2,47						
10	1,83	6,04	7,87						
15	1,78	10,35	12,13						
20	1,94	16,83	18,77						
25	2,07	24,56	26,62						
30	2,18	33,45	35,62						
35	2,28	43,43	45,71						
40	2,37	54,47	56,84						
45	2,45	66,51	68,97						

Tabla III.3.3.22.
Valores modulares de
incremento CO₂ para
Juniperus phoenicea, en kg.

	Juniperus phoenicea L.									
CD (cm)	Total aérea	Biomasa radical	Biomasa total							
5	0,73	0,36	1,04							
10	1,78	0,84	2,49							
15	1,95	0,89	2,70							
20	2,38	1,06	3,27							
25	2,78	1,21	3,79							
30	3,15	1,35	4,28							
35	3,51	1,48	4,74							
40	3,85	1,61	5,18							
45	4,30	1,77	5,77							

CO₂ total acumulado en Andalucía por clase diamétrica y fracción, según los datos del IFN 2.

En las tablas 3.4.1 a 3.4.22 se presentan los resultados totales de CO_2 fijado por las especies estudiadas, en 1990. En la tabla 3.4.24 se presentan los resultados totales de fijación de CO_2 en la biomasa aérea, radical y total para las principales especies forestales arbóreas en Andalucía correspondientes al año 1990, que es el que se ha considerado como año en el que se realizó el IFN2.

	Biomasa aérea					Diamasa	D:	
	Fuete		Ramas		Acículas	Total aérea	Biomasa Radical	Biomasa Total
	Fuste	D > 7	D 2 – 7		ACICUIAS			
CO ₂ total fijado	995.458	3.710	155.788	209.408	157.975	1.522.340	356.242	1.878.582

		Bioma	sa aérea				
	Fuete	Ramas			Total aérea	Total radical	Biomasa Total
	Fuste -	D > 7	D 2 – 7	D < 2			
CO ₂ total fijado	7.539.045	41.574	382.326	1.201.479	9.164.423	2.643.323	11.807.746

		Biomas	sa aérea					
	Fuete	Ramas			Total aérea	Total radical	Biomasa Total	
	Fuste -	D > 7 $D 2 - 7$		D < 2				
CO ₂ total fijado	6.040.878	295.839	797.503	1.855.535	8.989.755	2.193.729	11.183.484	

	Biomasa aérea							Biomasa
	Fuete					Biomasa Radical	Biomasa Total	
	Fuste	D > 7 $D = 2 - 7$ $D < 2$		Acículas		Naulual	Iotai	
CO ₂ total fijado	5.750.642	2.530.674	1.690.347	2.109.545	932.389	13.013.597	2.399.646	15.413.242

Tabla III.3.4.1. CO₂ total fijado en 1990 por Pinus sylvestris en Andalucía, en toneladas (t).

Tabla III.3.4.2. CO₂ total fijado en 1990 por Pinus pinaster en Andalucía, en toneladas (t).

Tabla III.3.4.3. CO₂ total fijado en 1990 por Pinus nigra en Andalucía, en toneladas (t).

Tabla III.3.4.4. CO₂ total fijado en 1990 por Pinus pinea en Andalucía, en toneladas (t).

Tabla III.3.4.5. CO₂ total fijado en 1990 por Pinus halepensis en Andalucía, en toneladas (t).

Tabla III.3.4.6. CO₂ total fijado en 1990 por Quercus ilex en Andalucía, en toneladas (t).

Tabla III.3.4.7.
CO₂ total fijado en 1990
por Quercus suber en
Andalucía, en toneladas (t).

Tabla III.3.4.8. CO₂ total fijado en 1990 por Eucalyptus en Andalucía, en toneladas (t).

Tabla III.3.4.9. CO₂ total fijado en 1990 por Quercus faginea en Andalucía, en toneladas (t).

Tabla III.3.4.10.
CO₂ total fijado en 1990
por Quercus pyrenaica en
Andalucía, toneladas (t).

Tabla III.3.4.11. CO₂ total fijado en 1990 por Quercus canariensis en Andalucía, toneladas (t).

Tabla III.3.4.12. CO₂ total fijado en 1990 por Olea europaea en Andalucía, en toneladas (t).

		Bioma	sa aérea					
	Fuste		Ramas		Total aé	rea Total	radical E	Biomasa Total
	านงเซ	D > 7	D 2 – 7	D < 2				
CO ₂ total fijado	4.014.857	321.394	816.308	2.367.053	7.519.6	11 2.02	2.407	9.542.018
		В	iomasa aérea					
	Fuste		Ramas		Hojas	Total aérea	Biomasa Radical	Biomasa Total
	านงเธ	D > 7	D 2 – 7	D < 2	Hojas		Madical	Ισται
CO ₂ total fijado	12.009.029	14.962.482	6.738.922	5.350.680	1.224.497	40.285.611	20.454.854	60.740.464
		В	iomasa aérea					
	Fuste		Ramas		Hojas	Total aérea	Biomasa Radical	Biomasa Total
	ruste	D > 7	D 2 – 7	D < 2	појаѕ		Naulcai	Total

		Biomas	a aérea			D.	D:
	Fuste y	Ramas		Hoice	Total aérea	Biomasa Radical	Biomasa Total
	D > 7			Hojas		Naultal	IULAI
CO ₂ total fijado	5.190.216	864.652	471.547	857.210	7.383.625	67.466.625	74.850.250

274.612

1.301.609

CO₂ total fijado 4.777.528 5.509.545

		В	iomasa aérea			D:	D:		
	Fuete	Ramas			- Hoioo	Total aérea	Biomasa Radical	Biomasa Total	
	Fuste	D > 7	D 2 – 7	D < 2	– Hojas		Naulcai	iotai	
CO ₂ total fijado	519.036	555.974	204.546	98.728	57.988	1.436.272	610.451	2.046.723	

		Biomasa aérea		– Total aérea	Total radical	Biomasa Total	
	LG	LF CH		TOTAL ACIES	TULAI TAUICAI	Diviliasa lutai	
CO ₂ total fijado	223.144	49.313	18.364	290.821	92.746	383.566	

		В	iomasa aérea				D.	D:
	Fuele	Ramas			Haina	Total aérea	Biomasa Radical	Biomasa Total
	Fuste	D > 7	D 2 – 7	D < 2	- Hojas		Kaulcal	IULAI
CO ₂ total fijado	532.101	392.000	165.941	37.760	9.677	1.137.478	448.565	1.586.044

		В	iomasa aérea					р.
		Ramas			- Iloino	Total aérea	Biomasa Radical	Biomasa Total
	Fuste	D > 7	D 2 – 7	D < 2	- Hojas		Naultal	IULAI
CO ₂ total fijado	1.446.925	562.217	946.419	723.064	101.411	3.780.036	846.972	4.627.007

155.083 12.018.377 3.019.044 15.037.421

		В	iomasa aérea		Biomasa Radical	Biomasa Total		
	Fuete	Ramas					— Acículas	Total aérea
	Fuste		D 2 – 7		ACICUIAS		Naultai	iotai
CO ₂ total fijado	80.533	1.902	5.884	3.198	1.941	93.458	24.433	117.891

		В	liomasa aérea				0.	D:
	Fuete	Ramas			- Haina	Total aérea	Biomasa Radical	Biomasa Total
	Fuste	D > 7 $D 2 - 7$ $D < 2$		- Hojas		Naultai	lutai	
CO ₂ total fijado	619.884	23.252	66.097	78.779	29.502	817.514	226.726	1.044.240

		Biomas	a aérea					
	Fuete	Ramas			Total aérea	Total radical	Biomasa Total	
	Fuste	D > 7 $D = 2 - 7$ $D < 3$		D < 2	-			
CO ₂ total fijado	72.414	25.629	31.725	27.807	157.576	116.570	274.146	

	Biomasa aérea						D:	D:
		Ramas				Total aérea	Biomasa Radical	Biomasa Total
	Fuste	D > 7	D 2 – 7	D < 2	– Hojas		Naultal	iulai
CO ₂ total fijado	61.430	1.700	10.372	3.866	2.121	79.488	80.458	159.946

		Biomas	a aérea		
_	Eusta		Ramas	Total aérea	
	Fuste	D > 7	D 2 – 7	D < 2	
CO ₂ total fijado	75.497	29.372	33.017	26.935	164.821

	Biomasa aérea							
	Fuete	Ramas			Total aérea	Total radical	Biomasa Total	
	Fuste	D > 7	D 2 – 7	D < 2				
CO ₂ total fijado	422.170	425.127	194.948	183.940	1.226.184	1.522.901	2.749.085	

		Biomasa aérea					D:	2.
	Foots		Ramas		Haina	Total aérea	Biomasa Radical	Biomasa Total
	Fuste		D 2 – 7		- Hojas		Naultai	lutai
CO ₂ total fijado	69.815	51.644	24.745	27.111	18.610	191.926	181.363	373.289

	Total aérea	Biomasa Radical	Biomasa Total
CO ₂ total fijado	306.247	313.249	619.496

Tabla III.3.4.13. CO₂ total fijado en 1990 por Pinus radiata en Andalucía, en toneladas (t).

Tabla III.3.4.14. CO₂ total fijado en 1990 por Populus spp en Andalucía, en toneladas (t).

Tabla III.3.4.15. CO_2 total fijado en 1990 por Fraxinus spp en Andalucía, en toneladas (t).

Tabla III.3.4.16. CO₂ total fijado en 1990 por Alnus glutinosa en Andalucía, en toneladas (t).

Tabla III.3.4.17.
CO₂ total fijado en 1990
por Abies pinsapo en
Andalucía, en toneladas (t).

Tabla III.3.4.18. CO₂ total fijado en 1990 por Castanea sativa en Andalucía, en toneladas (t).

Tabla III.3.4.19. CO₂ total fijado en 1990 por Ceratonia siliqua en Andalucía, toneladas (t).

Tabla III.3.4.20. CO₂ total fijado en 1990 por Juniperus oxycedrus en Andalucía, toneladas (t).

Tabla III.3.4.21. CO₂ total fijado en 1990 por Juniperus phoenicea en Andalucía, toneladas (t).

Tabla III.3.4.22. ${\it CO}_2$ total fijado en 1990 por "otras frondosas" en Andalucía, toneladas (t).

Tabla III.3.4.23. Leyenda de las tablas

Tabla III.3.4.24.
CO₂ total fijado en 1990 por las principales especies forestales arbóreas de Andalucía, en toneladas (t) diferenciando biomasa aérea, radical y total.

	Total aérea	Biomasa Radical	Biomasa Total
CO ₂ total fijado	162.893	83.525	246.419

	Total aérea	Biomasa Radical	Biomasa Total
CO ₂ total fijado	2.390.137	1.428.840	3.818.978

D	diámetro de las ramas
D > 7	ramas de diámetro mayor de 7 cm
D 2-7	ramas de diámetro comprendido entre 2 y 7 cm
D < 2	ramas de diámetro menor de 2 cm
LG	leñas gruesas (fuste y ramas mayores de 7 cm)
LF	leñas finas (ramas de diámetro entre 2 y 7 cm)
CH	chasca (ramillas menores de 2 cm)

En las Tablas III.3.4.24. y III.3.4.25. Se presentan los resultados de CO_2 total fijado por las especies forestales en 1990 y en 1999¹⁰.

ESPECIE	BIOMASA AEREA	BIOMASA RADICAL	BIOMASA TOTAL
	1.522.340	356.242	1.878.582
1. Pinus sylvestris L.	9.164.423	2.643.323	
2. Pinus pinaster Ait.	0.1020	2.0.0.020	11.807.746
3. Pinus nigra Arn.	8.989.755	2.193.729	11.183.484
4. Pinus pinea L.	13.013.597	2.399.646	15.413.242
5. Pinus halepensis Mill.	7.519.611	2.022.407	9.542.018
6. Quercus ilex L.	40.285.611	20.454.854	60.740.464
7. Quercus suber L.	12.018.377	3.019.044	15.037.421
8. Eucalyptus sp.	7.383.625	-	7.383.625
9. Quercus faginea Lamk.	1.436.272	610.451	2.046.723
10. Quercus pyrenaica Willd.	290.821	92.746	383.566
11. Quercus canariensis Willd.	1.137.478	448.565	1.586.044
12. Olea europaea L.	3.780.036	846.972	4.627.007
13. Pinus radiata D. Don.	93.458	24.433	117.891
14. Populus sp	817.514	226.726	1.044.240
15. Fraxinus sp.	157.576	116.570	274.146
16. Alnus glutinosa L.	79.488	80.458	159.946
17. Abies pinsapo Boiss.	164.821	-	164.821
18. Castanea sativa Mill.	1.226.184	1.522.901	2.749.085
19. Ceratonia siliqua L.	191.926	181.363	373.289
20. Juniperus oxycedrus L.	306.247	313.249	619.496
21. Juniperus phoenicea L.	162.893	83.525	246.419
22. Otras frondosas	2.390.137	1.428.840	3.818.977
CO ₂ TOTAL FIJADO EN ANDALUCIA EN 1990*	112.132.190	39.066.044*	151.198.232*
CARBONO TOTAL FIJADO EN ANDALUCIA EN 1990*	30.553.730	10.644.699*	41.198.428*

^{*} no se contabiliza la biomasa radical de Eucalyptus y Abies pinsapo

¹⁰ Se ha calculado el total para 1999 para hacer la comparación de resultados con el estudio realizado según LULUCF.

Tabla III.3.4.25.

CO₂ total fijado en 1999 por las principales especies forestales arbóreas de Andalucía, en toneladas (t) diferenciando biomasa aérea, radical y total.

ESPECIE	BIOMASA AEREA	BIOMASA RADICAL	BIOMASA TOTAL
1. Pinus sylvestris L.	1.522.340	356.242	1.878.582
2. Pinus pinaster Ait.	12.792.881	3.672.869	19.053.535
3. Pinus nigra Arn.	12.151.059	2.967.873	15.118.932
4. Pinus pinea L.	18.722.855	3.460.467	22.183.322
5. Pinus halepensis Mill.	10.263.324	2.773.097	13.036.421
6. Quercus ilex L.	49.083.642	26.099.978	75.183.620
7. Quercus suber L.	15.069.395	3.710.730	18.780.125
8. Eucalyptus sp.	15.440.371	-	-
9. Quercus faginea Lamk.	1.636.648	694.313	2.330.961
10. Quercus pyrenaica Willd.	368.707	115.507	484.214
11. Quercus canariensis Willd.	1.291.081	505.778	1.796.859
12. Olea europaea L.	7.560.549	1.340.640	8.901.189
13. Pinus radiata D. Don.	-	-	-
14. Populus sp	2.164	829	2.993
15. Fraxinus sp.	3.011.381	893.032	3.904.422
16. Alnus glutinosa L.	417.442	302.915	720.348
17. Abies pinsapo Boiss.	147.933	149.533	297.466
18. Castanea sativa Mill.	239.026	-	239.026
19. Ceratonia siliqua L.	1.251.042	1.540.424	2.791.466
20. Juniperus oxycedrus L.	323.218	304.654	627.872
21. Juniperus phoenicea L.	418.207	490.702	908.909
22. Otras frondosas	221.303	112.334	333.638
CO ₂ TOTAL FIJADO EN ANDALUCIA EN 1999*	151.934.568	49.491.917*	188.573.900*
CARBONO TOTAL FIJADO EN ANDALUCIA EN 1999*	41.399.065	13.485.536*	51.382.534*

^{*} no se contabiliza la biomasa radical de *Eucalyptus* y *Abies pinsapo*

En la Tabla siguiente se muestra la cantidad total de carbono que hay en 1990 y en 1999, y se ha calculado el incremento anual correspondiente a ese periodo, dividiendo la diferencia entre ambos totales por el número de años del periodo.

	Biomasa aérea	Biomasa radical	Biomasa total
CARBONO TOTAL FIJADO EN ANDALUCIA EN 1990* (tC)	30.553.730	10.644.699	41.198.428
CARBONO TOTAL FIJADO EN ANDALUCIA EN 1999* (tC)	41.399.065	13.485.536	51.382.534
CAMBIO ANUAL DE CARBONO (tC/año)			1.131.567

En la Tabla III.3.4.26 se presentan los resultados del incremento de CO_2 anual total en Andalucía en 1990 debido al crecimiento de estas especies.

Tabla III.3.4.26.
Cálculo del incremento neto anual de carbono durante el periodo 1990-1999, en toneladas

Tabla III.3.4.27.
Incremento de CO₂
total fijado por las
principales especies
forestales arbóreas de
Andalucía, en toneladas
(t) diferenciando biomasa
aérea, radical y total.

FARFAIR			D
ESPECIE	Biomasa Aérea	Biomasa Radical	Biomasa Total
1. Pinus sylvestris L.	129.697	32.272	161.968
2. Pinus pinaster Ait.	479.314	136.359	615.673
3. Pinus nigra Arn.	371.700	91.005	462.705
4. Pinus pinea L.	758.079	140.682	898.761
5. Pinus halepensis Mill.	339.737	92.791	432.528
6. Quercus ilex L.	1.029.010	660.249	1.689.258
7. Quercus suber L.	359.112	81.413	440.525
8. Eucalyptus sp.	1.871.148	-	1.871.148
9. Quercus faginea Lamk.	23.192	9.706	32.898
10. Quercus pyrenaica Willd.	9.109	2.662	11.772
11. Quercus canariensis Willd.	17.966	6.692	24.658
12. Olea europaea L.	443.566	57.922	501.488
13.Pinus radiata D. Don.	6.806	1.613	8.419
14. Juniperus thurifera L.	74	26	100
15. Populus sp	343.201	101.612	444.813
16. Fraxinus sp.	29.061	20.843	49.904
17. Alnus glutinosa L.	7.605	7.675	15.280
18. Abies pinsapo Boiss.	8.245	-	8.245
19. Castanea sativa Mill.	19.050	22.177	41.227
20. Ceratonia siliqua L.	14.588	13.699	28.287
21. Juniperus oxycedrus L.	12.440	19.717	32.157
22. Juniperus phoenicea L.	6.490	3.201	9.691
TOTAL ANDALUCIA	6.279.189	1.502.315	7.781.504

Balances de fijación de CO₂

Los balances de fijación neta de CO_2 los realizamos a partir de los datos de CO_2 total y del incremento total para cada especie, ofrecidos en anteriores entregas, y con los datos de extracciones anuales debidos a los aprovechamientos madereros. Estos datos se han obtenido de los Anuarios de Estadística Agroalimentaria para las provincias de Andalucía entre los años 1991 y 2001.

Debemos tener en cuenta unas limitaciones a los datos que se presentan en estos anuarios: En primer lugar, los datos de cortas de las especies de *Quercus* no vienen diferenciados, sino que dan el total para el género, siendo por tanto difícil tener una estimación de las extracciones para cada especie. Hemos considerado que no se cortan. Por otro lado, en el *Pinus radiata*, con las cifras de incrementos en diámetro obtenidas y los datos de las cortas anuales, tenemos un incremento neto anual negativo. Debemos hacer notar que los datos de los anuarios son muy dispares para los distintos

años considerados, por lo que la media de extracciones anuales puede que sea poco representativa. Si seguimos el mismo procedimiento para todas las especies debemos considerar que las cifras que se obtienen son ciertas.

Los aprovechamientos son madereros, por lo tanto se refieren a las cortas de fuste, en m³ cc. Las extracciones del resto de fracciones de biomasa suponemos que son proporcionales a las de fuste.

La fijación neta anual es la diferencia del incremento anual debido al crecimiento de los árboles menos lo que se extrae debido a los aprovechamientos.

Con estas consideraciones se han realizado los balances de CO₂ en Andalucía para el año 1999 y para el primer periodo de compromiso 2008-2012 (tablas 3.5.1 a 3.5.23).

CO2 total fijado en 1990 995.458 3.710 155.788 209.408 157.975 1.522.340 356.242 1.878.582 CO₂ fijado al año 94.352 288 12.521 12.846 9.690 129.697 32.272 161.968 CO2 extraído al año 154 207 983 4 156 1.503 352 1.855 CO₂ neto fijado al año 93.369 284 12.367 12.640 9.534 128.193 31.920 160.113 CO₂ total fijado en 1999 1.835.779 6.266 267.091 323.168 243.781 2.676.077 643.522 3.319.599 CO₂ total fijado en 2008 2.676.095 8.822 378.388 436.919 329.596 3.829.820 930.801 4.760.621 CO₂ total fijado en 2012 3.049.570 9.958 427.855 487.477 367.734 4.342.594 1.058.480 5.401.074

		Bioma	sa aérea		_		Biomasa
	Fuste -		Ramas		Total aérea	Total radical	Total
	ruste	D > 7	D 2-7	D < 2			ισται
CO ₂ total fijado 1990	7.539.045	41.574	382.326	1.201.479	9.164.423	2.643.323	11.807.746
CO ₂ fijado al año	376.445	2.289	43.179	57.401	479.314	136.359	615.673
CO ₂ extraído al año	62.646	345	3.177	9.984	76.152	21.965	98.117
CO ₂ neto fijado año	313.799	1.944	40.002	47.418	403.162	114.394	517.556
CO ₂ total fijado 1999	10.363.236	59.070	742.344	1.628.241	12.792.881	3.672.869	19.053.535
CO ₂ total fijado 2008	13.187.427	76.560	1.102.356	2.054.994	16.421.337	4.702.423	21.123.760
CO ₂ total fijado 2012	14.442.623	84.335	1.262.363	2.244.664	18.033.985	5.160.001	23.193.985

		Bioma	sa aérea		Total		D:
	Fuete		Ramas		- Total - aérea	Total radical	Biomasa Total
	Fuste -	D > 7	D 2-7	D < 2	- acica		Iutai
CO ₂ total fijado en 1990	6.040.878	295.839	797.503	1.855.535	8.989.755	2.193.729	11.183.484
CO ₂ fijado al año	252.496	9.060	32.625	77.519	371.700	91.005	462.705
CO ₂ extraído al año	13.738	673	1.814	4.220	20.444	4.989	25.433
CO ₂ neto fijado al año	238.758	8.387	30.811	73.300	351.256	86.016	437.272
CO ₂ total fijado 1999	8.189.700	371.322	1.074.802	2.515.235	12.151.059	2.967.873	15.118.932
CO ₂ total fijado 2008	10.338.525	446.803	1.352.108	3.174.930	15.312.365	3.742.018	19.054.383
CO ₂ total fijado 2012	11.293.558	480.350	1.475.353	3.468.128	16.717.390	4.086.082	20.803.472

Tabla III.3.5.1.

Balance de fijación neta de

CO₂ por Pinus sylvestris en

Andalucía, en toneladas (t).

Tabla III.3.5.2.
Balance de fijación neta de CO₂ por Pinus pinaster en Andalucía, en toneladas (t).

Tabla III.3.5.3.

Balance de fijación neta de CO₂ por Pinus nigra en Andalucía, en toneladas (t).

Tabla III.3.5.4.
Balance de fijación neta
de CO₂ por Pinus pinea en
Andalucía, en toneladas (t).

		В	omasa aérea			T-4-1	Riomaca	Diamaga
	Fuste -	Ramas			Acículas	Total aérea	Biomasa Radical	Biomasa Total
	ruste	D > 7			Aciculas	астса	Naulcai	iotai
CO ₂ total fijado en 1990	5.750.642	2.530.674	1.690.347	2.109.545	932.389	13.013.597	2.399.646	15.413.242
CO ₂ fijado al año	352.412	129.724	102.074	119.289	54.580	758.079	140.682	898.761
CO ₂ extraído al año	54.670	24.059	16.070	20.055	8.864	123.717	22.813	146.530
CO ₂ neto fijado al año	297.742	105.665	86.004	99.234	45.716	634.362	117.869	752.231
CO ₂ total fijado 1999	8.430.320	3.481.659	2.464.383	3.002.651	1.343.833	18.722.855	3.460.467	22.183.321
CO ₂ total fijado en 2008	11.110.006	4.432.651	3.238.419	3.895.764	1.755.272	24.432.112	4.521.286	28.953.398
CO ₂ total fijado en 2012	12.300.976	4.855.312	3.582.435	4.292.701	1.938.135	26.969.560	4.992.762	31.962.322

Tabla III.3.5.5.
Balance de fijación neta de CO₂ por Pinus halepensis en Andalucía, en toneladas (t).

		Biomas	a aérea				Diamaga
	Fuste -		Ramas		Total aérea	Total radical	Biomasa Total
	ruste	D > 7	D 2-7	D < 2			Ισται
CO ₂ total fijado 1990	4.014.857	321.394	816.308	2.367.053	7.519.611	2.022.407	9.542.018
CO ₂ fijado al año	182.541	13.228	38.438	105.530	339.737	92.791	432.528
CO ₂ extraído al año	18.623	1.491	3.786	10.980	34.880	9.381	44.261
CO ₂ neto fijado año	163.918	11.737	34.652	94.551	304.857	83.410	388.267
CO ₂ total fijado 2004	5.490.119	427.027	1.128.176	3.218.012	10.263.324	2.773.097	13.036.421
CO ₂ total fijado 2008	6.965.382	532.657	1.440.039	4.068.967	13.007.045	3.523.786	16.530.831
CO ₂ total fijado 2012	7.621.054	579.604	1.578.647	4.447.170	14.226.474	3.857.426	18.083.900

Tabla III.3.5.6.

Balance de fijación neta de CO_2 por Quercus ilex en Andalucía, en toneladas (t).

		В	liomasa aérea			T-4-1	Diamasa	D:	
	Fuete	Ramas				Total aérea	Biomasa Radical	Biomasa Total	
	Fuste	D > 7	D 2 - 7		Hojas		Naultai	lutai	
CO ₂ total fijado 1990	12.009.029	14.962.482	6.738.922	5.350.680	1.224.497	40.285.611	20.454.854	60.740.464	
CO ₂ fijado al año	344.172	247.914	194.136	155.686	35.652	977.559	627.236	1.604.795	
CO ₂ extraído año	-	-	-	-	-	-	-	-	
CO ₂ neto fijado año	344.172	247.914	194.136	155.686	35.652	977.559	627.236	1.604.795	
CO ₂ total fijado 1999	15.106.577	17.193.708	8.486.146	6.751.854	1.545.365	49.083.642	26.099.978	75.183.619	
CO ₂ total fijado 2008	18.204.127	19.424.925	10.233.368	8.153.025	1.866.230	57.881.675	31.745.105	89.626.780	
CO ₂ total fijado 2012	19.580.816	20.416.579	11.009.912	8.775.768	2.008.837	61.791.912	34.254.049	96.045.961	

Tabla III.3.5.7.

Balance de fijación neta de

CO₂ por Quercus suber en

Andalucía, en toneladas (t).

		В	iomasa aérea			Total	Biomasa	Biomasa Total	
	Fuete -		Ramas			Total aérea	Radical		
	Fuste -	D > 7	D 2 - 7	D < 2	Hojas	астса	Naulcai	lutai	
CO ₂ total fijado en 1990	4.777.528	5.509.545	1.301.609	274.612	155.083	12.018.377	3.019.044	15.037.421	
CO ₂ fijado al año	128.194	166.380	33.190	7.161	4.077	339.002	76.854	415.856	
CO ₂ extraído al año	-	-	-	-	-	-	-	-	
CO ₂ neto fijado al año	128.194	166.380	33.190	7.161	4.077	339.002	76.854	415.856	
CO ₂ total fijado en 1999	5.931.274	7.006.965	1.600.319	339.061	191.776	15.069.395	3.710.730	18.780.125	
CO ₂ total fijado en 2008	7.085.018	8.504.393	1.899.022	403.504	228.477	18.120.414	4.402.414	22.522.828	
CO ₂ total fijado en 2012	7.597.794	9.169.915	2.031.781	432.146	244.786	19.476.422	4.709.829	24.186.252	

Tabla III.3.5.8.

Balance de fijación neta de CO₂ por Eucalyptus en Andalucía, en toneladas (t).

		Biomasa	a aérea		Total	Total	Biomasa
	Fuste y D >7	D 2 - 7	D <2	Hojas	aérea	radical	Total
CO ₂ total fijado en 1990	5.190.216	864.652	471.547	857.210	7.383.625	67.466.625	74.850.250
CO ₂ fijado al año	1.304.586	195.302	97.841	178.087	1.775.815	-	-
CO ₂ extraído al año	619.020	103.124	56.240	102.237	880.621	-	-
CO ₂ neto fijado año	685.566	92.177	41.601	75.851	895.194	-	-
CO ₂ total fijado 1999	11.360.310	1.694.245	845.956	1.539.869	15.440.371	-	-
CO ₂ total fijado2008	17.530.400	2.523.844	1.220.359	2.222.520	23.497.124	-	-
CO ₂ total fijado2012	20.272.664	2.892.554	1.386.762	2.525.922	27.077.901	-	-

		Ві	iomasa aére					
	Fuete	Ramas				Total aérea	Biomasa Radical	Biomasa Total
	Fuste		D 2 - 7		Hojas	atita	Naultai	IULAI
CO ₂ total fijado en 1990	519.036	555.974	204.546	98.728	57.988	1.436.272	610.451	2.046.723
CO ₂ fijado al año	8.314	8.230	3.287	1.533	900	22.264	9.318	31.582
CO ₂ extraído al año	-	-	-	-	-	-	-	-
CO ₂ neto fijado al año	8.314	8.230	3.287	1.533	900	22.264	9.318	31.582
CO ₂ total fijado en 1999	593.862	630.044	234.129	112.525	66.088	1.636.648	694.313	2.330.961
CO ₂ total fijado en 2008	668.689	704.115	263.717	126.318	74.193	1.837.032	778.169	2.615.202
CO ₂ total fijado en 2012	701.945	737.036	276.866	132.449	77.794	1.926.090	815.440	2.741.530

Tabla III.3.5.9.
Balance de fijación neta de CO₂ por Quercus faginea en Andalucía, en toneladas (t).

		Biomasa aérea		Total	Total	Biomasa
	LG	LF	СН	aérea	radical	Total
CO ₂ total fijado en 1990	223.144	49.313	18.364	290.821	92.746	383.566
CO ₂ fijado al año	7.009	1.117	529	8.654	2.529	11.183
CO ₂ extraído al año	-	-	-	-	-	-
CO ₂ neto fijado al año	7.009	1.117	529	8.654	2.529	11.183
CO ₂ total fijado en 1999	611.283	436.604	188.585	43.466	11.144	1.291.081
CO ₂ total fijado en 2008	349.299	69.415	27.877	446.591	138.268	584.859
CO ₂ total fijado en 2012	377.334	73.882	29.992	481.207	148.384	629.591

Tabla III.3.5.10.

Balance de fijación neta de CO₂ por Quercus pyrenaica en Andalucía, toneladas (t).

	T	D:	Diamaga					
	Fuete	Ramas			Haina	Total aérea	Biomasa Radical	Biomasa Total
	Fuste	D > 7	D 2 - 7	D < 2	Hojas	acica	Naulual	Iotai
CO ₂ total fijado en 1990	532.101	392.000	165.941	37.760	9.677	1.137.478	448.565	1.586.044
CO ₂ fijado al año	8.798	4.956	2.516	634	163	17.067	6.357	23.425
CO ₂ extraído al año	-	-	-	-	-	-	-	-
CO ₂ neto fijado al año	8.798	4.956	2.516	634	163	17.067	6.357	23.425
CO ₂ total fijado en 1999	611.283	436.604	188.585	43.466	11.144	1.291.081	505.778	1.796.869
CO ₂ total fijado en 2008	690.474	481.207	211.231	49.176	12.603	1.444.691	563.000	2.007.691
CO ₂ total fijado en 2012	725.668	501.031	221.296	51.713	13.253	1.512.961	588.429	2.101.390

Tabla III.3.5.11.

Balance de fijación neta de CO₂ por Quercus canariensis en Andalucía, toneladas (t).

Tabla III.3.5.12. Balance de fijación neta de CO₂ por Olea europaea en Andalucía, en toneladas (t).

	Biomasa aérea							Biomasa
	Fuste -		Ramas		Hojas	Total aérea	Biomasa Radical	Biomasa Total
	ruste	D > 7	D 2 - 7	D < 2	пијаѕ	acica	Rauloai	Ισται
CO ₂ total fijado en 1990	1.446.925	562.217	946.419	723.064	101.411	3.780.036	846.972	4.627.007
CO ₂ fijado al año	166.705	52.378	108.572	81.037	11.366	420.057	54.852	474.909
CO ₂ extraído al año	-	-	-	-	-	-	-	-
CO ₂ neto fijado al año	166.705	52.378	108.572	81.037	11.366	420.057	54.852	474.909
CO ₂ total fijado en 1999	2.947.270	1.033.619	1.923.567	1.452.397	203.705	7.560.549	1.340.640	8.901.188
CO ₂ total fijado en 2008	4.447.606	1.505.016	2.900.722	2.181.725	305.990	11.341.062	1.834.308	13.175.369
CO ₂ total fijado en 2012	5.114.424	1.714.527	3.335.011	2.505.872	351.452	13.021.290	2.053.716	15.075.005

Tabla III.3.5.13.
Balance de fijación neta de CO₂ por Pinus radiata en Andalucía, en toneladas (t).

	Biomasa aérea							Diamaga
	Fuete	Ramas			- Acículas	Total aérea	Biomasa Radical	Biomasa Total
	Fuste	D > 7	D 2 - 7	D < 2	ACICUIAS	acica	Naulcai	iotai
CO ₂ total fijado en 1990	80.533	1.902	5.884	3.198	1.941	93.458	24.433	117.891
CO ₂ fijado al año	5.938	177	383	185	124	6.806	1.613	8.419
CO ₂ extraído al año	9.236	218	675	367	223	10.718	2.802	13.521
CO ₂ neto fijado al año	-3.298	-41	-292	-182	-99	-3.912	-1.189	-5.101

Tabla III.3.5.14.
Balance de fijación neta
de CO₂ por Juniperus
thurifera en Andalucía, en
toneladas (t).

		E	Biomasa aére		Total	Riomasa	Diamana	
	Fuete		Ramas		Hoion	Total aérea	Biomasa Radical	Biomasa Total
	Fuste	D > 7	D 2 - 7		Hojas		Nautoai	iotai
CO ₂ total fijado en 1990	815	14	224	250	231	1.534	604	2.138
CO ₂ fijado al año	37	1	12	10	10	70	25	95
CO ₂ extraído al año	-	-	-	-	-	-	-	-
CO ₂ neto fijado al año	37	1	12	10	10	70	25	95
CO ₂ total fijado en 1999	1.148	23	332	155	321	2.164	829	2.993
CO ₂ total fijado en 2008	1.487	32	432	436	403	2.791	1.054	3.845
CO ₂ total fijado en 2012	1.637	36	478	478	441	3.070	1.154	4.224

Tabla III.3.5.15.

Balance de fijación neta de CO₂ por Populus en Andalucía, en toneladas (t).

		Ві	omasa aére		Biomasa	Diamasa		
	Fuste		Ramas		Hojas	Total aérea	Radical	Biomasa Total
	ruste	D > 7	D 2 - 7	D < 2	пијаѕ		Naulcai	iviai
CO ₂ total fijado en 1990	619.884	23.252	66.097	78.779	29.502	817.514	226.726	1.044.240
CO ₂ fijado al año	268.491	10.728	30.913	24.102	8.968	343.201	101.612	444.813
CO ₂ extraído al año	75.399	2.828	8.040	9.582	3.588	99.438	27.578	127.015
CO ₂ neto fijado al año	193.092	7.899	22.873	14.519	5.379	243.763	74.034	317.798
CO ₂ total fijado en 1999	2.357.712	94.343	271.954	209.450	77.913	3.011.381	893.032	3.904.422
CO ₂ total fijado en 2008	4.095.542	165.440	477.812	340.129	126.328	5.205.251	1.559.345	6.764.596
CO ₂ total fijado en 2012	4.867.910	197.037	569.305	398.207	147.845	6.180.304	1.855.483	8.035.786

Tabla III.3.5.16. Balance de fijación neta de CO₂ por Fraxinus en Andalucía, en toneladas (t).

			Diomaca				
	Fuste		Ramas		Total aérea	Total radical	Biomasa Total
	ruste	D > 7	D > 7 D 2-7 D				iviai
CO ₂ total fijado 1990	72.414	25.629	31.725	27.807	157.576	116.570	274.146
CO ₂ fijado al año	13.485	4.359	6.216	5.001	29.061	20.843	49.904
CO ₂ extraído al año	86	30	38	33	187	138	326
CO ₂ neto fijado año	13.399	4.329	6.178	4.968	28.874	20.705	49.578
CO ₂ total fijado 1999	193.005	64.590	87.327	72.519	417.442	302.915	720.348
CO ₂ total fijado 2008	313.599	103.549	142.927	117.228	677.304	489.252	1.166.556
CO ₂ total fijado 2012	367.196	120.864	167.639	137.099	792.799	572.070	1.364.869

			Biomasa aére			- T. I			
	Fuete		Ramas		- Iloina	Total aérea	Biomasa Radical	Biomasa Total	
	Fuste -		D 2 - 7		- Hojas	atita	Naultai	iulai	
CO ₂ total fijado en 1990	61.430	1.700	10.372	3.866	2.121	79.488	80.458	159.946	
CO ₂ fijado al año	6.019	131	976	309	170	7.605	7.675	15.280	
CO ₂ extraído al año	-	-	-	-	-	-	-	-	
CO ₂ neto fijado al año	6.019	131	976	309	170	7.605	7.675	15.280	
CO ₂ total fijado en 1999	115.601	2.879	19.156	6.647	3.651	147.933	149.533	297.466	
CO ₂ total fijado en 2008	169.773	4.059	27.940	9.432	5.175	216.379	218.608	434.987	
CO ₂ total fijado en 2012	193.849	4.583	31.844	10.669	5.854	246.799	249.308	496.107	

Tabla III.3.5.17.

Balance de fijación neta de CO₂ por Alnus glutinosa en Andalucía, en toneladas (t).

			Ramas		Total aérea
	Fuste	D > 7	D 2-7	D < 2	
CO ₂ total fijado 1990	75.497	29.372	33.017	26.935	164.821
CO ₂ fijado al año	3.802	1.548	1.669	1.227	8.245
CO ₂ extraído al año	-	-	-	-	-
CO ₂ neto fijado al año	3.802	1.548	1.669	1.227	8.245
CO ₂ total fijado en 1999	109.715	43.304	48.038	37.978	239.026
CO ₂ total fijado en 2008	143.929	57.229	63.053	49.013	313.225
CO ₂ total fijado en 2012	159.136	63.420	69.728	53.920	346.203

Tabla III.3.5.18.

Balance de fijación neta de CO₂ por Abies pinsapo en Andalucía, en toneladas (t).

				Biomasa			
	Fuste		Ramas		Total aérea	Total radical	Biomasa Total
	ruste	D > 7	D 2-7	D < 2		Tuuloui	ισιαι
CO ₂ total fijado 1990	422.170	425.127	194.948	183.940	1.226.184	1.522.901	2.749.085
CO ₂ fijado al año	7.117	5.660	3.255	3.019	19.050	22.177	41.227
CO ₂ extraído al año	5.608	5.647	2.590	2.443	16.288	20.230	36.518
CO ₂ neto fijado año	1.509	13	665	575	2.762	1.947	4.709
CO ₂ total fijado en 1999	435.751	425.244	200.933	189.115	1.251.042	1.540.424	2.791.466
CO ₂ total fijado 2008	449.328	425.353	206.923	194.292	1.275.895	1.557.949	2.833.844
CO ₂ total fijado 2012	455.363	425.403	209.584	196.593	1.286.942	1.565.738	2.852.680

Tabla III.3.5.19.

Balance de fijación neta de CO_2 por Castanea sativa en Andalucía, en toneladas (t).

Tabla III.3.5.20.
Balance de fijación neta de CO₂ por Ceratonia siliqua en Andalucía, toneladas (t).

		В	iomasa aér	ea		T	Biomasa	Riomaca
	Fuete	Ramas				Total aérea	Biomasa Radical	Biomasa Total
	Fuste	D > 7	D 2 - 7	D < 2	Hojas		Naulcai	iotai
CO ₂ total fijado en 1990	69.815	51.644	24.745	27.111	18.610	191.926	181.363	373.289
CO ₂ fijado al año	5.501	3.577	1.946	2.113	1.451	14.588	13.699	28.287
CO ₂ extraído al año	-	-	-	-	-	-	-	-
CO ₂ neto fijado al año	5.501	3.577	1.946	2.113	1.451	14.588	13.699	28.287
CO ₂ total fijado en 1999	119.324	83.837	42.259	46.128	31.669	323.218	304.654	627.872
CO ₂ total fijado en 2008	168.836	116.025	59.780	65.147	44.720	454.509	427.945	882.454
CO ₂ total fijado en 2012	190.841	130.332	67.566	73.599	50.523	512.860	482.741	995.601

Tabla III.3.5.21.

Balance de fijación neta de CO₂ por Juniperus oxycedrus en Andalucía, toneladas (t).

	Total aérea	Biomasa Radical	Biomasa Total
CO ₂ total fijado en 1990	306.247	313.249	619.496
CO ₂ fijado al año	12.440	19.717	32.157
CO ₂ extraído al año	-	=	-
CO ₂ neto fijado al año	12.440	19.717	32.157
CO ₂ total fijado en 1999	418.207	490.702	908.909
CO ₂ total fijado en 2008	530.172	974.401	1.504.573
CO ₂ total fijado en 2012	579.933	1.053.268	1.633.201

Tabla III.3.5.22.

Balance de fijación neta de CO₂ por Juniperus phoenicea en Andalucía, toneladas (t).

	Total aérea	Biomasa Radical	Biomasa Total
CO ₂ total fijado en 1990	162.893	83.525	246.419
CO ₂ fijado al año	6.490	3.201	9.691
CO ₂ extraído al año	-	-	-
CO ₂ neto fijado al año	6.490	3.201	9.691
CO ₂ total fijado en 1999	97.348	48.015	145.363
CO ₂ total fijado en 2008	279.711	141.143	420.855
CO ₂ total fijado en 2012	305.671	153.947	459.618

Tabla III.3.5.23.
Balance de fijación neta de CO₂ por "otras frondosas" en Andalucía, toneladas (t).

Total aérea Biomasa Radical Biomasa Total CO₂ total fijado en 1990 2.390.137 1.428.840 3.818.978

Tabla III.3.5.24. Leyenda de las tablas

	diámetro de las ramas
D > 7	ramas de diámetro mayor de 7 cm
D 2-7	ramas de diámetro comprendido entre 2 y 7 cm
D < 2	ramas de diámetro menor de 2 cm
LG	leñas gruesas (fuste y ramas mayores de 7 cm)
LF	leñas finas (ramas de diámetro entre 2 y 7 cm)
CH	chasca (ramillas menores de 2 cm)

Bibliografía

- ACOSTA-MIRELES, M., VARGAS-HERNÁNDEZ, J., VELÁZQUEZ-MARTÍNEZ, A., ETCHEVERS-BARRA, J. 2002. Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arbóreas en Oaxaca, México. *Agrociencia* 36 (6): 725-736.
- ANUARIO DE ESTADÍSTICA AGROALIMENTARIA. Varios años. Ministerio de Agricultura, Pesca y Alimentación.
- ANUARIO DE ESTADÍSTICAS AGRARIAS Y PESQUERAS DE ANDALUCÍA 2001. Consejería de Agricultura y Pesca. Junta de Andalucía.
- BARREIRO DÍAZ, M.A. 2003. Estimación de la biomasa y cuantificación del potencial de *Pinus radiata* para el almacenamiento de carbono a medio y largo plazo en Galicia. Proyecto Fin de Carrera. Escuela Politécnica Superior de Lugo. Ingeniería de Montes. Universidad de Santiago de Compostela. 139 pp.
- CANADELL, J. 1988. Biomass equations for *Quercus ilex* L. in the Montseny Massif, Northeastern Spain. *Forestry*. Vol 61, n° 2.
- CAÑELLAS, I. y SAN MIGUEL, A., 2000. Biomass and root systems of *Quercus cocci- fera* Shrublands in Eastern Spain. *Ann. For. Sci.* 57: 803-810.
- CASTRO, I., CASADO, M.A., RAMIREZ-SANZ, L., DE MIGUEL, M.A., COSTA, M. Y PINEDA, F. 1996, Funciones de estimación de la biomasa aérea de varias especies de matorral mediterráneo del centro de la Península Ibérica. *Orsis*, 11:107-116.
- CLAESSON, S., SAHLÉN, K. AND LUNDMARK, T. 2001. Functions for biomass estimation of young *Pinus silvestris, Picea abies* and *Betula* spp. from stands in Northern Sweden with high stand densities, *Can. J. For. Res.*, 16: 138-146.
- COOPER, C.F. 1983. Carbon storage in managed forests. *Can. J. For. Res.* 13: 155-166.
- CUNIA, T; MICHELAKACKIS, J. 1983. On the error of tree biomass tables constructed by a two-phase sampling design. *Canadian Journal of Forest Research* 13: 303-313.
- DIÉGUEZ, U; BARRIO, M; CASTEDO, F; RUÍZ, A; ÁLVAREZ, M F; ÁLVAREZ, J G; ROJO, A. 2003. Biomasa forestal. Páginas 253-260, en Dendrometría. Ed. Mundi-Prensa y FUCOVASA.
- PONCE-HERNÁNDEZ, R. 2004. Assessing carbon stocks and modelling win-win scenarios of carbon sequestration through land-use changes. Food and Agriculture Organizations of United Nations (FAO). Rome. 156 pp.

BIBLIOGRAFÍA 153

- FURNIVAL, G.M. 1984. A new procedure for estimation of tree biomass and nutrient content Mesures des biomasses des accroissements forestiers, Orleans, 3-7 october 1983, Les coloques de l'INRA. IUFRO \$4.01.00.
- FUWAPE, J.A., ONYENKWELU, J.C., ADELKUNLE, V.A.J. 2001. Biomass equations and estimation for *Gmelina arborea*. *Biomass and bioenergy*. 21: 401-405.
- GARCÍA ESTEBAN, L. 2004. ESTSI Montes UPM. Comunicación personal.
- GROTE, R 2002 Foliage and Branch Biomass Estimation of Coniferous and Deciduous Tree Species. *Silva Fennica*, 36 (4):779-788.
- GUTIÉRREZ OLIVA, A. F. G., JI. 1997. Cálculo de la densidad y de las variaciones dimensionales de la madera. Equivalencias numéricas entre valores." *Montes* 49: 28-33.
- GUTIÉRREZ, A., BAONZA, M.V. Y FERNÁNDEZ-GOLFÍN, J. 1997. Variaciones de la densidad de la madera de pino silvestre de los Sistemas Central e Ibérico, Proceedings of the I Congreso Forestal hispano-luso, Pamplona, mesa 7, PA 229-234.
- HICHCOCK, HC., MCDONNELL, JP., 1979. Biomass measurement: a synthesis of the literature. Proc. For. Inventory Workshop, SAF-IUFRO. Fort Collins, Colorado: 544-595.
- HUSCH, B. 2001. Estimación del contenido de carbono de los bosques. Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas Forestales. 18 al 21 de octubre de 2001. Valdivia, Chile.
- HOUGHTON, R.A. 2003. Why are estimates of the terrestrial carbon balance so different? *Global Change Biology*, 9: 500-509.
- IBÁÑEZ, J.J., VAYREDA, J., GRACIA, C. 2001. Metodología complementaria al Inventario Forestal Nacional en Cataluña. Centre de Recerca Ecológica y Aplications Forestals (CREAF).
- ICONA 1995. SEGUNDO INVENTARIO FORESTAL NACIONAL 1986-1995. Provincias: Almería, Cádiz, Córdoba, Granada, Huelva, Jaén, Málaga y Sevilla. Instituto Nacional de Conservación de la Naturaleza. MAPA. Madrid.
- INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC), 1997. Houghton, J. T., Meira Filho, L. G., Lim, B., Treanton, K., Mamaty, I., Bonduki, Y., Griggs, D. J., and Callander, B. A., (Eds.). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC/OECD/IEA, Paris, France.
- INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC), 2001. Land Use, Land Use Change and Forestry. A special report of the IPCC. Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo, D. J., and Dokken, D. J., (Eds.). Cambridge University Press, Cambridge, United Kingdom, 377 pp.
- INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC), 2003. Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., and Wagner, F., (Eds.). Good Practice Guidance for Land Use, Land-Use Change and Forestry. Institute for Global Environmental Strategies (IGES), Hayama, Japan, 600 pp.

- JANDL, R. 2001. Secuestro de carbono en bosques El papel del suelo. Taller Internacional sobre secuestro de carbono. IUFRO-RIFALC, del 16 al 21 de julio, Mérida, Venezuela.
- JANSSENS, I.A., 2004. The carbon budget of terrestrial ecosystems at country-scale: a European case study. *Biogeosciences Discussions*, 1: 167-193.
- JENKINS, J; CHOJNACKY, D; HEATH, L; BIRDSEY, R. 2003. National-Scale Estimators for United States Tree Species. *Forest Science*, 49 (1).
- JOHANSON, T. 1999. Biomass equations for determining fractions of pendula and pubescens birches growing on abandoned farmland and some practical implications. *Biomass and bioenergy*. 16: 223-238.
- JOHNSON, W C.; SHARPE, D. 1983. The ratio of merchantable forest biomass and its application to the global carbon budget. *Canadian Journal of Forest Research*. 13: 372-383.
- KOLLMANN. 1959. Tecnología de la Madera y sus aplicaciones. Tomo Primero. IFIE, Madrid.
- LEHTONEN, A. *et al.* 2004. Biomass Expansion Factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management, 188: 211-224.
- LLORET. F., CASANOVAS, C. y PEÑUELAS, J., 1999. Seedling survival of Mediterranean shrubland species in relation to root:shoot ratio, seed size and water and nitrogen use. *Functional Ecology*, 13: 210-216.
- MADWICK, H.A.I; SATOO, T. 1975. On estimating the aboveground weights of tree stands. *Ecology*, 56: 1446-1450
- MARTINEZ, F., MERINO, J. 1987. Evolución estacional de la biomasa subterránea del matorral del Parque Nacional de Doñana, VIII Bienal Real Sociedad Española Historia Natural, pp. 563-570.
- MENDOZA-VEGA, J., KARLTUN, E., OLSSON, M. 2003. Estimations of amounts of soil organic carbon and fine root carbon in land use and land cover classes, and soil types of Chiapas highlands, Mexico. For. Ecol. Man. 177, 191 206.
- MOONEY, H.A., 1981, Primary production in Mediterranean-climate regions. In: F. di Castri (Ed.), Ecosystems of the World 11: Mediterranean Shrublands: 249-255. Elsevier Scientific Publishing, Amsterdam.
- MONTERO G., RUIZ-PEINADO R., MUÑOZ M., 2005. Producción de biomasa y fijación de CO₂ por los bosques españolas. Monografías INIA: Serie forestal nº13 2005.
- MONTERO, G. *et al*, 2003. El pino piñonero y la fijación de carbono. Páginas 240-252, en El pino piñonero (*Pinus pinea* L.) en Andalucía. Consejería de Medio Ambiente, Junta de Andalucía.
- MONTERO, G; MUÑOZ, M; DONÉS, J. 2003. Fijación de CO₂ por *Pinus sylvestris* L. en el monte "Pinar de Valsaín". *Foresta*, 24 (4° trimestre 2003): 40-49.

BIBLIOGRAFÍA 155

- MONTERO, G., MUÑOZ, M., DONÉS, J. y ROJO, A. 2004. Fijación de CO2 por Pinus sylvestris L. y Quercus pyrenaica Willd. en los montes «Pinar de Valsaín» y «Matas de Valsaín»Invest Agrar: Sist Recur For (2004) 13 (2), 399-415
- MUÑOZ, M. 2002. Fijación de CO₂ por *Pinus nigra Arn subsp salzmannii* en el monte "Rocha de la Carcoma" nº 148 del CUP, Lebrancón (Guadalajara). Proyecto Fin de Carrera. ETSI Montes. Universidad Politécnica de Madrid.
- NABUURS, G.J., SCHELHASS, M.J., MOHREN, G. and FIELD, C. 2003. Temporal evolution of the European forest sector carbon sink from 1950 to 1999. *Global Change Biology*, 9: 152-16
- NABUURS, G.J., SCHELHASS, M.J. 2003. Spatial distribution of whole-tree carbon stocks and fluxes across the forests of Europe: where are the options for bio-energy?. *Biomass and Bioenergy*, 24: 311-320.
- NAUTIYAL, J.C; BELLI, K.L 1989. Study of production functions for modelling forest biomass: an area for research. *Forest Science*, 35(3): 843-849.
- PARDÉ, J. 1980. Forest biomass, Forestry abstract (Review article), 41(8): 343-362.
- PARRESOL, B. 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. *Forest Science*, 45 (4): 573-593.
- RANA, B.S; SINGH, S.P; SINGH, R.P. 1988. Biomass and productivity of Chir Pine (Pinus roxburghil Sarg) forests in Central Himalaya Proc. Indian Natn. Sci,. Acad No. 1: 71-74
- ROBLES CRUZ, A. B. 2001. Determinación de fitomasa forrajera en pastos semiáridos del sudeste ibérico. En: *Nuevas fuentes de alimentos para la producción animal IV Jornadas y Congresos*, nº 30, 19-27. Gómez Cabrera, A. y De Pedro, E. J. (Eds.) Consejería de Agricultura y Pesca de la Junta de Andalucía. Sevilla.
- ROBLES CRUZ, A.B., GONZÁLEZ REBOLLAR, J.L., PASSERA, C.B.; BOZA LÓPEZ, J. 2001. Pastos de zonas áridas y semiáridas del sureste ibérico. *Archivos de Zootecnia*, vol. 50, núm. 192: 501-515.
- SAAVEDRA, M.C. 2002. Comparación entre métodos de estimación de disponibilidad de materia seca en praderas naturales de la VI Región. Proyecto Fin de Carrera.
 Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal. Departamento de Zootecnia.
- SCHELEGEL, B., GAYOSO, J., GUERRA, J. 2001 Manual de procedimientos de muestreo de biomasa forestal. Medición de la capacidad de captura de carbono en los bosques de Chile y promoción en el mercado mundial. Proyecto FONDEF. Universidad Austral de Chile.
- SCHROEDER, P. 1994. Carbon storage benefits of agroforestry systems. *Agroforestry Systems*, 27: 87-97.
- SNOWDON, P. 1985) Alternative sampling strategies and regression models for estimating forest biomass. *Australian Forest Research*, 15 (3): 353-366.
- SOCIEDAD PARA EL DESARROLLO ENERGÉTICO DE ANDALUCÍA (SODEAN),
 1994. Potencial de aprovechamiento energético de la biomasa del olivar en Andalucía,
 2003. Junta de Andalucía.

- VALENTINE, H; TRITTON, L; FURNIVAL, G. 1984. Subsampling trees for biomass, volume, or mineral content. *Forest Science*, 30 (3): 673-681.
- VANN, D.R; PALMIOTTO, P.A; STRIMBECK, G.R. 1998. Allometric equations for two South American conifers: Test for a non-destructive method. *Forest Ecology and Management*, 106: 55-71
- WEST, T.O. and POST, W.M., 2002. Soil Organic Carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci. Soc. Am. J., vol 66: 1930-1946.
- YOUNG, H.E. 1978 Forest biomass inventory: the basis for complete-tree utilization. *Forest Products Journal*, 28 (5).
- YOUNG, H. 1979. "A biomass inventory: a personal Odyssey." Forest Resource Inventories, I y II: 725-729.
- WIRJODARMODJO, H.; WIRJOADMODJO, L. 1983. A method to construct volume, biomass and energy tree table. Mesures des biomasses des accroissements forestiers, Orleans, 3-7 october 1983, Les coloques de l'INRA. IUFRO \$4.01.00.
- http://iufro.boku.ac.at/iufro/taskforce/tfcs/nltfcs.htm
- http://www.cma.junta-andalucia.es/medioambiente/
- http://www.cma.junta-andalucia.es/medioambiente/pama04/plan_presentacion.html
- http://www.iea.junta-andalucia.es
- http://www.ine.es/
- http://www.ingenierosdemontes.org/
- http://www.ipcc.ch/
- http://www.mapya.es/
- http://www.mfom.es/
- http://www.mma.es/oecc/index.htm
- http://www.nbu.ac.uk/ukcarbon/
- http://www.uach.cl/simposiocarbono/

BIBLIOGRAFÍA 157

Índice de Tablas

Tabla 2.1.2.i.	Superficie que ocupa cada uso del suelo en 1991, 1995 y 1999, en hectáreas	18
Tabla 2.1.2.ii.	Superficies con y sin cambio de uso entre 1991 y 1995, y entre 1995 y 1999 respectivamente, según categorías, en hectáreas.	21
Tabla 2.1.3.i.	Valores necesarios para determinar el cambio de carbono en terrenos que cambian de categoría	24
Tabla 2.1.3.ii.	Biomasa media y carbono en las áreas forestales, Cbefore en 1990, en toneladas·ha-1	24
Tabla 2.1.3.iii.	Determinación del carbono en el primer año de establecimiento de un terreno forestal ΔC growth (tC·ha-1)	25
Tabla 2.1.4.i.	Clasificación de los usos en subcategorías forestales	29
Tabla 2.1.4.ii.	Datos y sus fuentes empleados para la aplicación de las fórmulas	31
Tabla 2.1.4.iii.	Superficie forestal que permanece como forestal en 1995, en ha.	32
Tabla 2.1.4.iv.	Incremento anual medio por provincia (m3·ha-1·año-1)	33
Tabla 2.1.4.v.	Volumen de corta anual de madera en terrenos forestales, en m3-año-1	37
Tabla 2.1.4.vi.	Extracciones anuales medias de leñas en Andalucía, en m3·año-1	38
Tabla 2.1.4.vii.	Cálculo de la biomasa y carbono medio en los terrenos forestales de Andalucía en 1990	40
Tabla 2.1.4.viii.	Niveles metodológicos empleados para determinar el incremento anual de carbono en terrenos forestales que permanecen como forestales	42
Tabla 2.1.4.ix.	Porcentaje de incertidumbre de los datos empleados en la estimación del cambio anual de carbono en terrenos forestales (GPGLULUCF)	42
Tabla 2.1.4.x.	Determinación del cambio de carbono anual en los terrenos que pasan a ser forestales en el periodo 1991-1995.	44
Tabla 2.1.4.xi.	Determinación del cambio de carbono anual en los terrenos que pasan a ser forestales en el periodo 1996-1999.	44
Tabla 2.1.4.xii.	Cambio anual total en la biomasa de Terrenos forestales en 1995, en tC	45
Tabla 2.1.4.xiii.	Cambio anual total en la biomasa de los Terrenos forestales en 1999, en tC	46
Tabla 2.1.4.xiv.	Resultados preliminares de balance de carbono en los suelos de terrenos forestales en Andalucía.	48
Tabla 2.1.5.i.	Clasificación de los usos en subcategorías Agrícolas.	51
Tabla 2.1.5.ii.	Obtención de las pérdidas anuales de carbono por poda de olivar en Andalucía	54
Tabla 2.1.5.iii.	Determinación del cambio anual de carbono en terrenos de cultivos agrícolas no anuales	55
Tabla 2.1.5.iv.	Cambio anual de carbono en terrenos convertidos a Agrícolas en el periodo 1991-1995, en tC·ha-1·año-1	58
Tabla 2.1.5.v.	Cambio anual de carbono en terrenos convertidos a Agrícolas en el periodo 1996-1999, en tC·ha-1·año-1	58
Tabla 2.1.5.vi.	Cambio anual total en la biomasa de los Terrenos agrícolas que no han cambiado de uso, en 1991-1995, en tC	59
Tabla 2 1 5 vii	Cambio anual total en la biomasa de los Terrenos agrícolas, en 1995, en tC.	50

Tabla 2.1.5.viii.	Cambio anual total en la biomasa de los Terrenos agrícolas que no han cambiado de uso, en 1999, en tC.	59
Tabla 2.1.5.ix.	Cambio anual total en la biomasa de los Terrenos agrícolas, en 1999, en tC	59
Tabla 2.1.5.x.	Balance anual de carbono en los suelos de los terrenos agrícolas en Andalucía, tC·año-1	62
Tabla 2.1.6.i.	Usos considerados como Pastizales	64
Tabla 2.1.6.ii.	Cambio anual de carbono en terrenos convertidos a pastos en el periodo 1991-1995, en tC·ha-1·año-1.	67
Tabla 2.1.6.iii.	Cambio anual de carbono en terrenos convertidos a pastos en el periodo 1996-1999, en tC·ha-1·año-1.	67
Tabla 2.1.6.iv.	Cambio anual total en la biomasa de los Pastizales en el año en que se produce el cambio de uso, en 1995, en tC.	68
Tabla 2.1.6.v.	Cambio anual total en la biomasa de los Pastizales en el año en que se produce el cambio de uso, en 1999, en tC.	68
Tabla 2.1.6.vi.	Balance anual de carbono en los suelos de los pastizales en Andalucía, en tC·año-1	71
Tabla 2.1.7.i.	Usos considerados como Humedales.	73
Tabla 2.1.7.ii.	Cambio anual de carbono en terrenos convertidos a Humedales en el periodo 1991-1995, tC·año-1	75
Tabla 2.1.7.iii.	Cambio anual de carbono en terrenos convertidos a Humedales en el periodo 1996-1999, tC·año-1	75
Tabla 2.1.7.iv.	Cambio anual total de carbono en Humedales en 1995, tC·año-1	75
Tabla 2.1.7.v.	Cambio anual total de carbono en Humedales en 1999, tC·año-1	76
Tabla 2.1.8.i.	Usos considerados como Urbanos	76
Tabla 2.1.8.ii.	Estimación de la superficie cubierta por arbolado en zonas urbanas, en ha	78
Tabla 2.1.8.iii	Cambio anual de carbono en terrenos convertidos en urbanos, en el periodo 1991-1995, en tC·año-1	79
Tabla 2.1.8.iv	Cambio anual de carbono en terrenos convertidos en urbanos, en el periodo 1996-1999, en tC·año-1	79
Tabla 2.1.8.v.	Cambio anual total de carbono en terrenos Urbanos en el año en el que se producen los cambios de uso, 1995, tC·año-1	79
Tabla 2.1.8.vi.	Cambio anual total de carbono en terrenos Urbanos en el año en el que se producen los cambios de uso, 1999, tC·año-1	80
Tabla 2.1.9.i.	Usos considerados como "Otros terrenos", en ha	80
Tabla 2.1.9.ii.	Cambio anual de carbono en la biomasa de terrenos convertidos en "otras tierras", durante el periodo 1991-1995, en tC-año-1	81
Tabla 2.1.9.iii.	Cambio anual de carbono en la biomasa de terrenos convertidos en "otras tierras", durante el periodo 1996-1999, en tC-año-1.	81
Tabla 2.1.9.iv.	Cambio anual total en la biomasa de la categoría Otros Terrenos en el año en que se producen los cambios de uso, en 1995, en tC.	82

Tabla 2.1.9.v.	Cambio anual total en la biomasa de la categoría Otros Terrenos en el año en que se producen los cambios de uso, en 1999, en tC.	82
Tabla 2.1.9.vi.	Cambio anual de carbono en los suelos de terrenos convertidos en "otras tierras", en tC-año-1.	83
Tabla 2.2.i.	Cambios de carbono totales ocurridos en los dos periodos según los usos y según los cambios de usos en Andalucía, en toneladas de carbono	84
Tabla 2.2.ii.	Cambios de carbono anuales por hectárea según los usos y según los cambios de usos en Andalucía, en toneladas de carbono	85
Tabla 2.2.iii.	Superficies de cambio durante el periodo 1991-1995, en hectáreas	87
Tabla 2.2.iv.	Cambio anual de carbono en la biomasa viva durante 1991-1995, en tC·ha-1·año-1	87
Tabla 2.2.v.	Cambio total de carbono ocurrido durante los años 1991 y 1995, en toneladas de carbono	87
Tabla 2.2.vi.	Superficies de cambio durante el periodo 1996-1999, en hectáreas	87
Tabla 2.2.vii.	Cambio anual de carbono en la biomasa viva durante 1996-1999, en tC·ha-1·año-1	88
Tabla 2.2.viii.	Cambio total de carbono ocurrido durante los años 1996 y 1999, en toneladas de carbono	88
Tabla 2.2.ix.	Cambio total de carbono ocurrido entre 1991-1995 y 1996-1999, en cada categoría de uso, en toneladas de carbono	88
Tabla 2.2.x.	Captaciones y emisiones de carbono totales y por unidad de superficie ocurridas durante los periodos de estudio.	89
Tabla 2.2.xi.	Stock de carbono en cada categoría de uso en los distintos años considerados, en tC·ha-1.	89
Tabla 2.2.xii.	Cambio de carbono producido en cada año en las categorías LULUCF, en t·ha-1·año-1	90
Tabla 2.2.xiii.	Carbono total fijado/emitido en la biomasa en cada año para cada categoría LULUCF, en toneladas.	91
Tabla I.1.	Densidad de masa. Existencias por hectárea de cada estrato y categoría	108
Tabla I.2.	Cálculo del Volumen con corteza medio y del incremento de volumen anual medio para las distintas categorías de las provincias de Andalucía	111
Tabla II.1.	Contenido en carbono orgánico del suelo en los primeros 30 cm de suelo (mendoza-Vega et al., 2003)	
Tabla II.2.	Factores de ajuste según los tratamientos selvícolas	112
Tabla II.3.	Factor de ajuste según el modelo de combustible	113
Tabla II.4.	Recopilación de los factores de ajuste para cada uso forestal.	113
Tabla II.5.	Factores de ajuste aplicados para cada código de uso forestal	115
Tabla II.6.	Factores de ajuste para cada código de uso agrícola	116
Tabla II.7.	Descripción de cada factor elegido para Terrenos Agrícolas.	116
Tabla II.8.	Factores de ajuste para cada código de uso de pastizal	117
Tabla II.9.	Descripción de cada factor elegido para Pastizales (datos tomados de la tabla 3.4.5. "Relative stock change factors for grasslands management" de la GPG LULUCF)	117
Tabla II.10.	Factores de ajuste para cada código de uso "otros terrenos"	117

Table III 4	Volence madulence de CO mana Diama autoratuia, en las	110
Tabla III.1.	Valores modulares de CO ₂ para Pinus sylvestris, en kg	
Tabla III.2.	Valores modulares de CO ₂ para Pinus pinaster, en kg	
Tabla III.3.	Valores modulares de CO ₂ para Pinus nigra, en kg	
Tabla III.4.	Valores modulares de CO ₂ para Pinus pinea, en kg.	
Tabla III.5.	Valores modulares de CO ₂ para Pinus halepensis, en kg	
Tabla III.6.	Valores modulares de CO ₂ para Quercus ilex, en kg	
Tabla III.7.	Valores modulares de CO ₂ para Quercus suber, en kg	
Tabla III.8.	Valores modulares de CO ₂ para Eucalyptus, en kg	123
Tabla III.9.	Valores modulares de CO ₂ para Quercus faginea, en kg	123
Tabla III.10.	Valores modulares de ${\rm CO_2}$ para Quercus pyrenaica, en kg	124
Tabla III.11.	Valores modulares de CO ₂ para Quercus canariensis, en kg	124
Tabla III.12.	Valores modulares de CO ₂ para Olea europaea, en kg	125
Tabla III.13.	Valores modulares de CO ₂ para Pinus radiata, en kg	125
Tabla III.14.	Valores modulares de CO ₂ para Juniperus thurifera, en kg	126
Tabla III.15.	Valores modulares de CO ₂ para Populus spp. , en kg	126
Tabla III.16.	Valores modulares de CO ₂ para Fraxinus, en kg	127
Tabla III.17.	Valores modulares de CO ₂ para Alnus glutinosa, en kg	127
Tabla III.18.	Valores modulares de CO ₂ para Abies pinsapo, en kg	128
Tabla III.19.	Valores modulares de CO ₂ para Castanea sativa, en kg	128
Tabla III.20.	Valores modulares de CO ₂ para Ceratonia siliqua, en kg	129
Tabla III.21.	Valores modulares de CO ₂ para Juniperus oxycedrus, en kg	129
Tabla III.22.	Valores modulares de CO ₂ para Juniperus phoenicea, en kg	129
Tabla III.23.	Valores modulares de CO ₂ para Otras frondosas, en kg	130
Tabla III.3.3.1.	Valores modulares de incremento de CO ₂ para Pinus sylvestris, en kg	131
Tabla III.3.3.2.	Valores modulares de incremento de CO ₂ para Pinus pinaster, en kg	131
Tabla III.3.3.3.	Valores modulares de incremento de CO ₂ para Pinus nigra, en kg	132
Tabla III.3.3.4.	Valores modulares de incremento de CO ₂ para Pinus pinea, en kg	132
Tabla III.3.3.5.	Valores modulares de incremento de CO ₂ para Pinus halepensis, en kg	133
Tabla III.3.3.6.	Valores modulares de incremento de CO ₂ para Quercus ilex, en kg	133
Tabla III.3.3.7.	Valores modulares de incremento de CO ₂ para Quercus suber, en kg	
Tabla III.3.3.8.	Valores modulares de incremento de CO ₂ para Eucalyptus, en kg	
Tabla III.3.3.9.	Valores modulares de incremento de CO ₂ para Quercus faginea, en kg	
Tabla III.3.3.10.	Valores modulares de incremento de CO ₂ para Quercus pyrenaica, en kg	
Tabla III.3.3.11.	Valores modulares de incremento de CO ₂ para Quercus canariensis, en kg	
Tabla III.3.3.12.	Valores modulares de incremento de CO ₂ para Olea europaea, en kg	
	Valores modulares de incremento de CO ₂ para Pinus radiata, en kg	

Tabla III.3.3.14.	Valores modulares de incremento de CO ₂ para Juniperus thurifera, en kg	137
Tabla III.3.3.15.	Valores modulares de incremento de CO ₂ para Populus, en kg	138
Tabla III.3.3.16.	Valores modulares de incremento de CO ₂ para Fraxinus, en kg	138
Tabla III.3.3.17.	Valores modulares de incremento de CO ₂ para Alnus glutinosa, en kg	139
Tabla III.3.3.18.	Valores modulares de incremento de CO ₂ para Abies pinsapo, en kg	139
Tabla III.3.3.19.	Valores modulares de incremento de CO ₂ para Castanea sativa, en kg	140
Tabla III.3.3.20.	Valores modulares de incremento de CO ₂ para Ceratonia siliqua, en kg	140
Tabla III.3.3.21.	Valores modulares de incremento de CO ₂ para Juniperus oxycedrus, en kg	140
Tabla III.3.3.22.	Valores modulares de incremento CO ₂ para Juniperus phoenicea, en kg	141
Tabla III.3.4.1.	CO ₂ total fijado en 1990 por Pinus sylvestris en Andalucía, en toneladas (t)	141
Tabla III.3.4.2.	CO ₂ total fijado en 1990 por Pinus pinaster en Andalucía, en toneladas (t)	141
Tabla III.3.4.3.	CO ₂ total fijado en 1990 por Pinus nigra en Andalucía, en toneladas (t)	141
Tabla III.3.4.4.	CO ₂ total fijado en 1990 por Pinus pinea en Andalucía, en toneladas (t)	141
Tabla III.3.4.5.	CO ₂ total fijado en 1990 por Pinus halepensis en Andalucía, en toneladas (t)	142
Tabla III.3.4.6.	CO ₂ total fijado en 1990 por Quercus ilex en Andalucía, en toneladas (t)	142
Tabla III.3.4.7.	CO ₂ total fijado en 1990 por Quercus suber en Andalucía, en toneladas (t)	142
Tabla III.3.4.8.	CO ₂ total fijado en 1990 por Eucalyptus en Andalucía, en toneladas (t)	142
Tabla III.3.4.9.	CO ₂ total fijado en 1990 por Quercus faginea en Andalucía, en toneladas (t)	142
Tabla III.3.4.10.	CO ₂ total fijado en 1990 por Quercus pyrenaica en Andalucía, toneladas (t)	142
Tabla III.3.4.11.	CO ₂ total fijado en 1990 por Quercus canariensis en Andalucía, toneladas (t)	142
Tabla III.3.4.12.	CO ₂ total fijado en 1990 por Olea europaea en Andalucía, en toneladas (t)	142
Tabla III.3.4.13.	CO ₂ total fijado en 1990 por Pinus radiata en Andalucía, en toneladas (t)	143
Tabla III.3.4.14.	CO ₂ total fijado en 1990 por Populus spp en Andalucía, en toneladas (t)	143
Tabla III.3.4.15.	CO ₂ total fijado en 1990 por Fraxinus spp en Andalucía, en toneladas (t)	143
Tabla III.3.4.16.	CO ₂ total fijado en 1990 por Alnus glutinosa en Andalucía, en toneladas (t)	143
Tabla III.3.4.17.	CO ₂ total fijado en 1990 por Abies pinsapo en Andalucía, en toneladas (t)	143
Tabla III.3.4.18.	CO ₂ total fijado en 1990 por Castanea sativa en Andalucía, en toneladas (t)	143
Tabla III.3.4.19.	CO ₂ total fijado en 1990 por Ceratonia siliqua en Andalucía, toneladas (t)	143
Tabla III.3.4.20.	CO ₂ total fijado en 1990 por Juniperus oxycedrus en Andalucía, toneladas (t)	143
Tabla III.3.4.21.	CO ₂ total fijado en 1990 por Juniperus phoenicea en Andalucía, toneladas (t)	144
Tabla III.3.4.22.	CO ₂ total fijado en 1990 por "otras frondosas" en Andalucía, toneladas (t)	144
Tabla III.3.4.23.	Leyenda de las tablas	144
Tabla III.3.4.24.	CO ₂ total fijado en 1990 por las principales especies forestales arbóreas de Andalucía, en toneladas (t) diferenciando biomasa aérea, radical y total.	144
Tabla III.3.4.25.	CO ₂ total fijado en 1999 por las principales especies forestales arbóreas de Andalucía, en toneladas (t) diferenciando biomasa aérea, radical y total.	145

Tabla III.3.4.26.	Cálculo del incremento neto anual de carbono durante el periodo 1990-1999, en toneladas
Tabla III.3.4.27.	Incremento de ${\rm CO_2}$ total fijado por las principales especies forestales arbóreas de Andalucía, en toneladas (t) diferenciando biomasa aérea, radical y total146
Tabla III.3.5.1.	Balance de fijación neta de CO ₂ por Pinus sylvestris en Andalucía, en toneladas (t)147
Tabla III.3.5.2.	Balance de fijación neta de CO ₂ por Pinus pinaster en Andalucía, en toneladas (t)147
Tabla III.3.5.3.	Balance de fijación neta de CO ₂ por Pinus nigra en Andalucía, en toneladas (t)147
Tabla III.3.5.4.	Balance de fijación neta de CO ₂ por Pinus pinea en Andalucía, en toneladas (t)148
Tabla III.3.5.5.	Balance de fijación neta de CO ₂ por Pinus halepensis en Andalucía, en toneladas (t)148
Tabla III.3.5.6.	Balance de fijación neta de CO ₂ por Quercus ilex en Andalucía, en toneladas (t)148
Tabla III.3.5.7.	Balance de fijación neta de CO ₂ por Quercus suber en Andalucía, en toneladas (t)148
Tabla III.3.5.8.	Balance de fijación neta de CO ₂ por Eucalyptus en Andalucía, en toneladas (t)149
Tabla III.3.5.9.	Balance de fijación neta de CO ₂ por Quercus faginea en Andalucía, en toneladas (t)149
Tabla III.3.5.10.	Balance de fijación neta de CO ₂ por Quercus pyrenaica en Andalucía, toneladas (t)149
Tabla III.3.5.11.	Balance de fijación neta de CO ₂ por Quercus canariensis en Andalucía, toneladas (t)149
Tabla III.3.5.12.	Balance de fijación neta de CO ₂ por Olea europaea en Andalucía, en toneladas (t)150
Tabla III.3.5.13.	Balance de fijación neta de CO ₂ por Pinus radiata en Andalucía, en toneladas (t)150
Tabla III.3.5.14.	Balance de fijación neta de CO ₂ por Juniperus thurifera en Andalucía, en toneladas (t)150
Tabla III.3.5.15.	Balance de fijación neta de CO ₂ por Populus en Andalucía, en toneladas (t)150
Tabla III.3.5.16.	Balance de fijación neta de CO ₂ por Fraxinus en Andalucía, en toneladas (t)151
Tabla III.3.5.17.	Balance de fijación neta de CO ₂ por Alnus glutinosa en Andalucía, en toneladas (t)151
Tabla III.3.5.18.	Balance de fijación neta de CO ₂ por Abies pinsapo en Andalucía, en toneladas (t)151
Tabla III.3.5.19.	Balance de fijación neta de CO ₂ por Castanea sativa en Andalucía, en toneladas (t)151
Tabla III.3.5.20.	Balance de fijación neta de CO ₂ por Ceratonia siliqua en Andalucía, toneladas (t)152
Tabla III.3.5.21.	Balance de fijación neta de CO ₂ por Juniperus oxycedrus en Andalucía, toneladas (t)152
Tabla III.3.5.22.	Balance de fijación neta de CO ₂ por Juniperus phoenicea en Andalucía, toneladas (t)152
Tabla III.3.5.23.	Balance de fijación neta de CO ₂ por "otras frondosas" en Andalucía, toneladas (t)152
Tabla III.3.5.24.	Leyenda de las tabla

Índice de Figuras y Gráficos

Figura 2.1.3.i.	Sumideros de carbono en los ecosistemas terrestres.	22
Figura 2.1.4.i.	Cálculo del incremento anual de carbono en terrenos forestales que permanecen como forestales debido al crecimiento, en tC·año-1.	36
Figura 2.1.4.ii.	Cálculo de las pérdidas anuales de carbono por cortas de madera y de leñas, en terrenos forestales que permanecen como forestales, en tC·año-1.	38
Figura 2.1.4.iii.	Cálculo de las pérdidas anuales de carbono por incendios, en terrenos forestales que permanecen como forestales, en tC∙año-1	40
Figura 2.1.4.iv.	Cálculo del cambio anual de carbono en la biomasa por diferencia entre incremento y pérdidas, en terrenos forestales que permanecen como forestales, en tC·año-1	41
Gráfico 2.2.i.	Captaciones de carbono en Andalucía en el periodo 1991-1995 y en 1996-1999, en toneladas.	85
Gráfico 2.2.ii.	Emisiones de carbono en Andalucía en el periodo 1991-1995 y en 1996-1999, en toneladas.	86
Gráfico III.1.	Valores modulares de biomasa aérea total por clases diamétricas, en kg de materia seca	130

Índice de ecuaciones

Ecuación 2.1.4.	Captaciones o emisiones anuales en terrenos forestales que permanecen como forestales
Ecuación 2.1.5.	Cambio anual en el stock de carbono en la biomasa viva en terrenos forestales que permanecen como forestales
Ecuación 2.1.6.	Incremento anual medio de biomasa
Ecuación 2.1.7.	Incremento anual en el stock de carbono debido al incremento de biomasa en terrenos forestales que permanecen como forestales
Ecuación 2.1.8.	Pérdidas anuales de carbono debido a cortas comerciales
Ecuación 2.1.9.	Pérdidas anuales de carbono debido a recolección de leñas
Ecuación 2.1.10.	Otras pérdidas anuales de carbono
Ecuación 2.1.11.	Reducción anual en el stock de carbono debido a pérdidas de biomasa en terrenos forestales que permanecen como terrenos forestales
Ecuación 2.1.12.	Captaciones o emisiones anuales en terrenos que pasan a ser forestales42
Ecuación 2.1.1.3	.Cambio del carbono anual medio por área44
Ecuación 2.1.14.	Cambio anual en el stock de carbono en los suelos minerales en terrenos forestales que permanecen como terrenos forestales
Ecuación 2.1.15.	Cambio anual en el carbono en terrenos agrícolas que permanecen como agrícolas52
Ecuación 2.1.16.	Cambio anual en el carbono en terrenos que pasan a ser agrícolas56
Ecuación 2.1.17.	Cambio anual en el carbono en la biomasa en terrenos que pasan a ser agrícolas57
Ecuación 2.1.18.	Cambio anual en el stock de carbono en suelos agrícolas que permanecen como agrícolas
Ecuación 2.1.19.	Cambio anual en el stock de carbono en suelos minerales en cada sistema de cultivo61
Ecuación 2.1.20.	Cambio anual en el carbono en pastizales que permanecen como pastizales64
Ecuación 2.1.21.	Cambio anual en el carbono en terrenos que pasan a ser pastizales65
Ecuación 2.1.22.	Cambio anual en el carbono en la biomasa en terrenos que pasan a ser pastizales67
Ecuación 2.1.23.	Cambio anual en el stock de carbono en suelos de pastizales que permanecen como pastizales
Ecuación 2.1.24.	Cambio anual en el stock de carbono en suelos minerales en cada sistema de pastizal70
Ecuación 2.1.25.	Emisiones de ${\rm CO_2}$ en humedales que permanecen como humedales73
Ecuación 2.1.26.	Incremento anual de biomasa basado en el área cubierta por la copa77
Ecuación 2.1.27.	Cambio anual en el stock de carbono en suelos minerales de "otros terrenos"82

