Ciclo de Planificación Hidrológica 2015/2021

PLAN HIDROLOGICO

Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas

ANEJO V
CAUDALES ECOLÓGICOS

Unión Europea

Fondo Europeo de Desarrollo Regional

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

ÍNDICE

1		INTF	RODUCCIÓN	1
2		BAS	E NORMATIVA	3
	2.1	Te	xto Refundido de la Ley de Aguas	3
	2.2	Re	glamento de Planificación Hidrológica	4
	2.3	Le	y de Aguas de Andalucía	5
	2.4	Ins	strucción de Planificación Hidrológica para las Demarcaciones Hidrográficas Intracomunitarias de	
			Andalucía	
3		ORI	ETIVOS	8
_	3.1		gímenes de caudales ecológicos en ríos	
	3.2		gimen de caudales durante sequías prolongadas	
	3.3		querimientos hídricos de lagos y zonas húmedas	
4		FASI	ES EN EL ESTABLECIMIENTO DEL RÉGIMEN DE CAUDALES ECOLÓGICOS	10
5		MET	ODOLOGÍA	11
	5.1	Re	gímenes de caudales ecológicos	11
	5.	1.1	Ámbito espacial	11
	5.	1.2	Componentes del régimen de caudales ecológicos	11
	5.	1.3	Distribución temporal de caudales mínimos	12
		1.4	Distribución temporal de caudales máximos	19
		1.5	Tasa de cambio	
		1.6	Caracterización del régimen de crecidas	
		1.7	Masas de agua muy alteradas hidrológicamente	
		1.8	Régimen de caudales durante sequías prolongadas	
	5.2		querimientos hídricos de lagos y zonas húmedas	
		2.1 2.2	Selección de lagos y zonas húmedas	
		2.2 2.3	Caracterización de los factores que influyen en el régimen hídrico	
_	J.,			
o	<i>c</i> 1		ULTADOS	
	6.1		gímenes de caudales ecológicos	
		1.1	Distribución temporal de caudales mínimos	
		1.2	Distribución temporal de caudales máximos	
		1.3 1.4	Régimen de crecidas	
		1. 4 1.5	Presentación de los resultados	
	6.2		querimientos hídricos de lagos y zonas húmedas	
				48

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

	6.2.2	Requerimientos hídricos de lagos y humedales	. 50
7	PRO	CESO DE CONCERTACIÓN DEL RÉGIMEN DE CAUDALES ECOLÓGICOS	. 52
8		IONALIZACIÓN DE LOS RESULTADOS A LA TOTALIDAD DE LAS MASAS DE AGUA DE LA EGORÍA RÍO	. 54
9	REP	ERCUSIÓN DEL RÉGIMEN DE CAUDALES ECOLÓGICOS SOBRE LOS USOS DEL AGUA	. 64
10	RÉG	IMEN DE CAUDALES EN LAS AGUAS DE TRANSICIÓN	. 64

APÉNDICES

APÉNDICE V.1. FICHAS DEL RÉGIMEN DE CAUDALES ECOLÓGICOS EN LAS MASAS DE AGUA ESTRATÉGICAS APÉNDICE V.2. FICHAS DEL RÉGIMEN DE CAUDALES ECOLÓGICOS EN OTRAS MASAS DE AGUA CON MODELIZACIÓN DEL HÁBITAT

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

TABLAS

Tabla 1.	Propuesta de régimen de caudales mínimos	34
Tabla 2.	Propuesta de régimen de caudales máximos	42
Tabla 3.	Propuesta de régimen de crecidas	43
Tabla 4.	Propuesta de régimen de caudales durante sequías prolongadas	46
Tabla 5.	Resultados generales del proceso de selección de humedales	48
Tabla 6.	Humedales seleccionados clasificados según el momento de estudio y nivel de detalle	48
Tabla 7.	Nivel de estudios para los humedales de la clase M1-T1	49
Tabla 8.	Necesidades hídricas de la Laguna de Fuente de Piedra	50
Tabla 9.	Necesidades hídricas de las Lagunas de Campillos	
Tabla 10.	Necesidades hídricas de las Turberas de Padul	51
Tabla 11.	Necesidades hídricas de la Albufera Honda	51
Tabla 12.	Masas estratégicas para el proceso de concertación del régimen de caudales ecológicos	52
Tabla 13.	Propuesta de régimen de caudales ecológicos en todas las masas de agua de la categoría rí	o 57
Tabla 14.	Resumen del análisis de ámbitos estuarinos definidos en la DHCMA	66
Tabla 15.	Resumen del análisis de zonas de marismas definidos en la DHCMA	66
Tabla 16.	Ámbitos de transición que requieren un análisis del régimen de caudales ecológicos	67

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

FIGURAS

Figura 1.	Representación esquemática de la metodología IFIM	15
Figura 2.	Representación espacial de las simulaciones en una y dos dimensiones	18
Figura 3.	Proceso de priorización en el estudio de humedales	25
Figura 4.	Puntos de estimación de caudales mínimos por métodos hidrológicos en la DHCMA	30
Figura 5.	Puntos de estimación de caudales mínimos por métodos de modelización hábitat en la	
	DHCMA	31
Figura 6.	Tramos con propuesta de régimen de caudales ecológicos mínimos	32
Figura 7.	Tramos con propuesta de régimen de caudales durante sequías prolongadas	45
Figura 8.	Humedales con estudio de detalle de sus necesidades hídricas	50
Figura 9.	Masas de agua estratégicas para la implantación del régimen de caudales ecológicos	54
Figura 10.	Clasificación por tipos hidrológicos	55
Figura 11.	Clasificación de los ríos según su carácter permanente o temporal	56
Figura 12.	Ámbitos estuarinos y zonas de marismas definidos en la DHCMA	65

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

1 INTRODUCCIÓN

El agua es un bien escaso en muchas zonas de la Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas (DHCMA), donde existe una importante presión antrópica sobre el medio hídrico debido a la utilización del recurso. El gran objetivo de la planificación hidrológica es lograr la compatibilidad de los usos del agua con la preservación y mejora del medio ambiente. Ello requiere de una planificación y gestión eficaces para asegurar el suministro a todos los usuarios y evitar la degradación de los ecosistemas fluviales.

Con objeto de asegurar esta compatibilidad, se han establecido una serie de objetivos medioambientales cuyo cumplimiento debe asegurar la disponibilidad de recursos en cantidad y calidad suficientes. Pero además de estos objetivos, debido a la problemática derivada de la escasez de agua, se hace imprescindible establecer una restricción al uso del recurso, con el objetivo de mantener la funcionalidad de los ecosistemas, evitando su deterioro. Así queda plasmado en la legislación española, que establece la necesidad de determinar los caudales ecológicos en los planes de cuenca, entendiendo los mismos como una restricción impuesta con carácter general a los sistemas de explotación. Esta normativa incluye además las disposiciones que definen el concepto de caudal ecológico, su consideración como una restricción previa al uso en los sistemas de explotación y el proceso para su implantación.

Es importante destacar que, si bien en la Directiva Marco del Agua (DMA) no se establece el requerimiento de establecer regímenes de caudales ecológicos, la determinación de los mismos y su mantenimiento supone un paso adelante en el camino hacia el logro del buen estado de las masas de agua, objetivo concreto y principio que inspira esta directiva. Por lo tanto, los caudales ecológicos no se conciben como un fin en sí mismo sino como un medio para alcanzar el objetivo citado.

Por todo ello, en apoyo al proceso de planificación, la Administración del Agua realizó un estudio en la DHCMA que profundizaba en la determinación del régimen de caudales ecológicos en los ríos y de las necesidades hídricas en los lagos y humedales.

En este anejo relativo a los caudales ecológicos se presenta la base normativa de aplicación, los objetivos y fases para su implantación, así como los trabajos llevados a cabo en el ciclo de planificación hidrológica 2009-2015 para su implantación y los resultados obtenidos, y se estructura en los siguientes apartados:

- El apartado de normativa describe los artículos relacionados con el establecimiento de regímenes de caudales ecológicos recogidos en el Texto refundido de la Ley de Aguas (TRLA), la ley del Plan Hidrológico Nacional (PHN) y sus modificaciones, el Reglamento de Planificación Hidrológica (RPH) y la Instrucción de Planificación Hidrológica para las Demarcaciones Hidrográficas Intracomunitarias de Andalucía (IPHA).
- El apartado de los estudios técnicos describe esquemáticamente la metodología y fases de los mismos.
- El apartado de presentación de resultados incluye una síntesis de éstos para las masas de agua estudiadas.
- El apartado de proceso de concertación describe las fases posteriores a realizar para la determinación de los regímenes de caudales ecológicos, mediante la concertación con usuarios y agentes interesados y el proceso hasta su implantación final.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

 El apartado de repercusión del régimen de caudales sobre los usos del agua trata sobre las repercusiones económicas, sociales, en los usos del agua y en los niveles de garantía que el establecimiento del régimen de caudales ecológicos supone.

El detalle de los trabajos para la determinación del régimen de caudales ecológicos en los ríos y de las necesidades hídricas en los lagos y humedales de la DHCMA se puede consultar en la web de la Consejería de Medio Ambiente de la Junta de Andalucía: Estudios complementarios realizados en el marco de la planificación. Caudales ecológicos en la DH de las Cuencas Mediterráneas Andaluzas.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

2 BASE NORMATIVA

El marco normativo en el ordenamiento jurídico español para la determinación de regímenes de caudales ecológicos viene establecido por el Real Decreto 1/2001, de 20 de julio, por el que se aprueba el Texto Refundido de la Ley de Aguas; por la Ley 10/2001, de 5 de julio, del Plan Hidrológico Nacional; por la Ley 11/2005, de 22 de julio, por la que se modifica la Ley 10/2001, de 5 de julio, del Plan Hidrológico Nacional y por el Real Decreto 907/2007, de 6 de julio, por el que se aprueba el Reglamento de Planificación Hidrológica. Además, la Instrucción de Planificación Hidrológica, aprobada por la Orden ARM/2656/2008, de 10 de septiembre, desarrolla los contenidos de la normativa y define la metodología de aplicación.

Este apartado presenta un breve resumen de los contenidos relativos al establecimiento de regímenes de caudales ecológicos en estos documentos normativos.

2.1 TEXTO REFUNDIDO DE LA LEY DE AGUAS

La norma básica en materia de planificación y gestión de las aguas es el TRLA, compuesto por el Real Decreto Legislativo 1/2001, de 20 de julio, y sus sucesivas modificaciones, entre las cuales cabe destacar para este documento la introducida por la Ley 11/2005, de 22 de junio, por la que se modifica la ley 10/2001 del Plan Hidrológico Nacional, que incorpora las bases de los caudales ecológicos.

El TRLA señala en su artículo 40 los objetivos de la planificación hidrológica:

La planificación hidrológica tendrá por objetivos generales conseguir el buen estado y la adecuada protección del dominio público hidráulico y de las aguas objeto de esta Ley, la satisfacción de las demandas de agua, el equilibrio y armonización del desarrollo regional y sectorial, incrementando las disponibilidades del recurso, protegiendo su calidad, economizando su empleo y racionalizando sus usos en armonía con el medio ambiente y los demás recursos naturales.

En su artículo 42 b) c'), relativo al contenido de los planes hidrológicos de cuenca, hace referencia a la asignación y reserva de recursos y a los caudales ecológicos:

1. Los planes hidrológicos de cuenca comprenderán obligatoriamente:

(...)

b) La descripción general de los usos, presiones e incidencias antrópicas significativas sobre las aguas, incluyendo:

(...)

c') La asignación y reserva de recursos para usos y demandas actuales y futuros, así como para la conservación o recuperación del medio natural. A este efecto se determinarán:

Los caudales ecológicos, entendiendo como tales los que mantiene como mínimo la vida piscícola que de manera natural habitaría o pudiera habitar en el río, así como su vegetación de ribera.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

Por otro lado, en el artículo 59.7 se establecen los caudales ecológicos como restricciones a los sistemas de explotación:

Los caudales ecológicos o demandas ambientales no tendrán el carácter de uso a efectos de lo previsto en este artículo y siguientes, debiendo considerarse como una restricción que se impone con carácter general a los sistemas de explotación. En todo caso, se aplicará también a los caudales medioambientales la regla sobre supremacía del uso para abastecimiento de poblaciones recogida en el párrafo final del apartado 3 del artículo 60. Los caudales ecológicos se fijarán en los Planes Hidrológicos de cuenca. Para su establecimiento, los organismos de cuenca realizarán estudios específicos para cada tramo de río.

2.2 REGLAMENTO DE PLANIFICACIÓN HIDROLÓGICA

El Reglamento de Planificación Hidrológica, aprobado mediante el Real Decreto 907/2007, de 6 de julio, recoge el articulado y detalla las disposiciones del TRLA relevantes para la planificación hidrológica.

El artículo 3 j) recoge y amplía la definición contenida en el TRLA, ligándola a los conceptos de estado introducidos por la Directiva Marco:

Caudal ecológico: caudal que contribuye a alcanzar el buen estado o buen potencial ecológico en los ríos o en las aguas de transición y mantiene, como mínimo, la vida piscícola que de manera natural habitaría o pudiera habitar en el río, así como su vegetación de ribera.

En su artículo 4 transcribe el artículo 42 b) c') del TRLA referente a la asignación y reserva de recursos en el contenido obligatorio de los planes hidrológicos de la Demarcación:

Los planes hidrológicos de cuenca comprenderán obligatoriamente:

b) La descripción general de los usos, presiones e incidencias antrópicas significativas sobre las aguas, incluyendo:

c') La asignación y reserva de recursos para usos y demandas actuales y futuros, así como para la conservación o recuperación del medio natural. A este efecto determinarán los caudales ecológicos y las reservas naturales fluviales, con la finalidad de preservar, sin alteraciones, aquellos tramos de ríos con escasa o nula intervención humana. Estas reservas se circunscribirán estrictamente a los bienes de dominio público hidráulico.

Además, en su artículo 18 recoge de forma sintética los conceptos relacionados con el establecimiento e implantación de un régimen de caudales ecológicos:

- 1. El plan hidrológico determinará el régimen de caudales ecológicos en los ríos y aguas de transición definidos en la demarcación, incluyendo también las necesidades de agua de los lagos y de las zonas húmedas.
- 2. Este régimen de caudales ecológicos se establecerá de modo que permita mantener de forma sostenible la funcionalidad y estructura de los ecosistemas acuáticos y de los ecosistemas terrestres asociados,

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

contribuyendo a alcanzar el buen estado o potencial ecológico en ríos o aguas de transición. Para su establecimiento los organismos de cuenca realizarán estudios específicos en cada tramo de río.

- 3. El proceso de implantación del régimen de caudales ecológicos se desarrollará conforme a un proceso de concertación que tendrá en cuenta los usos y demandas actualmente existentes y su régimen concesional, así como las buenas prácticas.
- 4. En caso de sequías prolongadas podrá aplicarse un régimen de caudales menos exigente siempre que se cumplan las condiciones que establece el artículo 38 sobre deterioro temporal del estado de las masas de agua. Esta excepción no se aplicará en las zonas incluidas en la red Natura 2000 o en la Lista de humedales de importancia internacional de acuerdo con el Convenio de Ramsar, de 2 de febrero de 1971. En estas zonas se considerará prioritario el mantenimiento del régimen de caudales ecológicos, aunque se aplicará la regla sobre supremacía del uso para abastecimiento de poblaciones.
- 5. En la determinación del flujo interanual medio requerido para el cálculo de los recursos disponibles de agua subterránea se tomará como referencia el régimen de caudales ecológicos calculado según los criterios definidos en los apartados anteriores.

El artículo 4 del RPH tiene carácter básico, por lo que es de obligado cumplimiento para la DHCMA, mientras que el artículo 18 no tiene dicho carácter básico.

2.3 LEY DE AGUAS DE ANDALUCÍA

La Ley 9/2010, de 30 de julio, de Aguas para Andalucía, recoge en su artículo 4.8 la definición de caudal ecológico incluida en el RPH, y en su artículo 6 los objetivos medioambientales en materia de agua, entre los que figura la necesidad de definir, implementar y garantizar los caudales ecológicos para su cumplimiento:

- 1. Sin perjuicio de lo dispuesto en la Sección VI del Título I del Reglamento de la Planificación Hidrológica, aprobado por Real Decreto 907/2007, de 6 de julio, constituyen objetivos medioambientales en materia de agua los siguientes:
- a) Prevenir el deterioro del estado de todas las masas de agua, superficiales, subterráneas y de las zonas protegidas, y, en su caso, restaurarlas con objeto de alcanzar el buen estado ecológico de las mismas. Para ello se definirán, implementarán y garantizarán los caudales ambientales necesarios para la conservación o recuperación del buen estado ecológico de las masas de agua.

Además, en el artículo 22 se detallan los objetivos de la planificación hidrológica de acuerdo con lo establecido en el TRLA:

Sin perjuicio de lo establecido en el artículo 40.1 del Texto Refundido de la Ley de Aguas, y de las normas básicas contenidas en el Reglamento de la Planificación Hidrológica, la planificación en el ámbito de las aguas de competencia de la Comunidad Autónoma de Andalucía tiene como finalidad conseguir el buen estado ecológico del dominio público hidráulico y de las masas de agua, compatibilizado con la garantía sostenible de las demandas de agua. Para ello, la planificación tiene como objetivos:

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

(...)

b) Dar respuesta a la demanda de agua, con criterios de racionalidad y en función de las disponibilidades reales, una vez garantizados los caudales o demandas ambientales, en los términos establecidos por el artículo 59.7 del Texto Refundido de la Ley de Aguas.

(...)

g) Fijar el caudal ecológico de cada masa de agua, de acuerdo con los requerimientos necesarios para alcanzar el buen estado ecológico de las mismas.

Por otra parte, en su artículo 44, sobre la asignación de recursos, se establecen los caudales ecológicos como restricciones a los sistemas de explotación:

4. Los caudales ecológicos o demandas ambientales no tendrán el carácter de uso, por lo que no existirá el deber de indemnización de los costes que generen, debiendo considerarse como una restricción que se impone con carácter general a los sistemas de explotación.

2.4 INSTRUCCIÓN DE PLANIFICACIÓN HIDROLÓGICA PARA LAS DEMARCACIONES HIDROGRÁFICAS INTRACOMUNITARIAS DE ANDALUCÍA

La Orden de 11 de marzo de 2015, por la que se aprueba la Instrucción de Planificación Hidrológica para las Demarcaciones Hidrográficas Intracomunitarias de Andalucía (IPHA), recoge y desarrolla los contenidos del RPH y del TRLA.

En su apartado 3.4 detalla el proceso para el establecimiento del régimen de caudales ecológicos:

El establecimiento del régimen de caudales ecológicos se realizará mediante un proceso que se desarrollará en tres fases:

- a) Una primera fase de desarrollo de los estudios técnicos destinados a determinar los elementos del régimen de caudales ecológicos en todas las masas de agua. Los estudios a desarrollar deberán identificar y caracterizar aquellas masas muy alteradas hidrológicamente, sean masas de agua muy modificadas o no, donde puedan existir conflictos significativos con los usos del agua. Durante esta fase se definirá un régimen de caudales mínimos menos exigente para sequías prolongadas.
- b) Una segunda fase consistente en un proceso de concertación, definido por varios niveles de acción (información, consulta pública y participación activa), en aquellos casos que condicionen significativamente las asignaciones y reservas del plan hidrológico.
- c) Una tercera fase consistente en el proceso de implantación concertado de todos los componentes del régimen de caudales ecológicos y su seguimiento adaptativo.

El plan hidrológico recogerá una síntesis de los estudios específicos efectuados por el organismo de cuenca para el establecimiento del régimen de caudales ecológicos.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

La IPHA desarrolla en su apartado 3.4.1 la metodología necesaria para realizar estos estudios específicos, en su apartado 3.4.2 la identificación y caracterización de las masas muy alteradas hidrológicamente, en su apartado 3.4.3 la definición del régimen de caudales mínimos menos exigente para sequías prolongadas y en su apartado 3.4.4 los requerimientos hídricos de lagos y zonas húmedas.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

3 **OBJETIVOS**

3.1 REGÍMENES DE CAUDALES ECOLÓGICOS EN RÍOS

El régimen de caudales ecológicos se ha de establecer de modo que permita mantener de forma sostenible la funcionalidad y estructura de los ecosistemas acuáticos y de los ecosistemas terrestres asociados, contribuyendo a alcanzar el buen estado o potencial ecológico en ríos o aguas de transición.

Para alcanzar estos objetivos el régimen de caudales ecológicos debe cumplir los requisitos siguientes:

- Proporcionar condiciones de hábitat adecuadas para satisfacer las necesidades de las diferentes comunidades biológicas propias de los ecosistemas acuáticos y de los ecosistemas terrestres asociados, mediante el mantenimiento de los procesos ecológicos y geomorfológicos necesarios para completar sus ciclos biológicos.
- Ofrecer un patrón temporal de los caudales que permita la existencia, como máximo, de cambios leves en la estructura y composición de los ecosistemas acuáticos y hábitat asociados y permita mantener la integridad biológica del ecosistema.

En la medida en que las zonas protegidas de la Red Natura 2000 y de la Lista de Humedales de Importancia Internacional del Convenio de Ramsar puedan verse afectadas de forma apreciable por los regímenes de caudales ecológicos, éstos serán los apropiados para mantener o restablecer un estado de conservación favorable de los hábitat o especies, respondiendo a sus exigencias ecológicas y manteniendo a largo plazo las funciones ecológicas de las que dependen.

En el caso de las especies protegidas por normativa europea (anexo I de la Directiva 79/409/CEE, del Consejo, de 2 de abril de 1979, relativa a la conservación de las aves silvestres y anexos II y IV de la Directiva 92/43/CEE, del Consejo, de 21 de mayo de 1992, relativa a la conservación de los hábitats naturales y de la fauna y flora silvestres) y por normativa nacional/autonómica (Catálogos de Especies Amenazadas, etc.), así como en el caso de los hábitat igualmente protegidos por normativa europea (anexo I de la Directiva 92/43/CEE, de 21 de mayo de 1992) y nacional/autonómica (Inventario Nacional de Hábitat, etc.), el objetivo del régimen de caudales ecológicos será salvaguardar y mantener la funcionalidad ecológica de dichas especies (áreas de reproducción, cría, alimentación y descanso) y hábitat según los requerimientos y directrices recogidos en las respectivas normativas.

La determinación e implantación del régimen de caudales en las zonas protegidas no se referirá exclusivamente a la propia extensión de la zona protegida, sino también a los elementos del sistema hidrográfico que, pese a estar fuera de ella, puedan tener un impacto apreciable sobre dicha zona.

3.2 RÉGIMEN DE CAUDALES DURANTE SEQUÍAS PROLONGADAS

En caso de sequías prolongadas podrá aplicarse un régimen de caudales menos exigente siempre que se cumplan las condiciones que establece el artículo 38 del RPH sobre deterioro temporal del estado de las masas

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

de agua, y de conformidad con lo determinado en el correspondiente Plan especial de actuación en situaciones de alerta y eventual sequía.

Esta excepción no se aplicará en las zonas incluidas en la red Natura 2000, cuando su designación esté relacionada con la protección de hábitats y/o especies ligados al medio acuático, o en la lista de humedales de importancia internacional de acuerdo con el Convenio de Ramsar. En estas zonas se considerará prioritario el mantenimiento del régimen de caudales ecológicos, aunque se aplicará la regla sobre supremacía del uso para abastecimiento de poblaciones, según lo establecido por la normativa vigente.

3.3 REQUERIMIENTOS HÍDRICOS DE LAGOS Y ZONAS HÚMEDAS

La caracterización de los requerimientos hídricos ambientales de las masas de agua clasificadas en la categoría de lagos o zonas de transición de tipo lagunar tiene como objetivo fundamental contribuir a alcanzar su buen estado o potencial ecológico a través del mantenimiento a largo plazo de la funcionalidad y estructura de dichos ecosistemas, proporcionando las condiciones de hábitat adecuadas para satisfacer las necesidades de las diferentes comunidades biológicas propias de estos ecosistemas acuáticos y de los ecosistemas terrestres asociados, mediante la preservación de los procesos ecológicos necesarios para completar sus ciclos biológicos.

Para la determinación de los requerimientos hídricos de los lagos y zonas húmedas se tendrán en cuenta los siguientes criterios:

- El régimen de aportes hídricos deberá contribuir a conseguir los objetivos ambientales.
- Si son dependientes de las aguas subterráneas, se deberá mantener un régimen de necesidades hídricas relacionado con los niveles piezométricos, de tal forma que las alteraciones debidas a la actividad humana no tengan como consecuencia:
 - Impedir alcanzar los objetivos medioambientales especificados para las aguas superficiales asociadas.
 - Cualquier perjuicio significativo a los ecosistemas terrestres asociados que dependan directamente de la masa de agua subterránea.
- Si están registrados como zonas protegidas, el régimen de aportes hídricos será tal que no impida el cumplimiento de las normas y objetivos en virtud del cual haya sido establecida la zona protegida.
- También se deberán estudiar las circunstancias especiales de la zona inundada y su contorno para proponer medidas que permitan aumentar el valor ambiental de lagos y zonas húmedas.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

4 FASES EN EL ESTABLECIMIENTO DEL RÉGIMEN DE CAUDALES ECOLÓGICOS

El proceso de establecimiento del régimen de caudales ecológicos se realiza, tal y como se recoge en el apartado 3.4 de la IPHA, mediante un proceso que se desarrolla en tres fases:

- Una primera fase de desarrollo de los estudios técnicos destinados a determinar los elementos del régimen de caudales ecológicos en todas las masas de agua.
- Una segunda fase consistente en un proceso de concertación, definido por varios niveles de acción (información, consulta pública y participación activa), en aquellos casos que condicionen significativamente las asignaciones y reservas del plan hidrológico.
- Una tercera fase consistente en el proceso de implantación concertado de todos los componentes del régimen de caudales ecológicos y su seguimiento adaptativo.

La complejidad intrínseca de los trabajos técnicos y el gran número de masas de agua superficial de la DHCMA impide la extensión de este proceso a todas ellas en el reducido plazo disponible. También debe mencionarse la limitada experiencia en algunos trabajos inherentes a este tipo de determinaciones, que comprenden una doble vertiente: por una parte, análisis hidrológicos de las masas de agua, a realizar en gabinete y para los que se dispone de información suficiente; por otra, la realización de trabajos de modelización del hábitat, que exige un tiempo y un coste apreciables.

Por lo tanto, consideraciones obvias de índole práctica han llevado a aplicar en esta fase un procedimiento que asegura la compatibilidad de los objetivos buscados con los medios y plazos realmente disponibles. En este entendimiento se han realizado para todas las masas de agua estudios detallados de naturaleza hidrológica. Por el contrario, los esfuerzos relativos a los estudios de simulación de hábitat se han centrado en sólo un número limitado de masas de agua.

La elección de las masas a estudiar constituye una decisión trascendental, pues deben ser seleccionadas las que definan el régimen de los principales cursos de agua de la cuenca, puedan ser mantenidas con elementos específicos de regulación y sin olvidar las que puedan ser objeto, por diversas razones, de especial conflictividad. De esta forma, quedan cubiertas por estos estudios de modelización de hábitat las denominadas masas estratégicas, que son aquellas en las que el establecimiento del régimen de caudales ecológicos condiciona las asignaciones y reservas de recursos del Plan hidrológico de cuenca. Obviamente, la concertación se ha limitado a estas masas de agua estratégicas, en las que se han completado los estudios.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

5 **METODOLOGÍA**

El presente capítulo describe la metodología empleada para realizar los estudios técnicos específicos de determinación del régimen de caudales ecológicos de las masas de agua de la DHCMA. Esta metodología se basa principalmente en la que se expone en la IPHA en sus apartados 3.4.1, 3.4.2, 3.4.3 y 3.4.4, pero adaptándola a las particularidades de la demarcación.

5.1 REGÍMENES DE CAUDALES ECOLÓGICOS

Como ya se ha mencionado, la metodología para la determinación de los regímenes de caudales ecológicos sigue las disposiciones establecidas en la IPHA, adaptadas a las particularidades de la demarcación. Este documento establece los procedimientos técnicos básicos para la obtención de dichos regímenes y es, por tanto, la referencia fundamental en la que se han basado los estudios realizados.

La metodología establecida en la IPHA se basa en la de la IPH estatal, en cuyo desarrollo colaboró un amplio grupo de expertos representantes de diferentes universidades, centros de investigación y administraciones del agua y de conservación de la naturaleza. Asimismo, este grupo de expertos ha seguido dando apoyo para la realización de los trabajos mediante la redacción de la "Guía para la determinación del régimen de caudales ecológicos", en la que se detalla la metodología, ilustrándola con ejemplos que complementan y facilitan su aplicación.

5.1.1 ÁMBITO ESPACIAL

El ámbito espacial para la caracterización del régimen de caudales ecológicos se extiende a todas las masas de agua superficial clasificadas en la categoría ríos de la DHCMA que no sean embalses ni masas artificiales.

Con carácter general, los resultados obtenidos para ríos serán aplicables a las aguas de transición siempre y cuando se cumplan las funciones ambientales de las mismas.

5.1.2 COMPONENTES DEL RÉGIMEN DE CAUDALES ECOLÓGICOS

El régimen de caudales ecológicos incluye los siguientes componentes:

- Caudales mínimos que deben ser superados con objeto de mantener la diversidad espacial del hábitat y su conectividad, asegurando los mecanismos de control del hábitat sobre las comunidades biológicas, de forma que se favorezca el mantenimiento de las comunidades autóctonas.
- Caudales máximos que no deben ser superados en la gestión ordinaria de las infraestructuras, con el fin de limitar los caudales circulantes y proteger así a las especies autóctonas más vulnerables a estos caudales, especialmente en tramos fuertemente regulados.
- Distribución temporal de los anteriores caudales mínimos y máximos, con el objetivo de establecer una variabilidad temporal del régimen de caudales que sea compatible con los requerimientos de los diferentes estadios vitales de las principales especies de fauna y flora autóctonas presentes en la masa de agua.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

- Tasa de cambio máxima aguas abajo de infraestructuras de regulación, con objeto de evitar los efectos negativos de una variación brusca de los caudales, como pueden ser el arrastre de organismos acuáticos durante la curva de ascenso y su aislamiento en la fase de descenso de los caudales. Asimismo, debe contribuir a mantener unas condiciones favorables a la regeneración de especies vegetales acuáticas y ribereñas.
- Caudales de crecida aguas abajo de infraestructuras de regulación, especialmente centrales hidroeléctricas de cierta entidad, con objeto de controlar la presencia y abundancia de las diferentes especies, mantener las condiciones físico-químicas del agua y del sedimento, mejorar las condiciones y disponibilidad del hábitat a través de la dinámica geomorfológica y favorecer los procesos hidrológicos que controlan la conexión de las aguas de transición con el río, el mar y los acuíferos asociados.

A la hora de calcular los regímenes de caudales, la IPHA hace distinción entre ríos permanentes, temporales, intermitentes y efímeros. En ríos temporales, ríos intermitentes y ríos efímeros se aplicarán los siguientes criterios metodológicos:

- Temporales: se utilizarán los criterios definidos para la determinación de la distribución mensual de caudales mínimos y máximos en ríos permanentes. Se realizará, además, una caracterización del periodo de cese de caudal.
- Intermitentes, se analizarán los siguientes aspectos:
 - Periodo de cese de caudal.
 - Conexión con las aguas subterráneas, definiendo los volúmenes mínimos necesarios para preservar el flujo subsuperficial que alimenta pozas y remansos.
 - Magnitud de la crecida y periodo de tiempo de recesión al caudal base.
 - Caudal generador, que permite mantener la dimensión del canal principal del río y su buen funcionamiento morfodinámico.
- Efimeros, se determinarán el tiempo de recesión tras la crecida y el caudal generador.

Cabe destacar que el grado de concreción alcanzado por la IPHA y la experiencia existente es claramente superior en lo referente a la distribución temporal de caudales mínimos en ríos permanentes.

5.1.3 DISTRIBUCIÓN TEMPORAL DE CAUDALES MÍNIMOS

La distribución temporal de caudales mínimos se obtiene aplicando métodos hidrológicos y sus resultados deben ser ajustados mediante la modelación de la idoneidad del hábitat en tramos fluviales representativos de cada tipo de río.

5.1.3.1 MÉTODOS HIDROLÓGICOS

En la obtención de caudales ambientales mínimos por métodos hidrológicos se ha considerado el grupo de metodologías que propone la IPHA:

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

- a) La definición de variables de centralización móviles anuales, de orden único o variable. Las metodologías empleadas han sido las siguientes:
 - Método del caudal básico o QBM¹: el caudal mínimo ecológico corresponde con el caudal en el que los incrementos relativos de los valores mínimos de dos intervalos consecutivos de medias móviles, es máximo, obteniéndose de este modo un caudal mínimo para cada año de la serie estudiada y tomando finalmente como valor de caudal mínimo ecológico alguna medida de centralización (QBM media y QBM mediana) de esa serie de caudales mínimos.
 - Método del cambio de pendiente: desarrollado por Baeza (2000)², el caudal mínimo se obtiene de aquel caudal a partir del cual la curva de la relación caudal-tamaño del intervalo, cambia significativamente de pendiente (Q pendiente).
 - Media móvil de los caudales que han circulado durante 90 días consecutivos: el método se basa en el aplicado en la cuenca del Tajo del Q25d³, método estadístico que plantea como caudal ecológico el definido por la media de los caudales medios mínimos correspondientes a 25 días consecutivos, representando la duración y la magnitud del grupo de caudales más bajos que se producen en un año. Debido a la irregularidad del régimen de los ríos de la DHCMA se ha considerado más representativo ampliar este intervalo, obteniéndose el caudal mínimo calculando la media móvil de los caudales que han circulado durante 90 días consecutivos para no hacer depender los resultados de posibles periodos con caudal nulo, y tomándose finalmente la media de los mínimos de todos los años estudiados (Q 90d).
- b) La definición de percentiles entre el 5 y el 15% a partir de la curva de caudales clasificados, que permitirán definir el umbral habitual del caudal mínimo. Para ello se ha calculado el valor que deja por debajo al 5% (Percentil 5) ó 15% (Percentil 15) de todos los valores anuales, y se ha hallado la media de todos los valores obtenidos de esta forma en la serie de años estudiada.

Las metodologías propuestas necesitan de una serie hidrológica representativa de al menos 20 años en régimen natural que presente una alternancia equilibrada entre años secos y húmedos, y siempre que sea posible definida a escala diaria. Para la obtención de estas series se han empleado distintos procedimientos:

 Utilización directa de la red de aforos: En aquellas masas en las que se cuenta con datos de estaciones de aforos en los que hay un periodo suficientemente largo de registros en régimen natural o con poca alteración se han empleado los datos aforados (incluidos los de la red hidrométrica de manantiales).

Palau, A., J. Alcázar, C. Alcázer y J. Roi. 1998. Metodología de cálculo de regimenes de caudales y mantenimiento. Informe técnico para el CEDEX. Ministerio de Medio Ambiente.

Baeza, D. 2002. Caracterización del régimen de caudales en los ríos de la cuenca del Tajo, basado en su regionalización hidrobiológica. Universidad Politécnica de Madrid. ETSI de Montes. Tesis Doctoral.

² Baeza D. y D. García de Jalón. 1999. Cálculo de caudales de mantenimiento en ríos de la cuenca del Tajo a partir de variables climáticas y de sus cuencas. Limnetica 16: 69-84.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

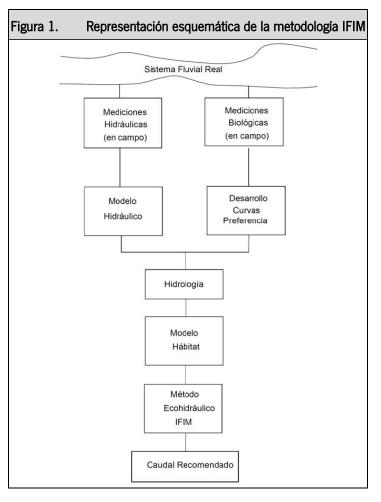
DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

- Restitución de la serie en el caso de régimen alterado, que podrá realizarse mediante las siguientes metodologías:
 - Restitución mediante balance de aportaciones, detracciones, derivaciones y retornos a escala diaria o mediante su caracterización a escala mensual. En el caso de disponer una serie caracterizada a escala mensual se estima con posterioridad el régimen a escala diaria.
 - Modelización hidrológica de series en régimen natural a escala diaria, obtenidas mediante simulación con el modelo Sacramento, o a escala mensual del modelo SIMPA V2 con la estimación posterior de la serie a escala diaria.

En el caso de series obtenidas a escala mensual se ha aplicado posteriormente un patrón de distribución diario correspondiente a estaciones de control en régimen natural o cuasi-natural situadas en masas de características análogas. En las masas situadas en la parte oriental de la DHCMA, en las que no se dispone de estaciones de aforo en régimen próximo al natural, se ha optado por construir un hidrograma diario con los valores medios mensuales repetidos para los días del mes en el periodo de octubre a mediados de mayo, y ajustando los valores mensuales de los últimos meses del año hidrológico a una función de curva de decrecimiento de caudales, asumiendo que todo lo que circula por el cauce viene de aportes subterráneos y se comporta uniformemente.

En algunas ocasiones se ha optado por agregar caudales de tramos situados aguas arriba hasta llegar a un caudal próximo al natural que pueda servir para la masa de estudio, y en otra ocasiones, siempre para masas de características muy similares, se han obtenido las series diarias mediante proporcionalidad de aportes.

5.1.3.2 MÉTODOS DE MODELIZACIÓN DEL HÁBITAT


La modelación de la idoneidad del hábitat se basa en la simulación hidráulica acoplada al uso de curvas de preferencia del hábitat físico para la especie o especies objetivo, obteniéndose curvas que relacionen el hábitat potencial útil con el caudal en los tramos seleccionados, según se establece en la metodología IFIM ("Instream Flow Incremental Methodology").

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

La determinación de caudales ecológicos por modelación del hábitat físico se realiza a partir de una cuantificación del hábitat de una especie de referencia (normalmente piscícola) y del análisis de su relación con el caudal mediante simulación hidráulica, para lo que hay que realizar las siguientes tareas:

- Selección de tramos de estudio.
- Selección de especies objetivo.
- Generación de curvas de preferencia de microhábitat, como elemento esencial en la generación de los modelos de hábitat.
- Trabajos de campo destinados a la construcción y calibración de los modelos de hábitat.

Los resultados obtenidos por modelización de hábitat son posteriormente analizados y contrastados con los obtenidos por métodos hidrológicos para dar una propuesta de caudales ecológicos mínimos.

5.1.3.2.1 SELECCIÓN DE TRAMOS DE ESTUDIO

La selección de tramos a modelizar se realiza en un número suficiente de masas de agua, recomendándose un mínimo del 10% del total. Además, debe ser suficiente para cubrir, al menos, un tramo en cada uno de los tipos más representativos, especialmente en lo que se refiere a diferencias en el régimen de caudales. Los tramos representativos se seleccionan dando prioridad a las masas de agua con mayor importancia ambiental o que estén situadas aguas abajo de grandes presas o derivaciones importantes y que puedan condicionar las asignaciones y reservas de recursos del plan hidrológico.

Los tramos se han seleccionado en base a los siguientes criterios:

- Tramos de importancia estratégica, en los que el establecimiento del caudal ecológico pueda tener repercusiones en las asignaciones y reservas de recursos que se establecerán en los planes hidrológicos.
- Tramos de importancia ambiental, prestando especial atención a los elementos de la Red Natura 2000 o con cualquier figura de protección, así como los que alberguen especies en peligro de extinción, sensibles a la alteración de su hábitat, vulnerables o de interés especial.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

Asimismo, se ha seleccionado al menos un tramo de cada tipo de río de los establecidos en la IPHA, y han quedado representados todos los sistemas de explotación de la demarcación.

Una vez seleccionadas las masas de agua sobre las que se van a realizar los trabajos de modelización, mediante el reconocimiento de campo se ha realizado la selección de tramos representativos dentro de la propia masa, de modo que estos cuenten con la longitud suficiente para cubrir la variabilidad física y ecológica y que incluyan los distintos mesohábitats presentes en el río.

5.1.3.2.2 SELECCIÓN DE ESPECIES OBJETIVO

La selección de las especies se basa en la consideración de especies autóctonas, dando prioridad a las especies recogidas en los Catálogos de Especies Amenazadas dentro de las categorías "Peligro de extinción", "Vulnerables", "Sensibles a la alteración de su hábitat" y de "Interés especial", así como a las especies recogidas en los anexos II y IV de la Directiva 92/43/CEE, de 21 de mayo de 1992. Se ha tenido en cuenta, además, la viabilidad en la elaboración de sus curvas de preferencia, y su sensibilidad a los cambios en el régimen de caudales, en particular al tipo de alteración hidrológica que sufre la masa de agua, así como la calidad de la información disponible.

Para ello, se ha hecho un censo de las comunidades piscícolas presentes en la cuenca, y más concretamente en los tramos seleccionados, utilizándose información procedente del trabajos que presentan muestreos de campo mediante pesca eléctrica, como la base de datos EFI+; el Inventario de peces y el Proyecto SAUCE, facilitados por la Dirección General de Gestión del Medio Natural y Espacios Protegidos; los muestreos de campo realizados por la red de control biológico de la cuenca, y otros estudios existentes. Para completar la lista de especies presentes en los tramos seleccionados se ha consultado el "Atlas y Libro Rojo de los Peces Continentales de España" y el "Libro Rojo de los Vertebrados Amenazados de Andalucía".

Tras identificar las especies autóctonas y el grado de protección en cada caso, se ha llevado a cabo un análisis de los factores que caracterizan la aptitud de las especies más significativas de la DHCMA para ser identificadas como especie objetivo, factores que se sintetizan, por orden de importancia, en:

- Aptitud como especie indicadora de la comunidad biológica.
- Abundancia de la comunidad de peces.
- Importancia taxonómica.
- Detectabilidad.

A partir de estos datos se ha obtenido un listado definitivo de especies sobre las que centrar los trabajos de modelización de hábitat.

5.1.3.2.3 ELABORACIÓN Y UTILIZACIÓN DE LAS CURVAS DE HÁBITAT POTENCIAL ÚTIL-CAUDAL

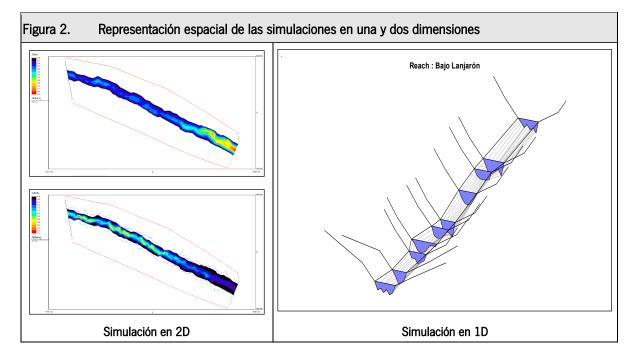
A partir de las simulaciones de idoneidad del hábitat se desarrollan, para las especies objetivo, curvas que relacionan el hábitat potencial útil (HPU) con el caudal. Para ello se obtienen en los puntos a través de modelos hidráulicos, las variables de profundidad y velocidad, que posteriormente se comparan con las curvas de

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

idoneidad de la especie objetivo, de manera que las curvas representan la tolerancia de una especie a unas condiciones concretas del hábitat, asumiendo que estas especies se distribuirán o usarán aquellas zonas con condiciones más favorables.

Las curvas se calculan para la preferencia ante variables del hábitat como la profundidad, velocidad o sustrato. Éstas se han desarrollado para tres estadios del ciclo vital de las especies piscícolas seleccionadas: adulto, juvenil y alevín.


Mediante estas curvas HPU-Caudal se han generado curvas combinadas para facilitar la toma de decisiones. Estas curvas se han obtenido mediante la combinación ponderada y adimensional de hábitat potenciales útiles, determinados para los estadios predominantes en los periodos temporales considerados. Las curvas combinadas se corresponden con un periodo húmedo y otro de estiaje, considerando en cada una de ellos la predominancia de los estadios de la especie objetivo. A falta de estudios más detallados, en época de estiaje se consideran prioritarios los alevines y en época húmeda los juveniles frente al estadio adulto, persistente durante todo el año.

La generación de las curvas combinadas se ha realizado de la siguiente manera:

- Periodo húmedo: 0,6 juveniles + 0,4 adultos.
- Periodo seco: 0,6 alevines + 0,4 adultos.

La simulación de la idoneidad del hábitat se ha realizado mediante modelos bidimensionales, utilizando el programa RIVER 2D, modelo hidrodinámico bidimensional por elementos finitos que caracteriza la velocidad media de la columna de agua para uso en cauces naturales, y sólo en casos muy concretos, en los que dificultades técnicas lo hayan impedido (cauce invadido por vegetación, fuerte pendiente, toma de datos topográficos compleja, etc.) se ha realizado mediante modelos unidimensionales, con el programa RHYHABSIM, modelo hidrodinámico de resolución mediante el método del paso hidráulico calibrado en cada transepto para el ajuste del perfil de velocidades.

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

Para la realización de los trabajos de campo destinados a la construcción y calibración de los modelos de hábitat se han realizado principalmente dos campañas, la primera en abril-mayo de 2009 y la segunda en julio-agosto del mismo año.

5.1.3.3 OBTENCIÓN DE LA DISTRIBUCIÓN DE CAUDALES MÍNIMOS EN RÍOS PERMANENTES

La distribución de caudales mínimos se determina ajustando los caudales obtenidos por métodos hidrológicos al resultado de la modelación de la idoneidad del hábitat, de acuerdo con alguno de los siguientes criterios:

- c) Considerar el caudal correspondiente a un umbral del hábitat potencial útil comprendido en el rango 50-80% del hábitat potencial útil máximo.
- d) Considerar el caudal correspondiente a un cambio significativo de pendiente en la curva de hábitat potencial útil-caudal.

En el caso de que la curva de hábitat potencial sea creciente y sin aparentes máximos, se ha adoptado como valor máximo el hábitat potencial útil correspondiente al caudal definido por el rango de percentiles 10-25 % de los caudales medios diarios en régimen natural, obtenido de una serie hidrológica representativa de, al menos, 20 años. Sin embargo, debido al carácter irregular de los ríos de la DHCMA, con una alta variabilidad intraanual, estos percentiles han resultado muy bajos o incluso nulos en muchas masas de agua, por lo que en estos casos se ha adoptado como valor máximo el caudal en el que se produce una estabilización en la curva HPU-Q.

Por lo tanto, para la obtención de la distribución de caudales mínimos se analizan los distintos valores obtenidos por métodos hidrológicos (QBM media y mediana, Q90d, Q pendiente, P5 y P15), que se modulan mensualmente de acuerdo a un factor que presente una modulación que se adapte al cambio natural del flujo, con vistas a adaptar el régimen propuesto a las características inherentes a las cuencas. Para ello se han utilizado índices

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

mensuales (l.) basados en las medias de caudales mensuales naturales de modo que se el régimen natural de caudales sirva como un patrón cuyas pautas de fluctuación imita el régimen ecológico propuesto. Estos índices resultan de dividir el caudal medio mensual de cada mes (Q_x) entre el caudal medio mensual del mes mínimo (Q_{min}). Para atenuar los cambios mensuales, los índices se han elevado a un coeficiente (n), que en la mayor parte de los casos ha sido la raíz cuadrada.

$$I_x = (Q_x/Q_{min})^n$$

Estos regímenes se han comparado con los valores obtenidos a partir de las curvas HPU-Q combinadas, y se han adaptado a los valores comprendidos entre el 50-80% del HPU máximo, o en el caso de las masas alteradas hidrológicamente, entre el 30-80% del HPU máximo. Estos rangos son mínimos, pudiendo ser más altos si otros elementos de análisis lo aconsejan, de manera que los porcentajes de HPU son sensiblemente superiores cuando los mínimos se cubren con caudales muy bajos.

En todo este proceso se ha tenido en cuenta la coherencia de los resultados dentro de cada cuenca. Además, se ha procurado dar unos caudales ecológicos que supongan una mejora ambiental, pero siempre tenido en cuenta el cumplimiento de garantías con el caudal en régimen natural, ya que se entiende que el régimen de mínimos no debe entrar en incumplimientos significativos con el mismo.

5.1.3.4 OBTENCIÓN DE LA DISTRIBUCIÓN DE CAUDALES MÍNIMOS EN RÍOS TEMPORALES, INTERMITENTES Y EFÍMEROS

Para la construcción del régimen en masas de marcada temporalidad, la variación mensual se realiza partiendo del primer mes con valor superior a cero, a partir del cual se calculan los índices anteriormente descritos.

Los regímenes así obtenidos se han comparado, al igual que en las masas permanentes, con los valores obtenidos a partir de las curvas HPU-Q combinadas, y se han adaptado a los valores del comprendidos entre el 50-80% del HPU máximo, o en el caso de las masas alteradas hidrológicamente, entre el 30-80% del HPU máximo, con la particularidad de que, en aquellos meses en los que los caudales naturales se encuentren por debajo de estos valores, el régimen de caudales ecológicos propuesto también se ha de encontrar por debajo, y será nulo en función del periodo de cese de caudal determinado.

5.1.4 DISTRIBUCIÓN TEMPORAL DE CAUDALES MÁXIMOS

Durante situaciones de desembalse, conducciones forzadas, etc., es necesario evacuar por un tramo de un río un caudal de una magnitud mayor al que correspondería en condiciones habituales en el tramo en esa época del año. Estos caudales pueden producir efectos negativos sobre el comportamiento y evolución del sistema fluvial, especialmente si la situación de caudales altos se prolonga durante un tiempo largo. Por esta razón es interesante conocer cuáles pueden ser los caudales máximos que podrían hacerse circular de forma artificial por un tramo fluvial en situaciones de gestión ordinaria de las infraestructuras hidráulicas, poniendo como valor límite aquel que pueda producir daños graves en el ecosistema.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

En el diseño de regímenes de caudales que pretendan minimizar los daños ocasionados por la alteración de caudales en un sistema fluvial, se incluye como uno de sus componentes una distribución estacional de caudales máximos, entendiendo por caudales máximos aquellos que no deben ser superados durante la operación y gestión ordinaria de las infraestructuras hidráulicas, y se definen en dos periodos hidrológicos homogéneos y representativos, correspondientes al periodo húmedo y seco del año.

Su caracterización se realiza analizando los percentiles de excedencia mensuales de una serie representativa de caudales en régimen natural de al menos 20 años de duración. Con la finalidad de preservar las magnitudes fundamentales del régimen natural, no se utilizan percentiles superiores al 90%, en consonancia con los umbrales propuestos en apartados posteriores para los índices de alteración hidrológica.

Este régimen de caudales máximos se verifica mediante el uso de los modelos hidráulicos asociados a los modelos de hábitat, de forma que se garantice tanto una adecuada existencia de refugio para los estadíos o especies más sensibles como el mantenimiento de la conectividad del tramo. Para ello se asegura que al menos se mantenga un 50% de la superficie mojada del tramo como refugio en las épocas de predominancia de los estadios más sensibles. Las velocidades admisibles se extraen de curvas que relacionen el tamaño del individuo con la velocidad máxima admisible. Al no disponer de dichas curvas y de tratarse de especies piscícolas, la IPHA indica que se utilicen los siguientes intervalos de velocidades máximas limitantes: alevines (0,5-1 m/s), juveniles (1,5-2 m/s) y adultos (<2,5 m/s).

Por lo tanto, para el diseño de la distribución de caudales máximos se ha utilizado como condicionante la velocidad limitante (velocidad crítica) para la evolución y desarrollo de la fauna piscícola y se ha definido los dos periodos en función de las emergencias de alevines de las especies de peces condicionantes, considerando que el periodo seco va normalmente desde mayo-octubre y el húmedo de noviembre a abril. De este modo, las velocidades producidas en el cauce con un determinado caudal circulante se han obtenido de los programas hidráulicos que se han generado al modelizar el hábitat, y se ha utilizado como criterio para validar y fijar el caudal máximo en el periodo seco la velocidad para alevines de 0,5-1 m/s, y para el periodo húmedo la velocidad para juveniles de 1,5-2 m/s.

5.1.5 TASA DE CAMBIO

La determinación de un régimen de caudales ecológicos implica también el establecer unos márgenes admisibles para los cambios de caudal instantáneo en los ríos, o tasa de cambio, que sean compatibles con la capacidad de respuesta de las comunidades naturales. Así, con objeto de evitar los efectos negativos de una variación brusca de los caudales, en las masas de agua ubicadas aguas abajo de infraestructuras de regulación, se ha estimado una tasa máxima de cambio en situaciones de gestión ordinaria tanto para las condiciones de ascenso como de descenso de caudal, definida como la máxima diferencia de caudal entre dos valores sucesivos de una serie hidrológica por unidad de tiempo.

La tasa máxima de cambio se determina considerando la distribución de variaciones temporales sucesivas en régimen natural. Su estimación se ha realizado a partir del análisis de una serie hidrológica representativa de caudales medios diarios de, al menos, 20 años de duración, calculando las series clasificadas anuales de incrementos medios diarios, tanto en ascenso como en descenso, sobre las que se ha establecido un percentil

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

de superación en ascenso y en descenso del 95% y se ha obtenido una estimación media de las tasas de cambio. Si bien en la IPHA se recomienda que el percentil no sea superior al 90-70%, en el caso de los ríos de la DHCMA se ha optado por un percentil del 95%, dado el carácter irregular de los mismos.

En la actualidad existe una conciencia generalizada de que hay que seguir investigando en este tema para mejorar los métodos de estimación de dicha variable antes de que pueda ser trasladada a las normas de explotación de este tipo de aprovechamientos. Entretanto, se ha suprimido la propuesta provisional de tasas de cambio que figuraba en el Anejo V del Plan Hidrológico del ciclo 2009-2015.

5.1.6 CARACTERIZACIÓN DEL RÉGIMEN DE CRECIDAS

En aquellos tramos situados aguas abajo de importantes infraestructuras de regulación la crecida asociada al caudal generador se aproxima al caudal de sección llena del cauce, o en su defecto, a la máxima crecida ordinaria, y se define incluyendo su magnitud, frecuencia, duración, estacionalidad y tasa máxima de cambio, tanto en la curva de ascenso como en la curva de descenso del hidrograma de la crecida.

La magnitud de la crecida asociada al caudal generador se ha calculado, por tanto, para distintos periodos de retorno:

- Caudal máximo con periodo de retorno T= 1,5.
- Caudal máximo con periodo de retorno T= 2.
- Caudal máximo con periodo de retorno del estudio de caudales generadores realizado por el CEDEX, en el que se varía la duración del periodo de retorno en cada hidrorregión en función de datos fisiográficos y climáticos de las cuencas

La tasa máxima de cambio, la frecuencia y la duración de la crecida asociada al caudal generador se obtienen del análisis estadístico de la serie representativa del régimen hidrológico del río con 20 años de datos. Estas variables se han calculado tanto para la crecida correspondiente al periodo de retorno T=2 como al asociado al caudal generador del estudio realizado por el CEDEX.

La validación del caudal generador se debe llevar a cabo mediante la modelación hidráulica del cauce, en un tramo representativo de su estructura y funcionalidad, teniendo en cuenta, para ello, los estudios de inundabilidad del tramo afectado, las condiciones físicas y biológicas actuales, sus posibles efectos perjudiciales sobre las variables ambientales y los riesgos asociados desde el punto de vista de las infraestructuras.

5.1.7 MASAS DE AGUA MUY ALTERADAS HIDROLÓGICAMENTE

En los ríos y estuarios identificados como masas de agua se analiza su grado de alteración hidrológica mediante el cálculo de índices de alteración hidrológica, identificándose aquéllas masas que se encuentren en un grado severo de distorsión respecto a los caudales naturales en la situación actual, presentando conflictos entre los usos existentes y el régimen de caudales ecológicos.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

Con estos índices se comparan las condiciones del régimen natural de referencia con las condiciones actuales, utilizando para ello un conjunto de parámetros que caracterizan estadísticamente la variación hidrológica inter e intraanual. Los parámetros utilizados se basan en las características fundamentales de los regímenes hidrológicos, como magnitud, duración, frecuencia, estacionalidad y tasa de cambio. Se entiende que una masa de agua está muy alterada hidrológicamente cuando presenta una desviación significativa en la magnitud de los parámetros que caracterizan las condiciones mensuales y anuales del régimen hidrológico, repercutiendo de manera importante sobre la disponibilidad de hábitat tanto para los organismos acuáticos como para los organismos terrestres asociados.

Para estudiar la alteración hidrológica se ha empleado el método IAHRIS (Índices de Alteración Hidrológica en Ríos)⁴, que propone un conjunto de índices de alteración hidrológica que permiten evaluar, de manera objetiva y eficiente, los cambios que sobre los elementos del régimen de caudales con mayor trascendencia ambiental inducen los aprovechamientos de los recursos hídricos. Dada la finalidad del trabajo, resulta ventajosa la clasificación que hace IAHRIS de la alteración en cinco intervalos que pueden homologarse con los de la evaluación del estado ecológico.

En las masas de agua muy alteradas hidrológicamente se define un régimen de caudales con los criterios indicados en los apartados anteriores, en lo que se refiere a la distribución temporal de máximos y mínimos, tasa de cambio y caudal generador, pero ajustando los caudales mediante la simulación de la idoneidad del hábitat para las especies objetivo identificadas de modo que el umbral utilizado para fijar el régimen de mínimos esté comprendido entre el 30 y el 80% del hábitat potencial útil máximo de la masa de agua, para las especies objetivo analizadas. Este umbral del 30% no se ha tenido en cuenta en los tramos situados en LIC entre cuyos objetivos esté la conservación de hábitats o especies relacionados con el medio hídrico. Para las demás características del régimen de caudales se proponen escenarios adecuados a la intensidad de la alteración que presentan y, en su caso, se contemplan las condiciones específicas que para las masas designadas como muy modificadas se hayan establecido.

5.1.8 RÉGIMEN DE CAUDALES DURANTE SEQUÍAS PROLONGADAS

En caso de sequías prolongadas se puede aplicar un régimen de caudales menos exigente siempre que se cumplan las condiciones que establece el artículo 38 del RPH sobre deterioro temporal del estado de las masas de agua, y de conformidad con lo determinado en el correspondiente Plan especial de actuación en situaciones de alerta y eventual sequía.

Esta excepción no se aplica en las zonas incluidas en la red Natura 2000 o en la lista de humedales de importancia internacional de acuerdo con el Convenio de Ramsar. En estas zonas se considera prioritario el mantenimiento del régimen de caudales ecológicos, aunque se aplicará la regla sobre supremacía del uso para abastecimiento de poblaciones, según lo establecido por la normativa vigente.

Martinez C. & J.A. Fernández. 2010. "IAHRIS 2.2 Índices de alteración hidrológica en ríos. Manual de referencia metodológica".

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

El régimen de caudales durante sequías prolongadas se caracteriza por una distribución mensual de mínimos y se determina mediante simulación de la idoneidad del hábitat. La simulación del hábitat se basa en un umbral de relajación con el objetivo de permitir el mantenimiento, como mínimo, de un 25% del hábitat potencial útil máximo.

La distribución mensual de los caudales correspondientes a este régimen es proporcional a la distribución mensual correspondiente al régimen ordinario de caudales ecológicos establecida, con el fin de mantener el carácter natural de la distribución de mínimos, conservando las características hidrológicas de la masa de agua.

5.2 REQUERIMIENTOS HÍDRICOS DE LAGOS Y ZONAS HÚMEDAS

En el caso de lagos y zonas húmedas no se habla de régimen de caudales sino de requerimientos hídricos. Los estudios técnicos para determinar los mismos se han basado en los criterios básicos establecidos en la IPHA, aunque no en todos los casos ha sido posible aplicarlos con el mismo grado de exhaustividad, fundamentalmente por la escasa información disponible. Estos criterios son los siguientes:

- a) El régimen de aportes hídricos deberá contribuir a conseguir los objetivos ambientales.
- b) Si son dependientes de las aguas subterráneas, se deberá mantener un régimen de necesidades hídricas relacionado con los niveles piezométricos, de tal forma que las alteraciones debidas a la actividad humana no tengan como consecuencia:
 - Impedir alcanzar los objetivos medioambientales especificados para las aguas superficiales asociadas.
 - Cualquier perjuicio significativo a los ecosistemas terrestres asociados que dependan directamente de la masa de agua subterránea.
- c) Si están registrados como zonas protegidas, el régimen de aportes hídricos será tal que no impida el cumplimiento de las normas y objetivos en virtud del cual haya sido establecida la zona protegida.

La caracterización de los requerimientos hídricos se ha realizado a partir de las variables físicas que reflejan más adecuadamente las características estructurales y funcionales de cada lago, como niveles piezométricos. La información hidrológica necesaria se ha obtenido a partir de registros históricos y de modelización.

Se ha intentado asegurar que los criterios numéricos a partir de los cuales se han formulado las propuestas de régimen hídrico hayan tenido como referencia las condiciones naturales y permitan alcanzar condiciones coherentes con la consecución de las funciones y objetivos ambientales perseguidos.

Los trabajos técnicos desarrollados han seguido el siguiente esquema:

- Selección de lagos y zonas húmedas: masas de agua de la categoría lagos o humedales con alguna figura de protección que estén afectados por presiones y estén conectados con aguas subterráneas, o que alberguen especies en peligro de extinción.
- Caracterización de los diferentes factores que influyen en el régimen hídrico: climáticos, hidromorfológicos, hidrogeológicos, biológicos, funcionamiento hidrológico y balance, presiones y usos del suelo.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

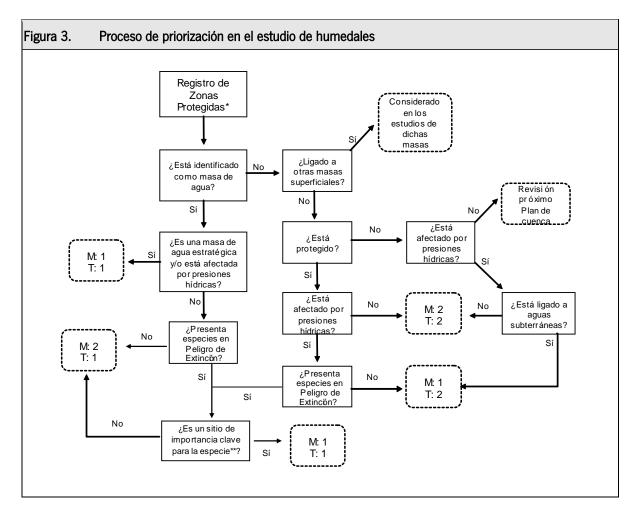
DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

- Estimación de las necesidades hídricas de lagos y humedales:
 - Modelización del comportamiento hidráulico a partir de la información obtenida: modelo conceptual,
 balance aproximado o modelización hidrológica sencilla.
 - Establecimiento, en la medida de lo posible, de la relación del comportamiento ecológico con el funcionamiento hidrológico, identificando la relación existente entre una serie de indicadores, generalmente la orla de vegetación, y sus parámetros con el funcionamiento hidrológico del lago o zona húmeda, determinando qué rangos de valores de los parámetros hidráulicos mantienen las condiciones óptimas para los indicadores elegidos.
 - Determinación, a partir de la relación anterior, de los aportes superficiales y/o subterráneos necesarios para mantener los valores de las variables hidráulicas durante episodios de mínimos y de crecidas, los valores máximos de las variables hidráulicas y el régimen estacional.

Las necesidades hídricas de las zonas húmedas que no hayan sido identificadas como masas de agua y estén incluidas en el Registro de Zonas Protegidas se determinan siguiendo, en la medida de lo posible y de acuerdo con la información disponible, el procedimiento indicado para las masas de agua clasificadas como lagos.

5.2.1 SELECCIÓN DE LAGOS Y ZONAS HÚMEDAS

Teniendo en cuenta la cantidad, variedad y complejidad de los humedales de la DHCMA, así como el escaso nivel de conocimiento actual, la determinación de sus necesidades hídricas supone un gran reto difícil de acometer cuando se trata de plazos y recursos limitados. Resulta necesario pues racionalizar el estudio de las necesidades hídricas, estableciendo un orden de prioridades según la urgencia de su determinación.


El procedimiento de selección se realiza sobre la base de un árbol de decisión donde paso a paso se van incorporando los diferentes criterios (figura 1). Como resultado final, el conjunto de humedales de cada demarcación quedarán diferenciados según el momento temporal dentro del proceso de planificación en el que se van a desarrollar los estudios:

- M1: determinación para su inclusión en el Plan Hidrológico de cuenca
- M2: determinación integrada en el programa de medidas del Plan Hidrológico de cuenca

y el tipo de estudio a desarrollar:

- T1: estudio en detalle
- T2: estudio que comprende básicamente el balance hídrico del lago o zona húmeda

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

La identificación de humedales y su posterior selección de nivel de estudios requiere tres pasos diferenciados:

- En primer lugar se identifican los humedales recogidos en el Registro de Zonas Protegidas (humedales de Importancia Internacional incluidos en la lista del Convenio Ramsar, humedales del Inventario Nacional de Zonas Húmedas y humedales del Inventario de Humedales de Andalucía).
- Posteriormente se descartan aquellos casos no sujetos a estudio (exclusión previa) por su escasa importancia, la naturaleza del humedal (artificiales) y el tamaño mínimo (en su máximo nivel de inundación no alcanzan el tamaño mínimo, establecido en 2 ha).
- Finalmente se aplican los criterios establecidos en el árbol de decisión para la selección del nivel de detalle y
 momento de estudio.

En lo que a las especies en peligro de extinción se refiere, inicialmente se considerarán solamente las especies catalogadas en peligro de extinción que figuran en el Catálogo Nacional de Especies Amenazadas. Sin embargo, para seleccionar el momento y nivel de estudio se tendrá en cuenta el grado de dependencia del humedal que tienen tales especies, diferenciando dos niveles:

• Nivel 1: el humedal representa una importancia clave para la conservación de la(s) especie(s), en cuyo caso se clasifica como M1-T1.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

 Nivel 2: el humedal representa un enclave de apoyo para la conservación de la(s) especie(s), en cuyo caso se clasifica como un M2-T1.

Para evaluar el grado de dependencia de las especies al humedal se han tenido en cuenta las exigencias y funciones ecológicas de las que dependen. En el caso de las aves se considera particularmente la reproducción, abundancia, frecuencia y regularidad de la presencia de la especie. Los criterios para asignarles el nivel de dependencia serán los siguientes:

Nivel 1:

- Especies acuáticas o especies que desarrollan alguna parte de su ciclo vital dentro del agua.
- Especies con nidificación comprobada al menos un año.
- Total acumulado > 100 ejemplares, considerando para cada año la cifra del máximo conteo, mínimo 2 años.

Nivel 2:

- Especies con nidificación probable (en época de cría) no comprobada.
- Total acumulado < 100 ejemplares, considerando para cada año la cifra del máximo conteo, mínimo 2 años; ó > 100 ejemplares, un solo año.

No se considera dentro de ninguno de los niveles anteriores las especies de aves que no se haya registrado su presencia durante los últimos 5 años o su presencia haya sido esporádica (< 5 ejemplares).

5.2.2 CARACTERIZACIÓN DE LOS FACTORES QUE INFLUYEN EN EL RÉGIMEN HÍDRICO

Para aquellos lagos y humedales seleccionados se han identificado los aspectos necesarios para establecer sus necesidades demandas hídricas. Las características consideradas han sido los siguientes:

Identificación del tipo de humedal:

Los humedales considerados como masas de agua de categoría de lago se han incluido en los tipos que establece la IPHA, y en los humedales no considerados como masas de agua se han identificado aquellos que se alimentan de aportes de aguas continentales y, en los casos en que la disponibilidad de información lo ha permitido y son asimilables a los tipos de masas, se les ha asignado la tipología de masa de agua que corresponda.

Caracterización climática:

Se han obtenido datos de las variables fundamentales para realizar el balance hídrico posterior: precipitación, temperaturas medias, máximas y mínimas, evaporación y evapotranspiración potencial y real. Los datos obtenidos son de buena calidad y representativos de las condiciones climáticas del humedal y su cuenca vertiente.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

Caracterización hidrogeológica:

En el caso de humedales con aportación subterránea de agua, se ha descrito el funcionamiento del acuífero asociado al humedal y los valores de los parámetros que definen el comportamiento hidrogeológico de las mismas (transmisividad, coeficiente de almacenamiento, nivel piezométrico, volúmenes extraídos). En los casos en los que ha sido posible, la información ha sido obtenida a partir de series históricas suficientemente representativas de condiciones inalteradas o con escasas alteraciones hidrológicas. En caso de no existir batimetría del humedal, se ha generado una batimetría mediante el uso de modelos digitales del terreno (MDT) de la mejor resolución disponible.

Caracterización hidromorfológica:

Las variables hidromorfológicas son las que en la mayor parte de los casos van a tener una influencia más determinante sobre el ecosistema presente en el humedal. Se ha contado con una batimetría del humedal, así como con datos de la superficie encharcada y de la profundidad y sus variaciones estacionales e interanuales.

Funcionamiento hidrológico y balance hídrico:

Se ha analizado el funcionamiento hidrológico y balance hídrico, identificando y cuantificando, cuando esto ha sido posible, los aportes de agua que alimentan el sistema, en particular los de origen subterráneo, y las salidas o pérdidas. Se ha establecido un modelo conceptual sobre el funcionamiento del humedal, identificando todos sus componentes y sus variaciones estacionales e interanuales. Esto ha permitido conocer el origen de las aguas del humedal (superficial, subterráneo o mixto), el carácter del humedal respecto a las mismas (influente o efluente), así como los volúmenes de alimentación, recarga y circulación hídrica del sistema.

Balance físico-químico:

Cuando ha sido posible, se ha caracterizado la composición química del agua y sus variaciones estacionales e interanuales, en particular su mineralización, tanto en lo referente a composición como a concentración, así como las principales entradas y salidas de sustancias químicas y condiciones de los parámetros físicos. Un humedal con diferentes aportes de agua presenta una dinámica en su composición que depende de los diferentes aportes. Para evitar que se produzcan cambios en las condiciones físico-químicas del humedal y éste pierda sus características, además de los aportes es necesario conocer su composición. En su caso esto será de aplicación también para las masas de agua subterránea asociadas al funcionamiento del humedal.

Caracterización ecológica:

Se han caracterizado la composición y estructura de las comunidades biológicas que albergan los humedales (hábitats y especies), así como sus variaciones estacionales e interanuales, identificando aquellas especies que estén en peligro de extinción, estén protegidas o sean indicadoras, como se verá más adelante. En los casos en los que ha sido posible se han determinado los valores de los elementos de calidad recogidos en la IPHA, y su comparación con los valores de referencia del tipo ecológico al que corresponda.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

Identificación de presiones:

Se han identificado las extracciones de agua en humedales y su evolución histórica, así como el uso directo que se realiza de las mismas, los aportes artificiales de agua (tales como los retornos de riego), etc. También se han identificado otras presiones tales como los cambios de usos del suelo, problemas de calidad del agua, etc.

5.2.3 ESTIMACIÓN DE LOS REQUERIMIENTOS HÍDRICOS

Una vez conocido el funcionamiento hidrológico del humedal, es necesario caracterizar la relación del mismo con ciertas variables ecológicas clave que determinan la estructura y funcionamiento del humedal. Para establecer la relación entre hidrología y ecología es necesario identificar en cada caso los indicadores adecuados. En principio se puede utilizar cualquiera de los organismos indicadores del estado ecológico establecidos por la DMA para los lagos.

Según la información disponible, las propuestas de requerimientos hídricos se han formulado empleando diferentes aproximaciones que pueden ser clasificadas a grandes rasgos en los siguientes tipos:

- Aproximaciones hidrológicas: se fundamentan en que el régimen hidrológico natural constituye el factor principal de organización de los ecosistemas acuáticos. Las propuestas que reflejen este régimen natural propiciarán los procesos y condiciones necesarios para conservar los hábitats y especies. El cálculo se realiza a partir de series hidrológicas en régimen natural y se trata de identificar los parámetros hidrológicos con mayor significado ecológico y geomorfológico. Así, por ejemplo, la caracterización de los hidroperiodos de referencia permite conocer el régimen de fluctuaciones del nivel de la lámina de agua, aspecto particularmente importante en el control de la distribución de organismos. Estas fluctuaciones determinan la estructura y composición de la vegetación del litoral de los humedales, que al mismo tiempo son importantes para los invertebrados y la disponibilidad de hábitats de peces y aves.
- Aproximaciones hidráulicas: definen parámetros físicos limitantes para hábitats o especies, tales como calados mínimos o superficies mínimas. A partir del estudio de la relación entre estos parámetros hidráulicos se definen los volúmenes mínimos de agua en el humedal.
- Aproximaciones hidrobiológicas: analizan las respuestas de determinadas especies a los cambios en el régimen de inundación o los hidroperiodos. Se denominan también métodos de simulación de hábitat, y definen las necesidades hídricas de los humedales a partir de un estudio exhaustivo de los parámetros hidráulicos de una especie o comunidad representativa del humedal. La vegetación perilagunar destaca como un grupo idóneo en este tipo de aproximaciones. Gran parte del valor ecológico de humedales guarda relación con la composición y estructura de la vegetación, constituyendo en sí misma hábitats con interés de conservación y albergando una buena parte de la biodiversidad de estos humedales.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

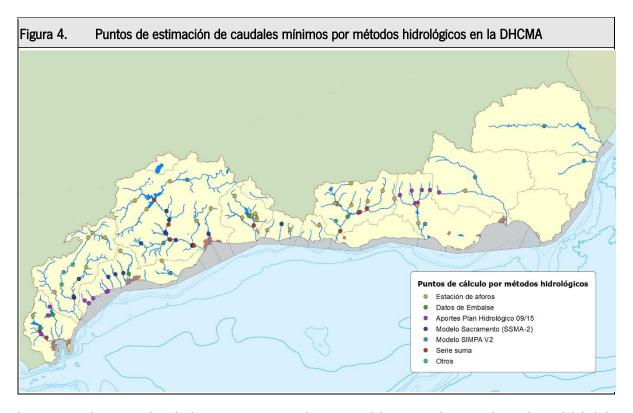
DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

6 **RESULTADOS**

6.1 REGÍMENES DE CAUDALES ECOLÓGICOS

Los principales análisis relativos a los caudales ecológicos en las masas de agua seleccionadas incluyen, tal y como se ha expuesto en el apartado metodológico, el estudio de las siguientes componentes del régimen:

- Por una parte se han determinado los caudales mínimos precisos desde la perspectiva hidrológica y de modelización de hábitat. Según las regulaciones de la IPHA se ha obtenido el caudal mínimo por ajuste de los resultados obtenidos con métodos hidrológicos a los resultados obtenidos a partir de la simulación de la idoneidad del hábitat.
- Una segunda componente del estudio consiste en determinar los caudales máximos que pueden circular sin menoscabo de los valores ambientales del ecosistema. El estudio se restringe a aquellas masas de agua por debajo de las grandes infraestructuras de regulación y que forman parte de cauces que son utilizados como elementos de transporte de volúmenes relevantes de agua para grandes consumidores, generalmente de regadío. Los estudios tienen igualmente una doble componente hidrológica y eco-hidrológica.
- Independientemente, se han obtenido en el estudio los hidrogramas de las avenidas que, con período de retorno limitado, deberían ser garantizadas en aquellas masas de agua en las que los embalses de regulación en operación las han erradicado. Estas crecidas sólo se deberán implementar con una periodicidad baja y, normalmente, coincidiendo con períodos hidrológicos húmedos.


6.1.1 DISTRIBUCIÓN TEMPORAL DE CAUDALES MÍNIMOS

6.1.1.1 MÉTODOS HIDROLÓGICOS

La estimación de los caudales mínimos por métodos hidrológicos se ha realizado en un total de 96 puntos, repartidos en las 119 masas de agua de la categoría río que no son embalses ni se corresponden con masas artificiales de la DHCMA.

Estos puntos, junto con la metodología empleada para la construcción de la serie en régimen natural, se pueden observar en la siguiente figura:

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

La ausencia de puntos de cálculo en ciertas masas de agua se debe principalmente a la no disponibilidad de datos para construir una serie en régimen natural, o bien a la imposibilidad de aplicar un régimen de caudales ecológicos en dichos tramos.

En estos puntos se han calculado los siguientes valores de caudales mínimos: QBM media, QBM mediana, Q 90d, Q pendiente, Percentil 5 y Percentil 15.

6.1.1.2 MÉTODOS DE MODELIZACIÓN DEL HÁBITAT

6.1.1.2.1 SELECCIÓN DE MASAS DE ESTUDIO

De las 133 masas de agua de la categoría ríos presentes en la DHCMA se han seleccionado un total de 32 tramos para realizar los trabajos de modelización de la idoneidad de hábitat. Esta cifra supone un 24% de masas totales de la categoría río, lo que se encuentra por encima del 10% mínimo que recomienda la IPHA.

Los tramos seleccionados se encuentran repartidos por todo el ámbito de la demarcación de modo que se cubran todas las tipologías de masas río de la DHCMA, así como las distintas clases de masa según su régimen de caudales. En esta selección se incluyen tramos tanto de importancia estratégica como de importancia ambiental, quedando representados todos los subsistemas de explotación.

Los tramos seleccionados, en los que se han hecho los trabajos de campo necesarios para la modelización de hábitat, se recogen en la siguiente figura:

ANEJO V

Además, se ha contado con los resultados del trabajo realizado por la Consejería de Medio Ambiente de la Junta de Andalucía "Evaluación de la calidad ecológica del río Trevélez y determinación de sus caudales ecológicos", del que se ha seleccionado uno de los siete tramos en los que se ha hecho modelización del hábitat.

6.1.1.2.2 SELECCIÓN DE ESPECIES OBJETIVO

Tal y como se ha comentado en el apartado de metodología, se ha determinado para cada masa de agua la especie o especies objetivo sobre las que centrar los trabajos de modelización. Finalmente se han seleccionado aquellas para las que se dispone de curvas de preferencia, que son:

- Salmo trutta (trucha), en un 30% de los tramos estudiados.
- Barbus sclateri (barbo gitano), en un 64% de los tramos estudiados.
- Pseudochondrostoma willkommii (boga del Guadiana), en un 30% de los tramos estudiados.

Normalmente se ha seleccionado una única especie por tramo. Sin embargo, en las masas en las que además del barbo gitano aparece la boga del Guadiana, se han elegido ambas, por ser la boga una variedad exclusiva de los ríos del Mediterráneo sur, seleccionando en estos casos los valores de caudales por modelización de la especie que arroje los resultados más restrictivos.

Por otra parte, se ha tenido en cuenta la importancia de la presencia del fartet (*Aphanius iberus*) en la cuenca baja del río Adra, que constituye el área de distribución más meridional de este endemismo ibérico, si bien no ha sido posible incluirlo como especie objetivo en los trabajos de modelización del hábitat al no existir curvas de preferencia en el momento de realizar los trabajos.

ANEJO V

6.1.1.2.3 MODELIZACIÓN DEL HÁBITAT

De las 32 masas de agua en las que se ha hecho la modelización del hábitat, en la práctica totalidad se han realizado los trabajos en dos dimensiones, excepto en 2 de ellas (Medio Guadalfeo y Bajo Lanjarón), en las que debido a la densidad de la vegetación se han realizado en una dimensión.

Para la modelización se han empleado las siguientes curvas ya existentes:

- Trucha (Salmo trutta), elaborada por García Jalón et al. (1997).
- Barbo gitano (Barbus sclateri), elaborada por Martínez Capel (2004).
- Boga del Guadiana (Pseudochondrostoma willkommii), elaborada por Ecohidráulica S.L. (2009).

Para cada masa se han analizado los resultados de las curvas HPU-Caudal, tanto para los tres estadios estudiados (adultos, juveniles y alevines), como para las curvas combinadas (periodo húmedo y periodo seco), determinándose para cada una de ellas los caudales correspondientes al cambio de pendiente y al 80%, 50% y 30% del HPU máximo.

6.1.1.3 DISTRIBUCIÓN TEMPORAL DE CAUDALES MÍNIMOS

La propuesta de regímenes de caudales ecológicos mínimos se ha realizado para un total de 22 puntos situados en las 20 masas de agua de la DHCMA consideradas como estratégicas. Estos puntos y masas de agua se recogen en la siguiente figura:

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

La propuesta de régimen de caudales mínimos se incluye en la siguiente tabla:

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS

Tabla :	abla 1. Propuesta de régimen de caudales mínimos Muy alterada F																				
Subsis-	ı	Masa de agua	1	01	Muy alterada	Especie					Ré	gimen d	le caud	ales mí	nimos (m³/s)					
tema	Código	Nombre	Lugar	Clasificación	hidrológica- mente	objetivo	Propuesta	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Anual	% Nat
	0611050	Bajo Palmones	Presa de Charco Redondo	Intermitente	Sí	-	Régimen final	0,04	0,13	0,36	0,27	0,21	0,17	0,11	0,06	0,03	0,03	0,03	0,03	0,12	12%
I-1	0011030	Bajo Faiifiories	Aguas abajo de afluentes	Permanente	Sí	Barbo gitano	Régimen final	0,32	0,55	0,88	0,69	0,62	0,46	0,38	0,25	0,08	0,08	0,08	0,08	0,37	14%
		Medio y Bajo Guadarranque	Presa de Guadarranque	Intermitente	Sí	Boga del Guadiana	Régimen final	0,05	0,08	0,30	0,23	0,19	0,15	0,08	0,06	0,05	0,05	0,05	0,05	0,11	7%
	0612061	Guadiaro Buitreras- Corchado	Buitreras (EA 6033)	Permanente	No	-	Régimen final	0,65	1,44	1,44	1,44	1,44	1,44	1,44	0,65	0,65	0,65	0,65	0,65	1,04	13%
I-2	0612062	Paia Cuadiava	San Pablo Buceite (EA	Permanente	No	Boga del	Régimen transitorio	0,63	1,50	2,00	1,95	1,77	1,31	0,65	0,30	0,30	0,30	0,30	0,30	0,94	8%
	0612062	Bajo Guadiaro	6060)	Permanente	INO	Guadiana	Régimen final	0,63	1,50	2,00	1,95	1,77	1,31	1,16	0,90	0,60	0,41	0,31	0,30	1,07	9%
	0613062	Daia Considerance	T	D	Sí		Régimen transitorio	0,13	0,18	0,18	0,18	0,18	0,18	0,18	0,16	0,15	0,09	0,07	0,08	0,15	26%
	0613062	Bajo Guadalmansa	Tras trasvase	Permanente	51	-	Régimen final	0,13	0,26	0,30	0,29	0,24	0,19	0,18	0,16	0,15	0,09	0,07	0,08	0,18	31%
12	0613072Z	Medio y Bajo	T	D	C;	Daula aitana	Régimen transitorio	0,14	0,20	0,20	0,20	0,20	0,20	0,20	0,18	0,17	0,11	0,09	0,09	0,16	26%
I-3	06130722	Guadalmina	Tras trasvase	Permanente	Sí	Barbo gitano	Régimen final	0,14	0,29	0,34	0,33	0,27	0,22	0,20	0,18	0,17	0,11	0,09	0,09	0,20	32%
	00120007	Madia o Daia Coa Li	T b	Damasa	Ci		Régimen transitorio	0,10	0,15	0,15	0,15	0,15	0,15	0,15	0,14	0,14	0,09	0,07	0,07	0,12	26%
	100130922	Medio y Bajo Guadaiza	iras trasvase	Permanente	Sí	-	Régimen final	0,10	0,21	0,26	0,24	0,20	0,17	0,15	0,14	0,14	0,09	0,07	0,07	0,15	32%

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS

Tabla 1	abla 1. Propuesta de régimen de caudales mínimos Muy alterada F																				
Subsis-	١	Masa de agua	1	01	Muy alterada	Especie					Ré	gimen d	le caud	ales mí	nimos ((m³/s)					
tema	Código	Nombre	Lugar	Clasificación	hidrológica- mente	objetivo	Propuesta	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Anual	% Nat
	0613140	Bajo Verde de Marbella	Presa de La	Permanente	Sí	Boga del	Régimen transitorio	0,15	0,25	0,25	0,25	0,25	0,25	0,25	0,19	0,15	0,12	0,09	0,11	0,19	9%
	0013140	bajo verde de Marbella	Concepción	remanente	31	Guadiana	Régimen final	0,15	0,28	0,40	0,36	0,34	0,33	0,26	0,19	0,15	0,15	0,15	0,15	0,24	11%
	06141504	Guadalhorce entre Tajo de la Encantada y	Presa de La	Permanente	Sí	Barbo gitano	Régimen transitorio	0,30	0,35	0,35	0,35	0,35	0,35	0,35	0,30	0,30	0,30	0,30	0,30	0,33	7%
	0614150A	Jévar	Encantada	remanente	31	Darbo gitario	Régimen final	0,47	0,59	0,75	0,80	0,79	0,73	0,64	0,57	0,45	0,32	0,30	0,33	0,56	13%
	0.51.4000	5 . 6			0/		Régimen transitorio	0,02	0,05	0,05	0,05	0,05	0,05	0,05	0,02	0,02	0,02	0,02	0,02	0,04	8%
I-4	0614200	Bajo Campanillas	Presa de Casasola	Permanente	Sí	Barbo gitano	Régimen final	0,02	0,05	0,09	0,08	0,07	0,06	0,05	0,04	0,03	0,02	0,02	0,02	0,05	10%
	0014010	Daia Constallance	A d- Alii	Damasasas	C;	Boga del	Régimen transitorio	0,55	0,70	0,70	0,70	0,70	0,70	0,70	0,55	0,55	0,55	0,55	0,55	0,63	7%
	0614210	Bajo Guadalhorce	Azud de Aljaima	Permanente	Sí	Guadiana	Régimen final	0,65	0,85	1,27	1,58	1,60	1,05	0,80	0,73	0,63	0,56	0,55	0,55	0,90	10%
	0614250	Bajo Guadalmedina	Presa del Limonero	Temporal	Sí	-	Régimen final	0,02	0,04	0,05	0,08	0,06	0,05	0,05	0,03	0,01	0,01	0,01	0,01	0,03	8%
	0001000		Salto del Negro (EA	T	0'	D. J. J.	Régimen transitorio	0,05	0,14	0,20	0,22	0,21	0,18	0,16	0,13	0,10	0,07	0,03	0,02	0,13	18%
	0621060	Benamargosa	6047)	Temporal	Sí	Barbo gitano	Régimen final	0,05	0,25	0,39	0,45	0,44	0,35	0,28	0,22	0,19	0,07	0,03	0,02	0,23	33%
II-1	0001070	V/I D : 0	D	1.1	01		Régimen transitorio	0,06	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,00	0,00	0,00	0,08	5%
	0621070	Vélez y Bajo Guaro	Presa de la Viñuela	Intermitente	Sí	-	Régimen final	0,06	0,19	0,37	0,20	0,18	0,20	0,18	0,22	0,11	0,00	0,00	0,00	0,14	9%

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS

Tabla 1	i. P	ropuesta de régim	ien de caudales n	HIHITIOS																	
Subsis-	ı	Masa de agua	Lugar	Clasificación	Muy alterada hidrológica-	Especie					Ré	gimen o	de caud	ales mi	nimos ((m³/s)					
tema	Código	Nombre	Lugar	Ciasilicación	mente	objetivo	Propuesta	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Anual	% Nat
			A. abajo de los	Temporal	Sí	Barbo gitano	Régimen transitorio	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,03	0,01	0,01	0,12	5%
			afluentes de la MI	remporar	31	Daibo gitario	Régimen final	0,15	0,27	0,45	0,32	0,30	0,30	0,25	0,26	0,15	0,03	0,01	0,01	0,21	9%
	0632040	Medio y Bajo Trévelez-	Central Pampaneira (EA 6055)	Permanente	No	Trucha	Régimen final	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	50%
	0632040	Poqueira	Azud Trevélez (EA 6103)*	Permanente	Sí	Trucha	Régimen final	0,20	0,20	0,39	0,38	0,39	0,40	0,43	0,47	0,46	0,20	0,20	0,20	0,33	29%
III-2	0632130	Izbor entre Béznar y Rules	Presa de Béznar	Permanente	Sí	Trucha	Régimen final	0,20	0,23	0,25	0,25	0,26	0,26	0,24	0,25	0,23	0,16	0,13	0,16	0,22	11%
	0632150	Daile Considerity	Presa de Rules	Permanente	Sí	Trucha	Régimen final	0,52	0,70	0,80	0,78	0,78	0,77	0,78	0,90	0,82	0,46	0,30	0,31	0,66	11%
	0632150	Bajo Guadalfeo	Azud de Vélez	Permanente	Sí	Trucha	Régimen final	0,25	0,25	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,25	0,25	0,25	0,34	6%
III-4		Adra entre presa y Fuentes de Marbella	Presa de Benínar	Permanente	Sí	-	Régimen final	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IV-1	0641020	Medio y Bajo Canjáyar	Canjáyar (EA 6024)	Permanente	Sí	Trucha	Régimen transitorio	0,05	0,06	0,07	0,07	0,07	0,08	0,10	0,07	0,02	0,02	0,02	0,02	0,05	18%
14-1	0041020	iweulo y bajo Ganjayar	Canjayar (EA 0024)	remanente	31	ITUCIIA	Régimen final	0,05	0,06	0,07	0,07	0,07	0,08	0,10	0,07	0,05	0,05	0,04	0,04	0,06	20%

^{*}Régimen de caudales ecológicos mínimos modificado como resultado del proceso de concertación

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

En la mayor parte de las masas la propuesta consiste en un único régimen de mínimos, pero para algunas de ellas se ha considerado necesario dar dos: un régimen transitorio y otro régimen final que corresponde al escenario en el que se hayan llevado a cabo las actuaciones previstas en el Programa de Medidas necesarias para hacer posible la implantación de estos regímenes.

A continuación se recogen una serie de consideraciones acerca de los regímenes propuestos en cada masa de agua:

SUBSISTEMA I-1

Guadarrangue y Palmones:

Tanto para el río Palmones como para el Guadarranque la propuesta de régimen de caudales ecológicos mínimos es única, puesto que en circunstancias normales existen recursos suficientes para mantener estos caudales. En ambos casos el régimen de mínimos incluye un caudal de dilución del 3% del caudal medio anual durante los meses de verano.

SUBSISTEMA I-2

Buitreras:

El objetivo final es alcanzable en el primer horizonte, y requeriría una revisión de los términos concesionales de Endesa Generación en el aprovechamiento de Buitreras para incluir un condicionado ambiental de acuerdo con estos caudales, al margen de las modificaciones en la toma para el trasvase Guadiaro-Majaceite.

San Pablo Buceite:

En el Bajo Guadiaro se propone de forma transitoria rebajar el régimen de caudales ecológicos en el periodo de riegos (abril-septiembre) para equipararlo a los equivalentes al 50% del HPU máximo. Una rebaja mayor afectaría negativamente al LIC "Estuario del Río Guadiaro", situado aguas abajo de este tramo. Se establece este régimen transitorio hasta que se hayan realizado las actuaciones necesarias para corregir los déficit estivales.

SUBSISTEMA 1-3

Guadaiza, Guadalmina y Guadalmansa:

Para los trasvases de los ríos Guadaiza, Guadalmina y Guadalmansa la propuesta final corresponde al escenario en el que se hayan construido las infraestructuras previstas de desalación y reutilización, ya esté plenamente operativo un sistema de gestión mancomunado de los recursos y se haya corregido la sobreexplotación de los acuíferos. Entretanto, se propone limitar los caudales ecológicos en el periodo invernal a los correspondientes al 50% del HPU máximo.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

La Concepción:

El régimen propuesto resulta de rebajar el hidrológico de modo que esté por encima del 50% del HPU máximo, salvo los meses de verano, en los que coincide con dicho valor. Esta propuesta final corresponde al escenario en el que se hayan construido las infraestructuras previstas de desalación y reutilización, ya esté plenamente operativo un sistema de gestión mancomunado de los recursos y se haya corregido la sobreexplotación de los acuíferos. Transitoriamente se propone un régimen equivalente al 50% del HPU máximo, salvo en los meses estivales, en los que se adopta el hidrológico, cuyo valor mínimo es el 30% del HPU máximo, pues se trata de una masa muy alterada hidrológicamente.

El tramo está situado en el LIC fluvial "Río Verde", pero este régimen, al estar en la actualidad el cauce desconfigurado, no va a cubrir las necesidades ecológicas del tramo en su estado actual, siendo tras la restauración del cauce cuando se alcanzaría el 50% del HPU máximo.

SUBSISTEMA 1-4:

La Encantada:

Dada la grave problemática de déficit aguas abajo de los embalses del Guadalhorce, se propone para la presa de la Encantada un régimen de caudales ecológicos transitorio que equivale al 50% del HPU máximo (se trata de un LIC fluvial) a la espera de la realización de las distintas actuaciones planificadas para corregir el actual desequilibrio en los balances (corrección de vertidos salinos, reutilización en riegos agrícolas, desalación de agua de mar como apoyo al abastecimiento urbano, etc.).

La incidencia del mantenimiento de dicho caudal ecológico sobre las garantías de suministro de las demandas podrían verse minimizadas dejando que parte de los caudales destinados al abastecimiento de Málaga circulasen por el río hasta el azud de Aljaima, siendo desde allí incorporados a la ETAP de El Atabal.

Azud de Aljaima:

Por idénticas razones, se hace también una propuesta transitoria de caudales ecológicos aguas abajo del azud de Aljaima.

Casasola:

Aguas abajo del embalse de Casasola, al igual que en los otros dos tramos de la cuenca del Medio-Bajo Guadalhorce, se propone un régimen transitorio reducido, pero en este caso equivale al 30% del HPU máximo, al tratarse de una masa de agua muy modificada por alteración de su régimen hidrológico sin ninguna figura de protección. Además, para que el régimen sea realmente efectivo, sería necesaria la restauración del cauce (fuertemente desestabilizado) para devolverle su morfología natural.

El Limonero:

A pesar de tratarse de un tramo encauzado de muy reducido potencial ambiental, cuenta con uso potencial en ocio y una problemática de vertidos descontrolados y malos olores, por lo que se propone un caudal mínimo que

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

cumpla funciones estéticas e higiénicas. Este régimen podrá ser revisado en función de evaluaciones posteriores de la calidad del agua circulante en el periodo de estiaje, así como de la propia eficacia de los vertidos desde la presa para cumplir con los objetivos perseguidos, ya que podría suceder que la totalidad de los caudales liberados se infiltren en el acuífero aluvial, en cuyo caso habría que reconsiderar la pertinencia de establecer un régimen de caudales ecológicos mínimos en la presa.

SUBSISTEMA II-1

Benamargosa:

Al igual que en otros sectores, éste presenta en la actualidad una cierta insuficiencia de recursos disponibles, por lo que se propone un régimen transitorio equivalente al obtenido por métodos hidrológicos pero suprimiendo la posibilidad de trasvases en el periodo de verano. La aplicación efectiva de este régimen de caudales ecológicos requerirá de una actuación para restituir el dique a su estado inicial mediante la limpieza de los aterramientos.

Vélez y bajo Guaro:

Para el río Vélez-Guaro en sus dos emplazamientos, el primero aguas abajo de la presa de La Viñuela y el segundo tras la confluencia de los afluentes de la margen izquierda, al tratarse de una masa muy modificada por alteración de su régimen hidrológico y en un sector que en la actualidad presenta una cierta insuficiencia de recursos disponibles, se propone, a la espera de que se lleven a cabo las actuaciones necesarias para resolver esta problemática, un régimen transitorio que se corresponde con el 30% del HPU máximo, salvo en los meses de verano. En dichos meses, el caudal vertido desde el embalse de La Viñuela sería nulo, al tratarse de un curso de agua temporal, mientras que en las presas de derivación de los afluentes de la margen izquierda se interrumpirían los trasvases (al igual que desde las presas del Benamargosa).

Por otra parte, también en este caso el estado de aterramiento actual de los diques de derivación impide la aplicación efectiva de cualquier régimen de caudales ecológicos, por lo que se hace necesario realizar actuaciones de limpieza de acarreos para restituir estas obras a su estado inicial.

SUBSISTEMA III-2

Trévelez:

Para el río Trevélez, al tratarse de una masa situada en un espacio protegido (LIC "Sierra Nevada"), la propuesta se sitúa entre el 50% y el 80% del HPU máximo. Dicho régimen se establece para el punto de derivación de la acequia real de Cástaras, por la que se conducen los caudales para el abastecimiento urbano del sistema de la Contraviesa, y que se localiza en el límite del Parque Nacional Sierra Nevada, y deja por otro lado un margen de caudales disponibles durante el periodo de estiaje para los aprovechamientos existentes a lo largo de toda la masa que, en cualquier caso, deberán respetar un caudal mínimo de al menos el 50% del HPU máximo.

Aunque en principio no se considera necesario establecer un régimen transitorio, la implantación efectiva del régimen propuesto podría demorarse en función de la marcha de los trabajos de modernización de los regadíos,

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

si bien dicho retraso sólo sería admisible si no compromete el objetivo de alcanzar el buen estado en ese horizonte.

Poqueira:

Se trata de un tramo afectado fundamentalmente por aprovechamientos hidroeléctricos y situado en el LIC "Sierra Nevada", por lo que el régimen propuesto se corresponde con el 80% del HPU máximo, no pudiéndose derivar cuando los caudales circulantes por el río se sitúen por debajo de este valor.

La implantación de dicho régimen y del que se establezca para la masa situada aguas arriba (central Poqueira) requerirá la revisión de los términos concesionales de los aprovechamientos hidroeléctricos para incorporar los consiguientes condicionados ambientales. Por otra parte, además de dichos aprovechamientos, existen en la masa diversas derivaciones para riego en las que en el curso del proceso de implantación, y una vez realizados los estudios pendientes para evaluar las medidas de mejora de la eficiencia, deberán establecerse las correspondientes restricciones ambientales en los términos establecidos en la normativa vigente.

Béznar:

En el caso del embalse de Béznar, el régimen de caudales ecológicos propuesto (obtenido de adaptar los resultados hidrológico al 50% del HPU máximo) pretende la conservación de los hábitats ribereños del tramo situado entre el pie de la presa y la cola del embalse de Rules. Dichos caudales serían posteriormente regulados en este último.

Rules:

Entre la presa de Rules y el azud de Vélez, el régimen de caudales propuesto pretende el no deterioro del ecosistema fluvial, en la actualidad bien conservado, así con el mantenimiento de los valores de este tramo para usos recreativos.

No obstante, además de dichos caudales, se ha previsto el vertido desde la presa de un caudal de saturación del aluvial equivalente a 20 hm³ al año, evaluación que procede del proyecto de la obra de regulación y que deberá ser revisado mediante aforos diferenciales para determinar el régimen definitivo de vertidos desde el embalse necesario para la implantación de los caudales ecológicos.

Azud de Vélez:

Para el Guadalfeo aguas abajo del azud de Vélez se propone un régimen de caudales ecológicos mínimos situado entre el 30% y el 50% del HPU máximo, pues se trata de un tramo alterado hidrológicamente sin ninguna figura de protección.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

SUBSISTEMA III-4

Benínar:

Los caudales ecológico aguas abajo de las Fuentes de Marbella se encuentran en la actualidad plenamente garantizados por las cuantiosas fugas desde el embalse, que resurgen en dicho manantial. La implantación de un régimen de vertidos desde la presa con fines ambientales en el tramo intermedio se considera en principio no viable en los horizontes del Plan, en tanto no se resuelva la crítica situación deficitaria des subsistema III-4 y, sobre todo, no resulten efectivas las actuaciones de impermeabilización del vaso del embalse para disminuir las filtraciones.

SUBSISTEMA IV-1

Canjáyar:

La posibilidad de mantenimiento del régimen de caudales ecológicos dependerá de la finalización del proceso de modernización de los regadíos en la comarca del Alto y Medio Andarax, obra declarada de interés general y en cuyo marco deberá dotarse al área de riego de una importante capacidad de almacenamiento de aguas invernales, de manera que contribuya a reducir la presión extractiva durante el periodo de estiaje. En tanto no estén finalizadas estas obras se establece un régimen transitorio que es igual al definitivo salvo en el periodo junio-septiembre, durante el que se hace equivaler al 30% del HPU máximo.

SUBSISTEMA V-2:

Cuevas de Almanzora:

El carácter totalmente artificial del tramo encauzado desde el pie de presa hasta la desembocadura del río en el mar permite descartar el interés de establecer un régimen de flujo con fines ambientales en dicho tramo, circunstancia a la que se le añade el hecho de que el embalse de Cuevas de Almanzora permanezca desde hace casi diez años fuera de servicio por la ausencia total de reservas.

6.1.2 DISTRIBUCIÓN TEMPORAL DE CAUDALES MÁXIMOS

El régimen de máximos se ha calculado en aquellas masas situadas aguas abajo de infraestructuras hidráulicas que tienen capacidad de regulación. Este régimen se define para dos periodos hidrológicos:

- Periodo húmedo: de noviembre a abril, salvo para las masas del sistema III-2, que por tener un régimen nival, se considera de diciembre a junio.
- Periodo seco: de mayo a octubre, salvo para las masas del sistema III-2, que por tener un régimen nival, se considera de julio a noviembre.

A continuación se incluye una tabla con la propuesta de régimen de caudales máximos en las masas de agua estratégicas de la demarcación:

ANEJO V

Tabla 2	2. Pro	puesta de régimen	de caudales máximos				
Subsis	Ма	sa de agua	Infraestructura de	P 90	(m³/s)		le máximos ³/s)
tema	Código	Nombre	regulación	Periodo húmedo	Periodo seco	Periodo húmedo	Periodo seco
1	0611050	Bajo Palmones	Presa de Charco Redondo	5,54	0,39	5,5	5,5
I-1	0611110Z	Medio y Bajo Guadarranque	Presa de Guadarranque	4,06	0,05	4,1	4,1
I-3	0613140	Bajo Verde de Marbella	Presa de la Concepción	8,92	1,00	8,9	8,9
1-4	0614150A	Guadalhorce entre Jévar y Grande	Presa de La Encantada	15,46	3,75	15,5	3,8
	0614200	Bajo Campanillas	Presa de Casasola	4,08	0,17	4,1	1,3
II-1	0621070	Vélez y Bajo Guaro	Presa de la Viñuela	4,85	0,90	4,9	0,9
III-2	0632130A	Ízbor entre Béznar y Rules ¹	Presa de Béznar	3,40	2,75	3,4	3,4
	0632150	Bajo Guadalfeo ¹	Presa de Rules	15,73	6,07	13,5	13,5

¹ El tramo no reúne condiciones para los alevines en el periodo seco, por lo que se le pone la misma limitación que para el periodo húmedo (juveniles). Según la validación biológica, admitiría valores sensiblemente superiores.

Este régimen de máximos no deberá ser superado durante la operación y gestión ordinaria de las infraestructuras hidráulicas, no siendo de aplicación en las operaciones para mantenimiento y garantizar la seguridad en las presas.

6.1.3 RÉGIMEN DE CRECIDAS

El régimen de crecidas se ha estimado aguas abajo de los embalses de la demarcación, calculándose para los distintos periodos de retorno su magnitud, duración, frecuencia y tasa de cambio.

A continuación se recoge la propuesta de régimen de crecidas en las masas de agua estratégicas de la demarcación:

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS

Tabla 3.	Propuesta de régin	nen de crec	idas								
Ciatama /				Fraguancia		Magnitud		Duración		Tasa máxim	a de cambio
Sistema / Subsistema	Masa de agua	Código	Infraestructura	Frecuencia (años)	Caudal punta (m³/s)	Volumen total (hm³)	% apo. natural	media (días)	Estacionalidad	Ascendente (m³/s/día)	Descendente (m³/s/día)
	Bajo Palmones	0611050	Presa de Charco Redondo	T = 5,5	50,1	9,6	28,7%	4	Dic - Ene	34,7	-24,2
I-1	Medio y Bajo Guadarranque	0611110Z	Presa de Guadarranque	T = 5,5	54,3	10,7	40,4%	7	Dic - Feb	50,1	-31,1
I-3	Bajo Verde de Marbella	0613140	Presa de La Concepción	T = 5,5	38,9	11,7	17,1%	5	Nov - Mar	9,1	-8,0
1-4	Guadalhorce entre Tajo de la Encantada y Jévar	0614150A	Presa de La Encantada	T = 5,5	82,3	24,7	17,5%	7	Ene - Mar	57,8	-27,9
	Bajo Campanillas	0614200	Presa de Casasola	T = 5,5	27,5	4,4	16,2%	4	Oct - Feb	14,2	14,7
II-1	Vélez y Bajo Guaro	0621070	Presa de La Viñuela	T = 5,5	12,5	2,9	5,6%	4	Ene - May	7,8	-5,2
111.0	Ízbor entre Béznar y Rules	0632130A	Presa de Béznar	T = 5,5	8,6	2,5	4,1%	6	Sep -Jun	4,1	-3,7
III-2	Bajo Guadalfeo	0632150	Presa de Rules	T = 5,5	40,3	12,5	6,7%	4	Nov - Feb	7,0	-3,7
III-4	Adra entre presa y Fuentes de Marbella	0634070A	Presa de Benínar	T = 5,5	12,2	3,7	11,2%	5	Sep - May	2,7	-7,2

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

Dado que dichas crecidas se definen para mantener un cauce bien conformado, solo será necesario generarlas si se superase el periodo indicado sin que de manera natural o artificial haya discurrido un evento de magnitud equivalente o superior aguas abajo de la presa.

En el caso del embalse de Casasola, dada su reducida capacidad y que el objetivo principal de su construcción fue precisamente la protección del Bajo Guadalhorce frente a sus violentas avenidas (para lo cual se mantiene de manera permanente una amplia reserva para laminación), además de ser el Bajo Campanillas una masa muy modificada por alteración de su régimen hidrológico, se ha optado por fijar como régimen de crecidas el que resulta del análisis para un periodo de retorno de 2 años, aunque generando tales eventos con la periodicidad correspondiente al de 5,5.

Para la presa de Benínar, a la espera del resultado de las actuaciones previstas para estabilizar la ladera de la margen derecha, mejorar la estanqueidad del vaso del embalse y reducir sus cuantiosas fugas, se establece como régimen transitorio de crecidas el consistente en la generación de eventos de características análogas al propuesto como régimen definitivo, pero introduciendo como factor adicional condicionante de su periodicidad el que el estado de las reservas embalsadas supere los 26,4 hm³ (cota 345).

Respecto a los trasvases internos, la política a seguir en los que se realizan al embalse de La Concepción consistirá en que cada año, de forma alterna, cada una de las presas de derivación interrumpiera los trasvases durante el periodo de aguas altas, de modo que el río aguas abajo funcione en régimen natural durante dicho periodo, permitiendo así la conservación de las características morfológicas del cauce. Idéntica política debería aplicarse para los trasvases a La Viñuela, si bien en éstos, además de mantener los desagües de fondo permanentemente abiertos durante dichos periodos, sería necesaria la instalación de compuertas en las tomas de derivación para permitir su cierre temporal.

ANEJO V

6.1.4 REGÍMENES DE CAUDALES DURANTE SEQUÍAS PROLONGADAS

Para algunas masas de agua se ha considerado necesario definir un régimen de caudales durante sequías prolongadas. Este régimen menos exigente se aplica en 19 de los 22 puntos que cuentan con un régimen de caudales ecológicos.

El la figura adjunta se muestran las masas que cuentan con un régimen de caudales durante sequías prolongadas:

En la siguiente tabla se incluye dicha propuesta:

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS

Tabla 4.	Pro	opuesta de régimen de caudales dura	nte sequías prolongadas	\$													
Subsis-		Masa de agua	1				Régim	nen de d	caudales	durant	e sequía	as prolo	ngadas	(m³/s)			
tema	Código	Nombre	Lugar	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Anual	% Nat
	0611050	Bajo Palmones	Presa de Charco Redondo	0,01	0,13	0,20	0,20	0,20	0,17	0,11	0,01	0,01	0,01	0,01	0,01	0,09	8%
I-1	0611050	Dajo raimones	Aguas abajo de afluentes	0,01	0,20	0,20	0,20	0,20	0,20	0,20	0,01	0,01	0,01	0,01	0,01	0,11	4%
	0611110Z	Medio y Bajo Guadarranque	Presa de Guadarranque	0,05	0,08	0,08	0,08	0,08	0,08	0,08	0,06	0,05	0,05	0,05	0,05	0,06	4%
I-2	0612062	Bajo Guadiaro	San Pablo Buceite (EA 6060)	0,30	0,65	0,65	0,65	0,65	0,65	0,65	0,30	0,30	0,30	0,30	0,30	0,48	4%
	0613062	Bajo Guadalmansa	Presa de derivación ¹	0,13	0,18	0,18	0,18	0,18	0,18	0,18	0,16	0,15	0,09	0,07	0,08	0,15	26%
I-3	0613072Z	Medio y Bajo Guadalmina	Presa de derivación ¹	0,14	0,20	0,20	0,20	0,20	0,20	0,20	0,18	0,17	0,11	0,09	0,09	0,16	26%
1-5	0613092Z	Medio y Bajo Guadaiza	Presa de derivación ¹	0,10	0,15	0,15	0,15	0,15	0,15	0,15	0,14	0,14	0,09	0,07	0,07	0,12	26%
	0613140	Bajo Verde de Marbella	Presa de La Concepción ¹	0,15	0,25	0,25	0,25	0,25	0,25	0,25	0,19	0,15	0,12	0,09	0,11	0,19	9%
	0614150A	Guadalhorce entre Tajo de la Encantada y Jévar	Presa de La Encantada	0,30	0,35	0,35	0,35	0,35	0,35	0,35	0,30	0,30	0,30	0,30	0,30	0,33	7%
I-4	0614200	Bajo Campanillas	Presa de Casasola ¹	0,02	0,05	0,05	0,05	0,05	0,05	0,05	0,02	0,02	0,02	0,02	0,02	0,04	8%
	0614210	Bajo Guadalhorce	Azud de Aljaima ¹	0,55	0,70	0,70	0,70	0,70	0,70	0,70	0,55	0,55	0,55	0,55	0,55	0,63	7%
	0621060	Benamargosa	Salto del Negro (EA 6047)	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,03	0,02	0,05	7%
II-1	0621070	William Delia Course	Presa de La Viñuela ¹	0,06	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,00	0,00	0,00	0,08	5%
	0621070	Vélez y Bajo Guaro	Aguas debajo de afluentes MI ¹	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,03	0,01	0,01	0,12	5%
	0632040	Medio y Bajo Trevélez-Poqueira	Azud Trevélez	0,10	0,10	0,30	0,30	0,30	0,30	0,30	0,30	0,30	0,10	0,10	0,10	0,22	19%
111.2	0632130A	Ízbor entre Béznar y Rules	Presa de Béznar	0,08	0,08	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,08	0,08	0,08	0,06	3%
	II-2	Paia Cuadalfaa	Presa de Rules	0,15	0,15	0,30	0,30	0,30	0,30	0,30	0,30	0,30	0,15	0,15	0,15	0,24	4%
	0032150	Bajo Guadalfeo	Azud de Vélez	0,15	0,15	0,30	0,30	0,30	0,30	0,30	0,30	0,30	0,15	0,15	0,15	0,24	4%
IV-1	0641020	Medio y Bajo Canjáyar	Canjáyar	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,02	0,02	0,02	0,02	0,03	11%

¹ Coincidente con el régimen transitorio establecido en la propuesta de mínimos

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

De forma general, se ha fijado directamente como tope mínimo de caudales en situaciones de sequía el valor correspondiente al 30% del HPU máximo, umbral que sube hasta el 50% en los tramos incluidos en la Red Natura 2000. Estos regímenes rebajados serán vigentes sólo una vez decretada la sequía, circunstancias en que en los tramos protegidos será de aplicación la regla sobre supremacía del uso para abastecimiento, de acuerdo con lo establecido por la normativa vigente.

6.1.5 PRESENTACIÓN DE LOS RESULTADOS

Para facilitar el análisis por las partes interesadas, es imprescindible resumir los resultados en unos documentos rigurosos y manejables. Por lo tanto, se ha preparado para cada masa de agua estratégica unas fichas con el objetivo de compilar los trabajos realizados y presentarlos en forma sintética y clara, y que puedan servir como documento inicial del proceso de concertación.

Las fichas de presentación de resultados se incluyen en el Apéndice V.1 y recogen la siguiente información:

- · Localización del punto de estimación del régimen de caudales ecológicos
- Características de la serie de caudales en régimen natural
- Resultados de los estudios técnicos:
 - Resultados obtenidos por métodos hidrológicos
 - Resultados obtenidos por modelización del hábitat
 - o Comparación de los resultados obtenidos por ambas metodologías
- Propuesta de régimen de caudales mínimos
- Otros componentes del régimen de caudales ecológicos:
 - Caudales máximos
 - Tasa de cambio
 - o Régimen de crecidas
- Régimen de caudales durante sequías prolongadas
- Medidas programadas para la implantación del régimen de caudales ecológicos
- · Cumplimiento del régimen de caudales ecológicos

6.2 REQUERIMIENTOS HÍDRICOS DE LAGOS Y ZONAS HÚMEDAS

Los estudios realizados para los lagos y zonas húmedas seleccionados comprenden fundamentalmente dos apartados:

 Caracterización del lago o zona húmeda, en la que se incluyen las características más relevantes en relación con la climatología, geología, vegetación y fauna, valores ecológicos más relevantes y un análisis del funcionamiento hidrológico e hidrogeológico del lago.

ANEJO V

Estimación de las necesidades hídricas del humedal, en base al análisis de las características realizado en el punto anterior. Fundamentalmente, se ha tratado de establecer una relación entre las diferentes especies vegetales de la orla del lago, especialmente de aquellas con especial relevancia ecológica y alto grado de protección, y el mantenimiento de unas determinadas condiciones de superficie inundada y/o altura de la lámina de agua durante los períodos de tiempo en los que la vegetación presenta un estadio más sensible. Se concluye con una propuesta de umbral de altura de lámina o superficie encharcada que no debe ser rebasado en aras de la protección de la vegetación estudiada.

El acercamiento de la planificación a esta materia pretende aportar también directrices para la mejor gestión de estas áreas singulares. En consecuencia los estudios se han centrado en la aportación de sugerencias de índole práctica para aumentar los valores ambientales intrínsecos a los lagos y humedales.

6.2.1 SELECCIÓN DE LAGOS Y ZONAS HÚMEDAS

Para la selección de lagos y humedales en los que determinar sus necesidades hídricas se ha partido del total de 39 lagos y humedales recogidos en el Registro de Zonas Protegidas de la DHCMA. Posteriormente, se ha procedido a excluir aquellos que incumplen los criterios indicados en el apartado 5.2.1. Por último, se ha seleccionado el nivel de detalle en los estudios y el momento de realización de los mismos.

Tabla 5. Resultados genera	les del proceso de selección de h	numedales								
Hume	edales	N°								
Humedales de partida	·									
Humedales excluidos previamente:		7								
Humedales artificiales		2								
Humedales que no alcanz	5									
Humedales ligados a otras masas d	le agua superficial distintas de lagos	7								
	M1-T1	13								
	M1-T2	7								
Humedales en estudio	M2-T1	3								
	M2-T2	2								
	Total	25								

El listado de humedales sujetos al estudio de sus necesidades hídricas clasificados según el momento de realización y nivel de profundidad en los estudios son los siguientes:

Tabla 6. Humedales seleccionados clasificados según el momento de estudio y nivel de detalle											
Clase	Humedal	Masa de agua	Provincia								
1	Turberas de Padul	0632510 Turberas del Padul	Granada								
N/1 T1	Albufera Honda	0643500 Albufera de Adra	Almería								
M1-T1	Albufera Nueva	0643500 Albufera de Adra	Almería								
	Laguna de las Camuñas	0614500 Complejo Lagunar de Campillos	Málaga								

ANEJO V

Clase	Humedal	Masa de agua	Provincia
	Laguna de Capacete	0614500 Complejo Lagunar de Campillos	Málaga
	Laguna de Cerero	0614500 Complejo Lagunar de Campillos	Málaga
	Laguna Dulce	0614500 Complejo Lagunar de Campillos	Málaga
	Laguna Salada	0614510 Laguna Salada de Campillos	Málaga
	Laguna de Cortijo Grande		Málaga
	Laguna de Toro		Málaga
	Laguna de Fuente de Piedra	0615500 Laguna de Fuente de Piedra	Málaga
	Laguna de Cantarranas		Málaga
	Laguneto del Pueblo		Málaga
	Laguna Redonda	0614500 Complejo Lagunar de Campillos	Málaga
	Laguna de la Marcela		Málaga
	Cañada de las Norias		Almería
M1-T2	Charca de Suárez		Granada
	Laguna de los Prados		Málaga
	Laguna del Chaparral		Málaga
	Laguna de la Herrera		Málaga
	Lagunas de Alta Montaña de Sierra Nevada	0632500 Laguna de la Caldera	Granada
M2-T1	Laguna Grande	0614520 Lagunas de Archidona	Málaga
	Laguna Chica	0614520 Lagunas de Archidona	Málaga
MO TO	Laguna de Caja		Málaga
M2-T2	Laguna del Viso		Málaga

Algunos de los humedales clasificados en la clase M1-T1 forman parte de complejos que presentan problemáticas y características funcionales muy similares. Con la finalidad de profundizar mejor en los estudios de modelización, se ha realizado una agrupación y selección entre los mismos para desarrollar un análisis con mayor detalle. Los resultados así obtenidos serán extrapolados a los humedales restantes de cada complejo.

La selección provisional de humedales M1-T1 objeto de un estudio de mayor detalle se muestra en la Tabla 7.

Para la selección de los mismos se han empleado los siguientes criterios:

- Importancia ecológica del humedal en el contexto del complejo de humedales
- · Información disponible
- Figuras de protección
- Representatividad de los diferentes tipos de humedales

Tabla 7. Nivel de estudios para los humedales de la clase M1-T1										
Complejo de humedales	Estudios en detalle									
Fuente de Piedra	Laguna de Fuente de Piedra									
Albufera de Adra	Albufera Honda									
Commilled	Laguna Dulce									
Campillos	Laguna Salada									
Humedal singular	Turberas de Padul									

ANEJO V

6.2.2 REQUERIMIENTOS HÍDRICOS DE LAGOS Y HUMEDALES

Los requerimientos hídricos de los lagos y humedales de la DHCMA se han estimado en aquellos seleccionados para la realización de estudios de detalle de sus necesidades, que son un total de 5. En las siguientes tablas se recoge dicha estimación, bien en volumen bien en niveles de la lámina de agua, diferenciando entre distintos tipos de año:

Tabla 8.	Necesidades hídricas d	e la Laguna de Fue	nte de Piedra
hm³	Años secos	Años medios	Años húmedos
Octubre	0,12	1,04	9,74
Noviembre	0,24	1,02	9,79
Diciembre	0,45	2,47	11,77
Enero	0,75	4,30	14,56
Febrero	0,92	4,65	14,00
Marzo	0,85	4,63	13,54
Abril	0,62	4,40	14,96
Mayo	0,15	3,48	14,20
Junio	0,00	2,05	12,60
Julio	0,08	0,39	10,70
Agosto	0,00	0,10	8,80
Septiembre	0,07	0,07	7,47

Tabla 9. N	lecesidades hídr	icas de las Lagu	ınas de Campillo	s		
L	Lagu	na Dulce de Cam	pillos	Lagui	na Salada de Cam	pillos
hm³	Años secos	Años medios	Años húmedos	Años secos	Años medios	Años húmedos
Octubre	0,07	0,12	0,32	0,000	0,000	0,056
Noviembre	0,08	0,16	0,39	0,002	0,018	0,077
Diciembre	0,07	0,17	0,45	0,000	0,028	0,115
Enero	0,10	0,20	0,49	0,005	0,025	0,133
Febrero	0,10	0,20	0,50	0,006	0,036	0,139
Marzo	0,10	0,22	0,54	0,005	0,039	0,150
Abril	0,10	0,22	0,50	0,000	0,032	0,138
Mayo	0,09	0,20	0,49	0,000	0,008	0,112
Junio	0,07	0,17	0,39	0,000	0,000	0,089
Julio	0,06	0,13	0,31	0,000	0,000	0,052
Agosto	0,05	0,11	0,25	0,000	0,000	0,015
Septiembre	0,05	0,10	0,21	0,000	0,000	0,000

Tabla 10. Nec	esidades hídricas de	e las Turberas de Pa	adul
c.s.n.m. (m)	Años húmedos y medios	Años secos	Sequía prolongada
Octubre	773,6	772,6	771,6
Noviembre	773,6	772,6	771,6
Diciembre	774,0	773,0	772,0
Enero	774,0	773,0	772,0
Febrero	774,0	773,0	772,0
Marzo	773,7	772,7	771,7
Abril	773,7	772,7	771,7
Mayo	773,7	772,7	771,7
Junio	773,4	772,4	771,4
Julio	773,4	772,4	771,4
Agosto	773,4	772,4	771,4
Septiembre	773,6	772,6	771,6

Tabla 11. Nece	esidades hídricas de	e la Albufera Honda	
calado (cm)	Años secos	Años medios	Años húmedos
Octubre	167-127	171-143	227-194
Noviembre	185-151	227-204	263-235
Diciembre	188-155	256-226	295-273
Enero	206-174	260-232	340-325

ANEJO V

Tabla 11. Necesidades hídricas de la Albufera Honda calado (cm) Años secos Años medios Años húmedos Febrero 214-183 280-256 337-319 Marzo 231-202 274-248 326-310 Abril 229-196 282-263 329-317											
calado (cm)	Años secos	Años medios	Años húmedos								
Febrero	214-183	280-256	337-319								
Marzo	231-202	274-248	326-310								
Abril	229-196	282-263	329-317								
Mayo	211-174	274-247	315-301								
Junio	183-144	258-218	299-279								
Julio	150-108	234-188	278-250								
Agosto	122-82	206-160	253-217								
Septiembre	123-82	187-146	235-196								

7 PROCESO DE CONCERTACIÓN DEL RÉGIMEN DE CAUDALES ECOLÓGICOS

La implantación de los caudales ecológicos debe desarrollarse conforme a un proceso específico de concertación que tenga en cuenta los usos y demandas actualmente existentes y su régimen concesional, así como las buenas prácticas, de modo que se puedan conciliar los requerimientos ambientales con los usos dentro de cada masa de agua.

El proceso de concertación del régimen de caudales ecológicos tiene como objetivos:

- · Valorar su integridad hidrológica y ambiental.
- Analizar la viabilidad técnica, económica y social de su implantación efectiva.
- Proponer un plan de implantación y gestión adaptativa.

La dificultad del proceso es evidente y exige un tratamiento particular, caso a caso, dentro de las reglas generales de información, consulta pública y participación pública activa, en el que también se pondrá de manifiesto la necesidad de buscar la compatibilidad entre los dos polos y las diferentes posibilidades espaciales y temporales que quepa concebir. Necesariamente, en los casos más complejos habrá que llegar a negociaciones directas con los agentes involucrados, tanto de forma sectorial como en un tratamiento conjunto.

En esta fase se ha realizado, tal y como se ha comentado en los apartados anteriores, una selección de las masas estratégicas, que son aquellas en las que se ha desarrollado el proceso de concertación. A continuación se recoge el listado y un mapa de la situación de dichas masas:

Tabla 12.	Masas est	ratégicas para el proceso de concertación del rég	imen de caudales ecológicos
Cubalatana		Masa de agua	Luma
Subsistema	Código	Nombre	Lugar
	0611050	D.i. D.I	Presa de Charco Redondo
I-1	0611050	Bajo Palmones	Aguas abajo de los afluentes
	0611110Z	Medio y Bajo Guadarranque	Presa de Guadarranque

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

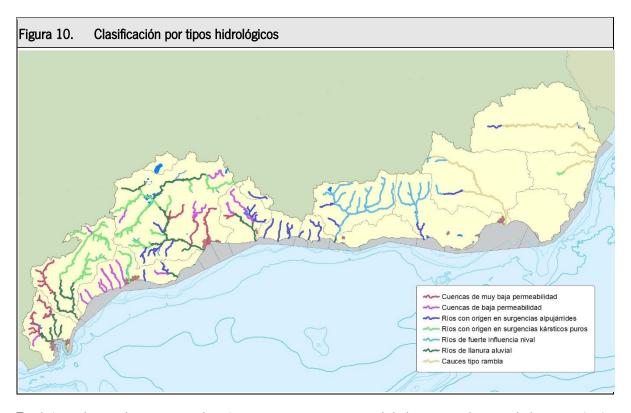
DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS

		Mana da amus	
Subsistema	Código	Masa de agua Nombre	Lugar
	0612061	Guadiaro Buitreras-Corchado	Buitreras (EA 6033)
I-2	0612062	Bajo Guadiaro	San Pablo Buceite (EA 6060)
	0613062	Bajo Guadalmansa	Tras trasvase
1.0	0613072Z	Bajo Guadalmina	Tras trasvase
I-3	0613092Z	Bajo Guadaiza	Tras trasvase
	0613140	Bajo Verde de Marbella	Presa de La Concepción
	0614150A	Guadalhorce entre Tajo de la Encantada y Jévar	Presa de La Encantada
I-4	0614210	Bajo Guadalhorce	Azud de Aljaima
I -4	0614200	Bajo Campanillas	Presa de Casasola
	0614250	Bajo Guadalmedina	Presa del Limonero
	0621060	Benamargosa	Salto del Negro (EA 6047)
II-1	0621070	Vélez y Bajo Guaro	Presa de la Viñuela
	0621070	Vélez y Bajo Guaro	A. abajo de los afluentes de la M.I.
	0632040	Medio y Bajo Trévelez-Poqueira	Central Pampaneira
III-2	0632130	Izbor entre Béznar y Rules	Presa de Béznar
III-∠	0632150	Paia Cuadalfaa	Presa de Rules
	0032150	Bajo Guadalfeo	Azud de Vélez
III-4	0634070A	Adra entre presa y Fuentes de Marbella	Presa de Benínar
IV-1	0641020	Medio y Bajo Canjáyar	Canjáyar (EA 6024)

ANEJO V

Coincidiendo con el periodo de consulta pública del Plan Hidrológico del ciclo 2009-2015, y con la finalidad de concertar el régimen de caudales ecológicos en la demarcación, se realizaron 7 jornadas de trabajo, una interna, con responsables de la Administración, y otras 6 con los afectados en cada sistema de explotación.

El proceso de concertación del régimen de caudales ecológicos se resume en el Anejo XI Participación Pública del Plan Hidrológico del ciclo 2009-2015 y se detalla en el trabajo <u>ESTABLECIMIENTO DEL RÉGIMEN DE CAUDALES ECOLÓGICOS EN LAS MASAS DE AGUA SUPERFICIAL CONTINENTAL DE LA DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS</u>, y sus resultados han sido trasladados al presente Proyecto de Plan Hidrológico.

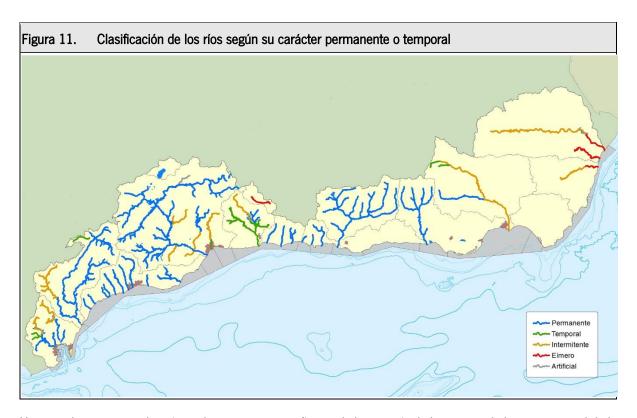

8 REGIONALIZACIÓN DE LOS RESULTADOS A LA TOTALIDAD DE LAS MASAS DE AGUA DE LA CATEGORÍA RÍO

Tal y como se indica en el apartado 3.4.1.2. de la IPHA, el ámbito espacial para la caracterización del régimen de caudales ecológicos se extenderá a todas las masas de agua superficial clasificadas en la categoría de ríos.

En la regionalización de resultados a la totalidad de masas de agua de la categoría río se ha tenido en cuenta la clasificación por tipos hidrológicos o hidrorregiones en las que se encuadran, y se han aplicado de forma proporcional los resultados obtenidos en los estudios técnicos siguiendo esta clasificación.

A continuación se incluye un mapa con la clasificación por tipos empleada para la regionalización de resultados:

ANEJO V



También se ha tenido en cuenta el carácter permanente o temporal de las masas de agua de la categoría río, para lo que se han clasificado las mismas en los cuatro tipos que recoge la IPHA:

- Ríos permanentes: cursos fluviales que en, régimen natural, presentan agua fluyendo, de manera habitual, durante todo el año en su cauce.
- Ríos temporales o estacionales: cursos fluviales que, en régimen natural, presentan una marcada estacionalidad, caracterizada por presentar bajo caudal o permanecer secos en verano, fluyendo agua, al menos, durante un periodo medio de 300 días al año.
- Ríos intermitentes o fuertemente estacionales: cursos fluviales que, en régimen natural, presentan una elevada temporalidad, fluyendo agua durante un periodo medio comprendido entre 100 y 300 días al año.
- Río efímeros: cursos fluviales en los que, en régimen natural, tan sólo fluye agua superficialmente de manera esporádica, en episodios de tormenta, durante un periodo medio inferior a 100 días al año.

A continuación se incluye un mapa con la clasificación de los ríos de la DHCMA según su carácter permanente o temporal:

ANEJO V

Hay que destacar que el carácter de intermitente o efímero de la mayoría de las masas de la parte oriental de la demarcación (subsistemas IV-1, V-1 y V-2) viene determinado, no por el caudal que circularía en condiciones naturales, sino por la morfología actual de los cauces.

Para la regionalización se ha partido de los resultados obtenidos para las masas estratégicas, tanto por métodos hidrológicos como por modelización del hábitat. Además, se cuenta con los resultados por métodos hidrológicos y de modelización del hábitat del resto de masas en las que se han realizado estos trabajos, y para las que la propuesta de régimen de caudales ecológicos mínimos se ha realizado siguiendo la metodología general empleada en las masas estratégicas, ya expuesta en el apartado 5.1.3. Por último, en el resto de masas se ha partido de los resultados por métodos hidrológicos, que se han comparado y, según el caso, ajustado a los resultados obtenidos mediante modelización de hábitat extrapolados a la masa en cuestión.

En resumen, la extensión de las determinaciones a todas las masas de agua a partir de las obtenidas en las estratégicas se ha llevado a cabo con el apoyo de la clasificación por tipos hidrológicos o hidrorregiones y los estudios por métodos hidrológicos y de modelización del hábitat que se han efectuado en las distintas masas. No obstante, será necesario con posterioridad a la elaboración del Plan hidrológico de cuenca realizar una nueva etapa de estudios para avanzar en la determinación e implantación de caudales ecológicos sobre bases más firmes.

A continuación se incluye una tabla con la propuesta de régimen de caudales mínimos en todas las masas de agua de la categoría río que no son embalses ni masas de agua artificiales de la DHCMA, en la que aparecen sombreadas en azul las propuestas de las masas estratégicas, y en verde las de otras masas de agua que cuentan con resultados de modelización de hábitat.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS

Tabla 13.	Propuesta de régimen de caudales ecol	ógicos en todas las masas de ag	ua de l	a cate	goría r	ĺΟ										
	Masa de agua					Rég	imen d	le caud	ales ec	ológico	s mínir	nos (m	1³/s)			
Código	Nombre	Lugar	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Media	% Q nat.
0611010	Alto Palmones	Charco Redondo (EA 6083)	0,016	0,154	0,268	0,186	0,141	0,103	0,079	0,023	0,006	0,000	0,000	0,000	0,08	23%
0611030	Valdeinfierno-La Hoya	Fin masa	0,175	0,465	0,806	0,506	0,454	0,200	0,140	0,043	0,001	0,001	0,001	0,007	0,23	29%
0611040	Raudal	Fin masa	0,194	0,498	0,901	0,539	0,500	0,272	0,222	0,096	0,015	0,003	0,001	0,001	0,27	36%
0611050	Bajo Palmones	Presa de Charco Redondo	0,040	0,130	0,362	0,267	0,214	0,166	0,111	0,064	0,032	0,032	0,032	0,032	0,12	12%
0611030	Dajo Fairiones	Aguas abajo afluentes	0,317	0,547	0,883	0,687	0,625	0,463	0,378	0,246	0,080	0,080	0,080	0,080	0,37	14%
0611060	Guadacortes	Fin masa	0,025	0,044	0,060	0,056	0,042	0,037	0,031	0,023	0,010	0,007	0,006	0,006	0,03	14%
0611080	Alto Guadarranque	Fin masa	0,078	0,177	0,530	0,378	0,318	0,250	0,140	0,080	0,021	0,003	0,000	0,000	0,16	19%
0611100	Los Codos	Fin masa	0,042	0,095	0,284	0,202	0,170	0,134	0,075	0,043	0,011	0,002	0,000	0,000	0,09	19%
0611110Z	Medio y Bajo Guadarranque	Presa de Guadarranque	0,045	0,080	0,300	0,230	0,188	0,146	0,080	0,060	0,045	0,045	0,045	0,045	0,11	7%
0611120	La Madre Vieja	Fin masa	0,045	0,077	0,095	0,090	0,081	0,074	0,065	0,060	0,034	0,026	0,021	0,017	0,06	15%
0612010A	Alto Guadalevín	Molino del Cojo (EA 6029)	0,090	0,150	0,150	0,150	0,150	0,150	0,150	0,090	0,090	0,090	0,090	0,090	0,12	38%
0612010B	Cabecera Guadiaro	Montejaque (EA 6105)	0,140	0,200	0,270	0,380	0,380	0,400	0,350	0,310	0,260	0,200	0,130	0,120	0,26	26%
0612020	Gaduares	Fin masa	0,150	0,400	0,500	0,660	0,480	0,550	0,430	0,340	0,180	0,130	0,060	0,040	0,33	23%
0612030	Guadiaro Montejaque-Cortes	Buitreras (EA 6033)	0,650	1,440	1,440	1,440	1,440	1,440	1,440	0,650	0,650	0,650	0,650	0,650	1,04	13%
06100404	All O	Puente Jubrique (EA 6058)	0,270	0,440	0,610	1,040	0,890	0,620	0,550	0,450	0,360	0,300	0,230	0,180	0,49	29%
0612040A	Alto Genal	Gaucín	0,550	1,150	1,590	1,600	1,550	1,080	0,890	0,750	0,510	0,370	0,310	0,300	0,89	28%
0612040B	Bajo Genal	Fin masa	0,700	1,400	1,860	1,960	1,820	1,250	1,060	0,840	0,550	0,390	0,320	0,340	1,04	28%
0612050A	Alto Hozgarganta	Jimena de la Frontera (EA 6028)	0,242	0,398	0,600	0,543	0,468	0,431	0,369	0,306	0,090	0,000	0,000	0,000	0,29	13%
0612050B	Bajo Hozgarganta	Fin masa	0,295	0,505	0,841	0,714	0,585	0,503	0,377	0,233	0,084	0,028	0,017	0,019	0,35	11%
0612061	Guadiaro Buitreras-Corchado	Buitreras (EA 6033)	0,650	1,440	1,440	1,440	1,440	1,440	1,440	0,650	0,650	0,650	0,650	0,650	1,04	13%

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS

Tabla 13.	Tabla 13. Propuesta de régimen de caudales ecológicos en todas las masas de agua de la categoría río															
	Masa de agua					Rég	gimen c	e caud	ales ed	cológico	os míni	mos (n	1³/s)			
Código	Nombre	Lugar	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Media	% Q nat.
0612062	Bajo Guadiaro	San Pablo Buceite (EA 6060)	0,630	1,500	2,000	1,950	1,770	1,310	1,160	0,900	0,600	0,410	0,310	0,300	1,07	9%
0012002	Dajo Guadiaro	San Martín del Tesorillo (EA 6116)	0,740	2,400	3,500	3,400	3,000	2,000	1,710	1,330	0,690	0,400	0,260	0,250	1,64	14%
0613010	Alto Manilva	Fin masa	0,053	0,109	0,129	0,122	0,101	0,083	0,073	0,060	0,041	0,032	0,029	0,029	0,07	29%
0613020	Bajo Manilva	Fin masa	0,057	0,119	0,141	0,133	0,110	0,090	0,080	0,065	0,045	0,035	0,032	0,032	0,08	29%
0613030	Vaquero	Fin masa	0,057	0,117	0,139	0,131	0,109	0,089	0,079	0,065	0,044	0,035	0,031	0,032	0,08	29%
0613040	Padrón	Fin masa	0,053	0,110	0,131	0,124	0,102	0,084	0,074	0,061	0,041	0,033	0,029	0,030	0,07	29%
0613050	Castor	Fin masa	0,047	0,097	0,115	0,109	0,090	0,074	0,065	0,054	0,036	0,029	0,026	0,026	0,06	29%
0613061	Alto Guadalmansa	Fin masa	0,130	0,260	0,300	0,290	0,240	0,190	0,180	0,160	0,150	0,090	0,070	0,080	0,18	31%
0612060	Deia Overdelmanna	Presa derivación	0,130	0,260	0,300	0,290	0,240	0,190	0,180	0,160	0,150	0,090	0,070	0,080	0,18	31%
0613062	Bajo Guadalmansa	Fin masa	0,160	0,330	0,380	0,370	0,310	0,240	0,200	0,160	0,120	0,100	0,090	0,090	0,21	29%
0613071	Alto Guadalmina	Fin masa	0,140	0,290	0,340	0,330	0,270	0,220	0,200	0,180	0,170	0,110	0,090	0,090	0,20	31%
06120707	Madia y Daia Cyadalysiya	Presa derivación	0,140	0,290	0,340	0,330	0,270	0,220	0,200	0,180	0,170	0,110	0,090	0,090	0,20	31%
06130722	Medio y Bajo Guadalmina	Fin masa	0,190	0,390	0,450	0,430	0,380	0,280	0,240	0,190	0,130	0,110	0,100	0,110	0,25	30%
0613091	Alto Guadaiza	Fin masa	0,100	0,210	0,260	0,240	0,200	0,170	0,150	0,140	0,140	0,090	0,070	0,070	0,15	32%
06120007	Madia a Baia Guadaina	Presa derivación	0,100	0,210	0,260	0,240	0,200	0,170	0,150	0,140	0,140	0,090	0,070	0,070	0,15	32%
06130922	Medio y Bajo Guadaiza	Fin masa	0,120	0,270	0,310	0,290	0,240	0,190	0,170	0,140	0,100	0,080	0,070	0,080	0,17	31%
0613110	Cabecera Verde de Marbella	Fin masa	0,110	0,170	0,260	0,210	0,200	0,200	0,180	0,130	0,100	0,080	0,060	0,060	0,15	23%
0613120	Medio-Alto Verde de Marbella	Fin masa	0,290	0,490	0,700	0,560	0,550	0,510	0,430	0,330	0,240	0,190	0,150	0,160	0,38	23%
0612140	D: V M	Presa de La Concepción	0,150	0,280	0,400	0,360	0,340	0,330	0,260	0,190	0,150	0,150	0,150	0,150	0,24	11%
0613140	Bajo Verde de Marbella	Fin masa	0,150	0,280	0,400	0,360	0,340	0,330	0,260	0,190	0,150	0,150	0,150	0,150	0,24	11%

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS

Tabla 13.	Propuesta de régimen de caudales ecol	ógicos en todas las masas de ag	ua de l	a cate	goría ı	ío										
	Masa de agua					Rég	gimen c	le caud	ales ed	ológico	os mínii	mos (m	า³/s)			
Código	Nombre	Lugar	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Media	% Q nat.
0613150	Real	Fin masa	0,032	0,083	0,091	0,064	0,058	0,046	0,029	0,017	0,012	0,009	0,009	0,011	0,04	14%
0613160	Alto y Medio Fuengirola	Confluencia Alaminos y Ojén	0,072	0,108	0,153	0,132	0,110	0,088	0,063	0,040	0,023	0,017	0,017	0,028	0,07	9%
0613170	Bajo Fuengirola	Fin masa	0,078	0,119	0,167	0,144	0,122	0,098	0,072	0,046	0,028	0,020	0,019	0,030	0,08	9%
0614021A	Cabecera del Guadalhorce	Fin masa	0,041	0,062	0,096	0,101	0,092	0,079	0,059	0,052	0,041	0,030	0,029	0,035	0,06	16%
0614021B	Alto Guadalhorce	Bobadilla (EA 6091)	0,180	0,250	0,250	0,250	0,250	0,250	0,250	0,180	0,180	0,180	0,180	0,180	0,22	9%
0614021C	Marín (Alto Guadalhorce)	Fin masa	0,024	0,052	0,115	0,136	0,120	0,096	0,061	0,055	0,041	0,032	0,031	0,027	0,07	16%
0614022	La Villa	Fin masa	0,040	0,050	0,050	0,050	0,050	0,050	0,050	0,040	0,040	0,040	0,040	0,040	0,05	28%
0614040A	Serrato	Fin masa	0,126	0,182	0,251	0,209	0,143	0,113	0,100	0,054	0,020	0,009	0,011	0,030	0,10	22%
0614040B	Guadalteba	Teba (EA 6093)	0,190	0,300	0,390	0,420	0,450	0,370	0,310	0,250	0,180	0,140	0,130	0,150	0,27	22%
0614050	La Venta	Fin masa (a. ab. Manantial Torrox)	0,031	0,043	0,043	0,043	0,043	0,043	0,043	0,031	0,031	0,031	0,031	0,031	0,04	7%
0614070A	Alto Turón	Fin masa	0,171	0,204	0,266	0,200	0,153	0,131	0,119	0,070	0,032	0,021	0,029	0,038	0,12	22%
0614070B	Medio Turón	Ardales (EA 6011)	0,186	0,340	0,553	0,538	0,570	0,424	0,324	0,237	0,132	0,069	0,056	0,065	0,29	22%
0614090A	Desfiladero de los Gaitanes	Aguas abajo presas Guadalhorce	0,470	0,590	0,750	0,800	0,790	0,730	0,640	0,570	0,450	0,320	0,300	0,330	0,56	13%
0614100	Piedras	Fin masa	0,030	0,127	0,141	0,136	0,124	0,066	0,049	0,040	0,030	0,028	0,026	0,024	0,07	23%
0614110	Jévar	Fin masa	0,011	0,086	0,127	0,140	0,093	0,037	0,023	0,023	0,010	0,007	0,005	0,005	0,05	13%
0614120	Las Cañas	Zalea (EA 6064)	0,019	0,061	0,069	0,085	0,072	0,038	0,036	0,027	0,018	0,006	0,006	0,007	0,04	11%
0614130	Casarabonela	Molino Garrido (EA 6063)	0,022	0,052	0,069	0,064	0,060	0,049	0,037	0,032	0,020	0,012	0,010	0,011	0,04	11%
06141404	Alta Martia Oronda Orondalla arra	Las Millanas (EA 6035)	0,390	0,630	0,690	0,660	0,690	0,580	0,520	0,440	0,330	0,270	0,240	0,240	0,47	26%
U614140A	Alto-Medio Grande Guadalhorce	Cerro Blanco	0,560	1,010	1,130	1,090	1,090	0,850	0,720	0,590	0,430	0,350	0,310	0,330	0,71	24%
0614140B	Pereilas	Fin masa	0,071	0,113	0,125	0,118	0,110	0,095	0,080	0,066	0,054	0,045	0,040	0,042	0,08	13%

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS

Tabla 13.	Propuesta de régimen de caudales ecolo	ógicos en todas las masas de ag	ua de l	a cate	goría r	ío										
	Masa de agua					Rég	gimen d	e caud	ales ed	ológico	os mínii	mos (m	า³/s)			
Código	Nombre	Lugar	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Media	% Q nat.
0614140C	Bajo Grande del Guadalhorce	Fin masa	0,700	1,320	1,520	1,490	1,470	1,140	0,950	0,790	0,610	0,500	0,450	0,450	0,95	24%
0614150A	Guadalhorce entre Tajo de la Encantada y Jevar	Presa de La Encantada	0,470	0,590	0,750	0,800	0,790	0,730	0,640	0,570	0,450	0,320	0,300	0,330	0,56	13%
0614150B	Guadalhorce entre Jevar y Grande	Puente Coronado (EA 6077)	0,390	0,520	0,700	0,790	0,800	0,610	0,490	0,470	0,390	0,290	0,280	0,290	0,50	10%
0614160	Fahala	Fin masa	0,002	0,050	0,066	0,073	0,061	0,032	0,009	0,007	0,006	0,004	0,003	0,002	0,03	10%
0614170	Breña Higuera	Fin masa	0,005	0,018	0,034	0,037	0,033	0,017	0,010	0,013	0,007	0,006	0,005	0,004	0,02	9%
0614180	Alto Campanillas	Los Llanes (EA 6021)	0,040	0,077	0,127	0,109	0,096	0,066	0,051	0,043	0,027	0,022	0,021	0,022	0,06	13%
0614200	Bajo Campanillas	Presa de Casasola	0,020	0,050	0,090	0,080	0,070	0,060	0,050	0,040	0,025	0,020	0,020	0,020	0,05	10%
0614210	Bajo Guadalhorce	Tras confluencia Grande	0,650	0,850	1,270	1,580	1,600	1,050	0,800	0,730	0,630	0,560	0,550	0,550	0,90	10%
0614220	Desembocadura Guadalhorce	A. abajo Campanillas y Breña H.	0,720	0,920	1,430	1,780	1,750	1,120	0,840	0,780	0,650	0,580	0,580	0,590	0,98	9%
0614230	Alto y Medio Guadalmedina	Casabermeja (EA 6022)	0,011	0,044	0,111	0,104	0,078	0,069	0,044	0,028	0,008	0,002	0,001	0,002	0,04	24%
0614250	Bajo Guadalmedina	Presa El Limonero	0,019	0,041	0,044	0,070	0,056	0,043	0,043	0,026	0,012	0,010	0,010	0,010	0,03	8%
0621010	Alto y Medio Guaro	Alfarnatejo (EA 6013)	0,007	0,029	0,071	0,081	0,046	0,044	0,028	0,016	0,002	0,000	0,000	0,000	0,03	15%
0601020	AL , C	La Viñuela (EA 6015)	0,013	0,066	0,068	0,053	0,071	0,073	0,045	0,033	0,011	0,004	0,002	0,002	0,04	16%
0621030	Alcaucín-Bermuza	Los González (EA 6016)	0,022	0,039	0,042	0,043	0,044	0,042	0,035	0,034	0,020	0,014	0,011	0,010	0,03	17%
0621040	Almanchares	Pasada Granadillos (EA 6017)	0,014	0,016	0,012	0,017	0,022	0,024	0,021	0,015	0,006	0,001	0,000	0,003	0,01	16%
0621050	Rubite	Hoya del Bujo (EA 6018)	0,014	0,045	0,051	0,052	0,054	0,049	0,037	0,021	0,007	0,002	0,000	0,001	0,03	15%
0621060	Benamargosa	Salto del Negro (EA 6047)	0,050	0,248	0,389	0,450	0,437	0,355	0,280	0,223	0,191	0,069	0,031	0,015	0,23	33%
0601070	W// B : 0	Presa Viñuela	0,061	0,185	0,370	0,198	0,179	0,204	0,178	0,223	0,107	0,000	0,000	0,000	0,14	9%
0621070	Vélez y Bajo Guaro	Aguas abajo afluentes MI	0,150	0,267	0,450	0,324	0,302	0,298	0,251	0,265	0,150	0,026	0,005	0,010	0,21	9%
0622010Z	La Madre	Azud de derivación	0,032	0,070	0,082	0,070	0,068	0,065	0,060	0,051	0,045	0,039	0,034	0,029	0,05	17%

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS

Tabla 13.	Propuesta de régimen de caudales eco	lógicos en todas las masas de ag	ua de l	a cate	goría r	ío										
	Masa de agua					Rég	gimen d	e caud	ales ed	cológico	os mínii	mos (m	า³/s)			
Código	Nombre	Lugar	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Media	% Q nat.
0623010	Algarrobo	La Umbría (EA 6020)	0,039	0,070	0,085	0,062	0,078	0,058	0,046	0,035	0,019	0,012	0,013	0,022	0,04	16%
0623020	Torrox	Fin masa	0,050	0,070	0,070	0,070	0,070	0,070	0,070	0,050	0,050	0,050	0,050	0,050	0,06	15%
0623030	Chillar	Vegueta de la Grama	0,031	0,031	0,031	0,031	0,031	0,031	0,031	0,031	0,031	0,031	0,031	0,031	0,03	22%
0023030	Cilliar	Fin masa	0,067	0,089	0,086	0,075	0,072	0,072	0,071	0,062	0,057	0,057	0,059	0,060	0,07	17%
0631010	La Miel	Fin masa	0,015	0,031	0,035	0,028	0,025	0,021	0,019	0,013	0,009	0,005	0,004	0,005	0,02	16%
0631020	Jate	Fin masa	0,021	0,049	0,047	0,034	0,025	0,022	0,019	0,012	0,006	0,003	0,002	0,005	0,02	16%
0631030	Alto y Medio Verde Almuñécar	Cázulas (EA 6052)	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,10	22%
0631040	Bajo Verde Almuñécar	Fin masa	0,050	0,050	0,050	0,050	0,050	0,050	0,050	0,050	0,050	0,050	0,050	0,050	0,05	6%
0632010	Alto Guadalfeo	Narila (EA 6010)	0,085	0,136	0,179	0,184	0,169	0,168	0,182	0,168	0,103	0,038	0,015	0,032	0,12	30%
0632020	Alto Trevélez	Fin masa	0,290	0,340	0,390	0,380	0,390	0,400	0,430	0,470	0,460	0,300	0,220	0,210	0,36	32%
0632030	Alto Poqueira	Fin masa	0,350	0,350	0,350	0,350	0,350	0,350	0,350	0,350	0,350	0,350	0,350	0,350	0,35	48%
0632040	Medio y Bajo Trevélez-Poqueira	Azud Trevélez (EA 6103)	0,200	0,200	0,390	0,380	0,390	0,400	0,430	0,470	0,460	0,200	0,200	0,200	0,33	29%
0032040	Intedio y Bajo Trevelez-Foquella	Central Pampaneira (EA 6055)	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,50	50%
0632050	Chico de Órgiva	Fin masa	0,044	0,062	0,073	0,068	0,068	0,063	0,060	0,082	0,068	0,034	0,027	0,029	0,06	27%
0632060A	Guadalfeo Cádiar-Trevélez	Fin masa	0,190	0,280	0,360	0,370	0,310	0,280	0,300	0,250	0,130	0,080	0,060	0,110	0,23	32%
0632060B	Medio Guadalfeo	Puente de Órgiva (EA 6101)	0,420	0,520	0,570	0,560	0,560	0,580	0,610	0,650	0,610	0,420	0,310	0,300	0,51	20%
0632070	Alto Dúrcal	Los Sauces	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,21	50%
0632080A	Medio y Bajo Dúrcal	Restábal (EA 6098)	0,300	0,370	0,430	0,450	0,470	0,410	0,380	0,440	0,370	0,220	0,140	0,200	0,35	22%
0632080B	Albuñuelas	Fin masa	0,043	0,074	0,092	0,095	0,085	0,076	0,072	0,064	0,060	0,054	0,049	0,043	0,07	17%
0632090	Torrente	Fin masa	0,055	0,077	0,091	0,084	0,084	0,079	0,074	0,102	0,085	0,042	0,033	0,036	0,07	27%

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS

Tabla 13.	Propuesta de régimen de caudales eco	ógicos en todas las masas de ag	ua de l	a cate	goría r	ío										
	Masa de agua					Rég	gimen c	le caud	ales ed	cológico	os mínii	mos (m	า³/s)			
Código	Nombre	Lugar	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Media	% Q nat.
0632110	Alto y Medio Lanjarón	Fin masa	0,064	0,090	0,105	0,098	0,098	0,092	0,086	0,119	0,099	0,049	0,039	0,042	0,08	27%
0632120	Bajo Lanjarón	Lanjarón (EA 6097)	0,064	0,090	0,105	0,098	0,098	0,092	0,086	0,119	0,099	0,049	0,039	0,042	0,08	27%
0632130A	Ízbor entre Béznar y Rules	Presa de Béznar	0,200	0,230	0,250	0,250	0,260	0,260	0,240	0,250	0,230	0,160	0,130	0,160	0,22	11%
0632140	La Toba	Puente Guájar-Fondón (EA 6114)	0,087	0,099	0,112	0,126	0,119	0,106	0,105	0,100	0,094	0,084	0,075	0,075	0,10	17%
		Presa de Rules	0,520	0,700	0,800	0,780	0,780	0,770	0,780	0,900	0,820	0,460	0,300	0,310	0,66	11%
0632150	Bajo Guadalfeo	Azud de Vélez	0,250	0,250	0,400	0,400	0,400	0,400	0,400	0,400	0,400	0,250	0,250	0,250	0,34	6%
		Azud El Vínculo	0,150	0,150	0,300	0,300	0,300	0,300	0,300	0,300	0,300	0,150	0,150	0,150	0,24	4%
0634010	Alto Alcolea	Fin masa	0,014	0,022	0,037	0,037	0,035	0,038	0,036	0,030	0,020	0,010	0,007	0,008	0,02	27%
0634020	Alto Bayárcal	Fin masa	0,019	0,029	0,048	0,049	0,047	0,050	0,048	0,040	0,026	0,013	0,009	0,011	0,03	27%
0634030	Alto Yátor	Fin masa	0,034	0,052	0,087	0,088	0,084	0,090	0,086	0,072	0,047	0,023	0,016	0,019	0,06	27%
0634040	Alto Ugíjar	Nechite (EA 6104)	0,020	0,030	0,050	0,051	0,049	0,053	0,050	0,042	0,027	0,014	0,009	0,011	0,03	27%
0634050A	Bajo Alcolea-Bayárcal	El Esparragal	0,061	0,093	0,156	0,159	0,151	0,163	0,155	0,130	0,084	0,042	0,029	0,034	0,10	27%
0634050B	Bajo Ugíjar	Las Tosquillas (EA 6005)	0,052	0,080	0,133	0,136	0,129	0,139	0,132	0,111	0,072	0,036	0,025	0,029	0,09	27%
0634050C	Bajo Yátor	Olivarejo	0,056	0,086	0,144	0,147	0,139	0,151	0,143	0,120	0,078	0,039	0,027	0,032	0,10	27%
0634060	Embalse de Benínar	Darrical (EA 6069)	0,170	0,260	0,440	0,440	0,420	0,450	0,430	0,360	0,230	0,120	0,080	0,100	0,29	27%
0634070A	Adra entre presa y Fuentes de Marbella	Presa de Benínar	-	-	-	-	-	-	-	-	-	-	-	-	1	-
0634070B	Adra entre Fuentes de Marbella y Chico	Fuentes de Marbella (EA 6009)	0,170	0,170	0,170	0,580	0,380	0,330	0,280	0,210	0,210	0,210	0,170	0,170	0,25	27%
0634080	Chico de Adra	La Ventilla (EA 6048)	0,024	0,035	0,055	0,065	0,049	0,034	0,032	0,025	0,020	0,016	0,016	0,017	0,03	16%
0634090	Bajo Adra	Fin masa	0,140	0,170	0,170	0,170	0,170	0,170	0,170	0,140	0,140	0,140	0,140	0,140	0,16	16%
0641010	Alto Canjáyar	Fin masa	0,013	0,017	0,019	0,018	0,018	0,022	0,028	0,020	0,015	0,013	0,012	0,011	0,02	20%

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

Tabla 13.	Propuesta de régimen de caudales ecol	ógicos en todas las masas de ag	ua de l	a cate	goría r	ío										
	Masa de agua					Rég	imen c	le caud	ales ec	ológico	s mínii	mos (m	1³/s)			
Código	Nombre	Lugar	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Media	% Q nat.
0641020	Medio y Bajo Canjáyar	Canjáyar (EA 6024)	0,049	0,062	0,067	0,066	0,070	0,082	0,100	0,067	0,051	0,045	0,041	0,040	0,06	20%
0641025	Huéneja o Isfalada	Toma derivación	0,021	0,024	0,024	0,024	0,024	0,024	0,024	0,021	0,021	0,021	0,021	0,021	0,02	15%
0641030	Alto y Medio Nacimiento	El Chono	0,060	0,100	0,100	0,100	0,100	0,100	0,100	0,060	0,060	0,060	0,060	0,060	0,08	8%
0641035	Fiñana	Toma derivación	0,018	0,021	0,021	0,021	0,021	0,021	0,021	0,018	0,018	0,018	0,018	0,018	0,02	15%
0641040	Bajo Nacimiento	Fin masa	0,040	0,060	0,060	0,060	0,060	0,060	0,060	0,040	0,040	0,040	0,040	0,040	0,05	5%
0641050	Medio Andarax	A. arriba rambla de Tabernas	0,067	0,089	0,089	0,089	0,089	0,089	0,089	0,067	0,067	0,067	0,067	0,067	0,08	4%
0641060Z	Bajo Andarax	A. abajo rambla de Tabernas	0,076	0,102	0,102	0,102	0,102	0,102	0,102	0,076	0,076	0,076	0,076	0,076	0,09	4%
0651010Z	Alto y Medio Aguas	Fin masa	0,050	0,080	0,080	0,080	0,080	0,080	0,080	0,050	0,050	0,050	0,050	0,050	0,07	20%
0651030	Bajo Aguas	Fin masa	0,004	0,050	0,050	0,050	0,050	0,050	0,050	0,004	0,004	0,004	0,004	0,004	0,03	7%
0652010	Antas	Fin masa	0,012	0,020	0,020	0,020	0,020	0,020	0,020	0,012	0,012	0,012	0,012	0,012	0,02	11%
0652020	Alto Almanzora	Cantoria (EA 6067)	0,120	0,200	0,200	0,200	0,200	0,200	0,200	0,120	0,120	0,120	0,120	0,120	0,16	11%
0652040	Medio Almanzora	Fin masa	0,160	0,270	0,270	0,270	0,270	0,270	0,270	0,160	0,160	0,160	0,160	0,160	0,22	11%
0652060	Bajo Almanzora	Presa de Cuevas de Almanzora	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Nota: Sombreadas en azul las propuestas de las masas de agua estratégicas, y en verde las de otras masas que cuentan con resultados de modelización del hábitat.

CONSEJERÍA DE MEDIO AMBIENTE Y ORDENACIÓN DEL TERRITORIO

DEMARCACIÓN HIDROGRÁFICA DE LAS CUENCAS MEDITERRÁNEAS ANDALUZAS ANEJO V

9 REPERCUSIÓN DEL RÉGIMEN DE CAUDALES ECOLÓGICOS SOBRE LOS USOS DEL AGUA

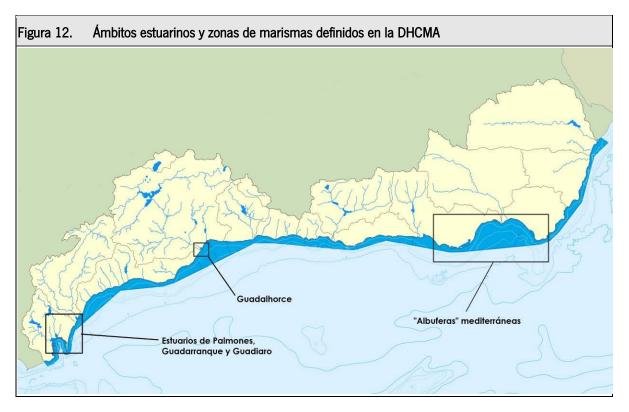
Es notorio el uso intensivo del recurso agua en gran parte del territorio de la demarcación. Son muy numerosas las concesiones que han sido otorgadas para permitir dicho uso, así como el largo plazo restante hasta su extinción, que en muchos casos se extiende hasta el año 2060 (disposiciones transitorias de la Ley 29/1985, de 2 de agosto, de Aguas). Incluso en algunos casos, la misma normativa contempla la renovación automática del aprovechamiento, aunque se puedan introducir las oportunas modificaciones en el título habilitante.

Obviamente, al implementar los caudales ecológicos en las distintas masas de agua es bien posible que se deriven afecciones a los usuarios de aquellas, en ciertos casos en un sentido negativo aunque también pueda presentarse el caso opuesto. Es necesario analizar cada caso concreto, pues la casuística es muy diversa. Sin embargo, pueden adelantarse algunas normas generales que se comprobarán en cada masa.

Las principales afecciones se derivarán de los caudales mínimos, aunque también procederán de los máximos y de limitaciones en las tasas de cambio, y pueden producirse en un uso consuntivo o en uno no consuntivo.

En algunos casos estas afecciones serán limitadas y podrán ser aceptadas por los usuarios dentro del proceso de concertación, con lo que no existirá problema alguno. En otros casos, aquellos usos caracterizados por una demanda determinada, como el riego, el abastecimiento, etc., sufrirán una afección de cierta entidad, pudiendo originarse una disminución de mayor o menor cuantía en la garantía de satisfacción de dicha demanda.

También existen otros usos, por ejemplo la producción de energía hidroeléctrica, en los que sólo en contados períodos el caudal aprovechado se acerca al máximo concedido. En estas situaciones, la imposición de caudales ecológicos no compatibles con el uso preexistente originará una afección al reducir el volumen de agua aprovechado.


Por ello, cuando existan afecciones de cierta magnitud, se deberá llevar a cabo un tratamiento singular de cada caso para intentar llegar a una solución viable y de general aceptación.

En el Anejo VI Asignación y Reservas de Recursos a Usos del presente plan de cuenca se comprueban los efectos que tiene la implantación del régimen de caudales ecológicos sobre los usos del agua, analizando la repercusión en los niveles de garantía de las unidades de demanda afectadas y la disponibilidad de caudales y compatibilidad con los usos existentes.

10 RÉGIMEN DE CAUDALES EN LAS AGUAS DE TRANSICIÓN

En este apartado se realiza un análisis de los diferentes ámbitos estuarinos y zonas de marisma definidas en la demarcación donde, en principio, requerirían un estudio del régimen de caudales ecológicos.

ANEJO V

En primer lugar, se ha realizado un análisis del aporte de agua dulce que recibe cada uno de estos ámbitos por parte de las aguas continentales. Así, en los casos en los que alguno de los ámbitos reciba de forma muy esporádica aportes de agua dulce, de manera, que la dinámica dominante en el mismo sea la marina la mayor parte del tiempo, no se considera necesario la estimación del régimen de caudales ecológicos puesto que el aporte fluvial no determina, en ningún caso, la dinámica natural del sistema. Con el fin de conocer la dinámica dominante en las masas de transición andaluzas, se han identificado los aportes de agua dulce que reciben de continentales cada uno de los ámbitos y se han estudiado los datos de salinidad procedentes de las estaciones de control de calidad de las aguas litorales de Andalucía de la Consejería de Medio Ambiente disponibles.

Por otra parte, se ha analizado la regulación que sufre cada uno de los ámbitos, considerándose innecesario el análisis de caudales ecológicos en aquellas masas donde el régimen actual es similar al natural.

A continuación se resumen las conclusiones del análisis realizado:

- El estuario del río Palmones y su marisma asociada, que recibe aportes del río Palmones (regulado) y en menor medida del Guadacortes, muestra gran variabilidad en los datos de salinidad registrados.
- Igualmente ocurre con el estuario del río Guadarranque, donde los valores de salinidad registrados son muy variables. Los principales aportes que recibe este estuario son del río Guadarranque, que está regulado, y del arroyo Madre Vieja.
- El río Guadiaro, cuya cuenca no está regulada, presenta, como ocurre en los pequeños estuarios comentados anteriormente, valores de salinidad muy variados en su tramo estuarino. El río sufre, aparte de diferentes

ANEJO V

captaciones en su curso, una importante detracción de caudal para el trasvase Guadiaro-Majaceite. No obstante, la alteración que suponen no es comparable a los efectos producidos por una infraestructura de regulación.

- En el caso la desembocadura del río Guadalhorce, la zona abarca una serie de lagunas de variadas características morfológicas y morfométricas y que se mantienen permanentemente inundadas por afloramiento de aguas subterráneas asociadas al acuífero detrítico del delta y su cauce fluvial (el río Guadalhorce). El hidroperíodo de este complejo está relacionado con el régimen micromareal y las infiltraciones del río, al ser el acuífero que las alimenta un acuífero costero. La salinidad de las aguas en las distintas lagunas de este complejo varía en función de su situación relativa respecto al litoral y al río.
- Los Charcones de Punta Entinas constituyen un humedal de aguas salobres que reciben también aportes endorreicos subterráneos e infiltraciones marinas. El aporte de escorrentía superficial es escaso, ya que su cuenca está poco jerarquizada por la escasa pendiente y la alteración morfológica provocada por la construcción de invernaderos.
- La Salina de los Cerrillos abarca una serie de terrenos inundables que reciben también aportes endorreicos subterráneos e infiltraciones marinas. La masa contiene una salina que ocupa casi toda su superficie, actualmente sin explotar, a la que se bombeaba agua directa del mar.
- Finalmente, la situación litoral de las Salinas de Cabo de Gata, en una cota inferior a la del mar, es su característica hidrográfica más relevante, permitiendo la entrada directa de agua marina, por gravedad y dirigida por los vientos dominantes de poniente.

Tabla 14. Resumen del análisis de ámbitos estuarinos definidos en la DHCMA							
Masa de agua		Modificada	Masa continental aguas	Embalse aguas arriba			
Código	Nombre	regulación	arriba				
610029	Marismas del Palmones	SI	Bajo Palmones (0611050) y Guadacortes (0611060)	Charco Redondo			
610027	Estuario del Guadarranque	SI	Bajo Guadarranque (0611130) y Madre Vieja (0611120)	Guadarranque			
610028	Estuario del Guadiaro	NO	Bajo Guadiaro (0612062)	NO			
610036	Desembocadura del Guadalhorce	NO	Desembocadura del Guadalhorce (0614220)	Embalse del Guadalhorce situado muy aguas arriba de la zona estuarina			

Los tres humedales anteriores son por tanto, principalmente salinos recibiendo escasos aportes de agua dulce.

Tabla 15. Resumen del análisis de zonas de marismas definidos en la DHCMA					
	Masa de agua	Modificada	Masa continental	Embalse aguas	
Código	Nombre	regulación	aguas arriba	arriba	
610035	Albufera del Cabo de Gata	NO	NO	NO	
610033 Charcones de Punta Entinas		NO	NO	NO	

ANEJO V

Tabla 15. Resumen del análisis de zonas de marismas definidos e			definidos en la DHC	MA
Masa de agua		Modificada	Masa continental	Embalse aguas
Código	Nombre	regulación	aguas arriba	arriba
610034	Salinas de los Cerrillos	NO	NO	NO

A la vista de lo anterior, se resumen en la siguiente tabla, los ámbitos de transición andaluces que finalmente requerirían un análisis del régimen de caudales ecológicos.

Tabla 16. Ámbitos de transición que requieren un análisis del régimen de caudales ecológicos						
F.hdi	Masa de agua					
Estuario	Código	Nombre				
	610029	Marismas del Palmones				
F-4	610027	Estuario del Guadarranque				
Estuarios mediterráneos	610028	Estuario del Guadiaro				
	610036	Desembocadura del Guadalhorce				

Como se ha comentado, las "albuferas" mediterráneas Salina de los Cerrillos, Charcones de Punta Entinas y la albufera de Cabo de Gata son zonas de transición donde no se considera oportuno el planteamiento de un posible cálculo de régimen de caudales ecológicos por las razones ya expuestas.

Por otra parte, respecto al resto de estuarios definidos en la demarcación en los que sí se requeriría un régimen de caudales ecológicos, los modelos necesarios, además de altamente complejos, son muy exigentes en cuanto al número de datos que requieren, frecuencia de los mismos, grado de detalle y exactitud de los mismos.

Actualmente, ninguno de los ámbitos definidos cuenta con los datos mínimos necesarios para abordar el desarrollo de los modelos explicados (datos de marea, batimetría, avance de la cuña salina, etc.).

Finalmente, se propone, de cara al nuevo proceso de Planificación, la recopilación de la información y datos mencionados que permita el correcto desarrollo de las metodologías específicas para la determinación del régimen de caudales ecológicos en los ámbitos de transición señalados. Como ejemplo se puede citar la necesidad de realizar campañas de muestreo de salinidad y temperatura con la frecuencia necesaria en diferentes puntos significativos, ubicación de mareógrafos a lo largo de los estuarios donde se den medidas de marea en continuo, campaña batimétrica para rodar el modelo con una geometría real, etc.

Para llevar a cabo esto, en el Programa de Medidas que forma parte del presente plan se ha incluido el "Estudio y análisis de las demandas y/o necesidades ambientales de las aguas de transición. Estudio específico del tipo de estuario, estudio de dinámicas y patrones de salinidad, nutrientes y sedimento entre aguas continentales y de transición, desarrollo de modelos hidrodinámicos y recopilación de la información de las que se alimentan estos modelos (batimetría, salinidad y su distribución, mareas, estudio de regímenes hidrológicos, etc.)".

