

Direction General de Sostenibilidad Ambiental y Cambio Climático

Guía de apoyo para la notificación de la industria de fabricación de elementos cerámicos de construcción

Versión: Diciembre 2022

ÍNDICE

1.	OBJETIVO DE ESTA GUÍA	5
2.	EMISIONES ASOCIADAS AL EPÍGRAFE 3.G	5
3.	PARÁMETROS PRTR A NOTIFICAR	9
4.	METODOLOGÍA DE NOTIFICACIÓN DE EMISIONES	11
	4.1. C - Datos calculados	12
	4.1.1. Factores de emisión del CORINAIR	
	4.1.2. Factores de emisión de la EPA	
	4.1.3. Seguimiento y notificación de las emisiones de gases de efecto invernadero en aplica de la Directiva 2003/87/CE del Parlamento Europeo y del Consejo	
	4.1.4. Determinación emisiones de NOx y SOx según el decreto 503/2004	
	4.2. E - Datos estimados	
5.	FACTORES DE EMISIÓN PROPUESTOS PARA LA NOTIFICACIÓN DE EMISIONES MEDIA	NTE
CÁ	LCULO	15
	5.1. Cálculo de las emisiones de contaminantes distintos de CO ₂	16
	5.2. Cálculo de las emisiones de CO ₂	26
6	ECOLIENA DECUNENDEL DECOESO DE NOTIFICACIÓN	29
υ.	ESQUEMA RESUMEN DEL PROCESO DE NOTIFICACIÓN	
	DOCUMENTACIÓN DE REFERENCIA	
7.		
7.	NDICE DE TABLAS	30
7.	DOCUMENTACIÓN DE REFERENCIA	7
7. Tak	NDICE DE TABLAS ola 1. Residuos típicos del sector de fabricación de materiales para construcción	7
7. Tak	NDICE DE TABLAS ola 1. Residuos típicos del sector de fabricación de materiales para construcción	7
7. Tak Tak Tak Tak	NDICE DE TABLAS ola 1. Residuos típicos del sector de fabricación de materiales para construcción	7
7. Tak Tak Tak Tak Tak	NDICE DE TABLAS Pla 1. Residuos típicos del sector de fabricación de materiales para construcción	77 9 10 12
7. Tak Tak Tak Tak Tak Tak	NDICE DE TABLAS ola 1. Residuos típicos del sector de fabricación de materiales para construcción	70
Tak Tak Tak Tak Tak Tak Tak Tak	NDICE DE TABLAS Ola 1. Residuos típicos del sector de fabricación de materiales para construcción	7 7 10 17 18
Tak Tak Tak Tak Tak Tak Tak	NDICE DE TABLAS Dla 1. Residuos típicos del sector de fabricación de materiales para construcción	7 7 10 12 18 19
Tak	NDICE DE TABLAS Ola 1. Residuos típicos del sector de fabricación de materiales para construcción. Ola 2. Sub-listas contaminantes PRTR. Ola 3. Contaminantes PRTR incluidos por R.D. 508/2007. Ola 4. Códigos de calidad de los factores de emisión EPA. Ola 5. Factores de emisión para el CO. Ola 6. Factores de emisión para NO _x . Ola 7. Factores de emisión para PM ₁₀ .	

Tabla 11. Factores de emisión para el Cr en kg/t producción	21
Tabla 12. Factores de emisión para el Hg en kg/t producción	22
Tabla 13. Factores de emisión para el Ni en kg/t producción	22
Tabla 14. Factores de emisión para el Pb en kg/t producción	22
Tabla 15. Factores de emisión para el Antimonio (Sb) en kg/t producción	23
Tabla 16. Factores de emisión para el Cobalto (Co) en kg/t producción	23
Tabla 17. Factores de emisión para el Manganeso (Mn) en kg/t producción	23
Tabla 18. Factores de emisión para las emisiones de metales en instalaciones auxiliares	24
Tabla 19. Factores de emisión para los COVDM	24
Tabla 20. Factores de emisión para el benceno	
Tabla 21. Factores de emisión para los HAP ^a	25
Tabla 22. Factores de emisión para el COT	26
Tabla 23. Datos de combustibles utilizados en cerámicas	28
Tabla 24. Densidades típicas de combustibles	28
Tabla 25. Factores de emisión estequiométricos	29
ÍNDICE DE FIGURAS	
Figura 1. Diagrama del proceso de fabricación y emisiones asociadas	
Figura 2. Esquema resumen del proceso de notificación	30

ABREVIATURAS

BAT: Best Available Techniques

BREF: BAT Reference

ECCA: Entidad Colaboradora de la Calidad en materia de Medio Ambiente

EPA: Environmental Protection Agency

F.E.: Factores de Emisión

IPCC: Intergovernmental Panel on Climate Change (Panel Intergubernamental sobre el Cambio

Climático)

MITERD: Ministerio para la Transición Ecológica y el Reto Demográfico

PCI: Poder Calorífico Inferior

PT: Partículas Totales

R.D.: Real Decreto

1. Objetivo de esta guía

Este documento establece las particularidades para la notificación de las emisiones y transferencia de contaminantes de los complejos incluidos en el epígrafe 3.g "Instalaciones para la fabricación de productos cerámicos mediante horneado, en particular tejas, ladrillos refractarios, azulejos, o productos cerámicos ornamentales o de uso doméstico con una capacidad de producción superior a 75 toneladas por día y/o una capacidad de horneado de más de 4 m³ y de más de 300 kg/m³ de densidad de carga por horno" del Anexo I, del Real Decreto 508/2007, modificado mediante el Anejo 5, del Real Decreto 815/2013, de 18 de octubre, (BOE 251, 19 de octubre de 2013).

2. Emisiones asociadas al epígrafe 3.g

En el presente apartado se procede a describir brevemente las principales etapas que constituyen el proceso de fabricación de este tipo de industrias, así como las emisiones de contaminantes asociadas a cada una de ellas.

Conviene aclarar que bajo la denominación elementos de construcción, se incluyen ladrillos, tejas, bloques y bovedillas.

Descripción del proceso productivo

El proceso de fabricación de los elementos para la construcción se basa en una serie de etapas que se detallan a continuación:

a) Almacenamiento de materias primas

Consiste en almacenamientos en pilas, cubiertas o al aire libre, de la arcilla y de otro tipo de materiales que puedan servir de aditivos al proceso tales como arena o chamota.

b) Molienda y mezclado

El proceso de molienda puede llevarse a cabo de dos formas: por vía seca o por vía húmeda. En el caso de molienda seca se utilizan molinos de martillos o desintegradoras de cuchillas y en la molienda húmeda se utilizan laminadores y molinos de rulos. La arcilla, una vez molida, puede ser mezclada con distintos aditivos (arena, carbonato de bario, chamota, orujo, etc.) según los requerimientos de calidad del producto final.

Durante el almacenamiento de la materia prima y la molienda se generan emisiones difusas de partículas.

c) Conformado

El conformado incluye tanto el amasado como el moldeo. En el amasado se regula el contenido de agua de la mezcla de arcilla mediante la adición de agua o vapor. En el caso de que se realice con vapor producido por una caldera, ésta se considerará como instalación auxiliar del proceso.

En el caso del moldeo, el proceso difiere en función del material a fabricar. Si se trata de ladrillos, bovedillas y bloques se realiza por extrusión, mientras que en el caso de las tejas, además se emplea el prensado.

En la extrusión, la pasta de arcilla humectada se hace pasar a través de un molde perforado empujado por una hélice giratoria. La arcilla extrusionada adquiere el perfil de la boquilla incorporada, pudiéndose modificar en función del tipo de pieza a producir. La cortadora efectúa el corte de forma sincronizada con la galletera y se obtiene el ladrillo deseado.

El moldeo por prensado va precedido por un extrusionado que permite la obtención de una "galleta" o torta húmeda con la que se rellena el molde, pasando a una prensa en la que se comprime la pasta para obtener la teja.

d) Secado

El objetivo del secado es la reducción del contenido de humedad de las piezas antes de su cocción. Puede realizarse de dos formas: natural (a la intemperie) o artificial. El secado artificial emplea fuentes de calor de diversos orígenes. Se suelen emplear los gases de enfriamiento del horno de cocción, en cuyo caso la emisión de contaminantes asociada es análoga a la de un proceso de secado natural debido a que no tiene lugar un proceso de combustión adicional. Otra posible fuente de calor son los gases procedentes de la combustión en quemadores de gas, coque, orujillo, cáscara de almendra u otros combustibles, en cuyo caso hay que considerar la emisión de contaminantes asociados al proceso de combustión.

e) Cocción

Se puede llevar a cabo en dos tipos de hornos:

Túnel. El material se deposita en vagonetas que se desplazan a lo largo del horno, distinguiéndose tres zonas: precalentamiento, cocción y enfriamiento.

Hoffmann. El material a cocer se mantiene estático, y es el fuego el que se desplaza a lo largo de las distintas cámaras hasta conseguir unas condiciones de temperatura adecuadas.

En esta etapa se producen los contaminantes típicos asociados a los procesos de combustión y de descomposición de la materia prima.

Como consecuencia del proceso productivo descrito anteriormente, se establece que las emisiones características de este tipo de industrias se producen a la atmósfera, no existiendo vertidos hídricos asociados al proceso de fabricación, a excepción del caso en el que exista un proceso de esmaltado.

En la siguiente tabla se incluyen los residuos peligrosos y no peligrosos típicos del sector de fabricación de materiales cerámicos para la construcción, junto con el código LER asociado:

Tabla 1. Residuos típicos del sector de fabricación de materiales para construcción

Residuos no peligrosos generados en la actividad				
Código residuo¹	Descripción del residuo	Proceso asociado		
10 12 01	Pasta cerámica sin conformar, o piezas conformadas defectuosas o rotas	Conformado de piezas		
10 12 03	Polvo originado en las operaciones de limpieza	Limpieza de instalaciones		
10 12 08	Piezas defectuosas tras el proceso de cocción	Cocción		
15 01 02	Envases de plásticos	Operaciones de embalaje		
20 01 01	Papel y cartón	Oficinas		
20 03 01	Mezcla de residuos municipales	Actividades domésticas		
20 01 40	Metales	Mantenimiento		
	Residuos de aparatos eléctricos y electró	nicos		
Código residuo¹	Descripción del residuo	Proceso		
08 03 18	Tóner	Oficina		
20 01 21	Tubos fluorescentes	Oficina y fábrica		
	Residuos peligrosos generados en la activ	vidad		
Código residuo¹	Descripción del residuo	Proceso		
13 02 05/06	Aceites usados			
14 06 03	Disolvente orgánico no halogenado			
140003				
15 01 10	Envases vacíos contaminados por sustancias peligrosas	Operaciones de mantenimiento		
1111	·	Operaciones de mantenimiento		
15 01 10	peligrosas	Operaciones de mantenimiento		

¹ Código LER (Lista Europea de Residuos), según la Decisión de la Comisión de 18 de diciembre de 2014 por la que se modifica la Decisión 2000/532/CE, sobre la lista de residuos, de conformidad con la Directiva 2008/98/CE del Parlamento europeo y del Consejo

A continuación se incluye un diagrama esquemático del proceso, indicando las principales emisiones de contaminantes asociadas a cada etapa:

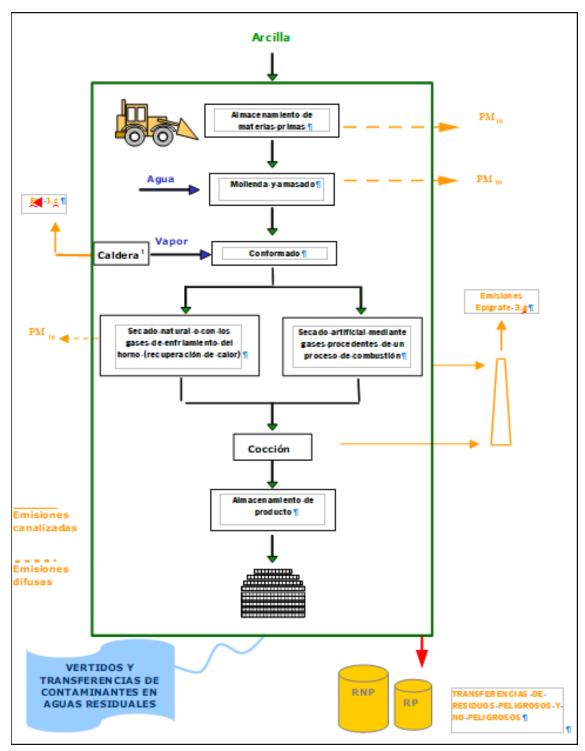


Figura 1. Diagrama del proceso de fabricación y emisiones asociadas

¹Estas emisiones se consideran si se usa vapor en el conformado y dependerán del combustible utilizado.

3. Parámetros PRTR a notificar

En el apéndice 4 de la "Guía para la implantación del E-PRTR" de la Dirección General del Medio Ambiente de la Comisión Europea se adjuntan unas sub-listas que ilustran, **a título orientativo**, los parámetros contaminantes a notificar en función del tipo de actividad de la instalación para las emisiones al aire y emisiones y transferencias al medio hídrico. Para las afectadas por el **epígrafe 3.g**, los contaminantes considerados son:

Tabla 2. Sub-listas contaminantes PRTR

INDUSTRIAS DE FABRICACIÓN DE ELEMENTOS DE CONSTRUCCIÓN				
Nº PRTR	Contaminante	Medio Atmós- fera	Media Agua¹	
2	Monóxido de Carbono (CO)	•		
3	Dióxido de Carbono (CO ₂)			
7	Compuestos Orgánicos Volátiles distintos del Metano (CO- VDM)	•		
8	Óxidos de Nitrógeno (NO _x /NO ₂)			
11	Óxidos de Azufre (SO _x /SO ₂)			
12	Nitrógeno Total			
13	Fósforo Total			
17	Arsénico y sus compuestos (como As)			
18	Cadmio y sus compuestos (como Cd)			
19	Cromo y sus compuestos (como Cr)			
20	Cobre y sus compuestos (como Cu)			
21	Mercurio y sus compuestos (como Hg)			
22	Níquel y sus compuestos (como Ni)			
23	Plomo y sus compuestos (como Pb)			
24	Cinc y sus compuestos (como Zn)			
40	Compuestos Orgánicos Halogenados (como AOX)			
62	Benceno			
72	Hidrocarburos Aromáticos Policíclicos (HAP)			

INDUSTRIAS DE FABRICACIÓN DE ELEMENTOS DE CONSTRUCCIÓN					
Nº PRTR	Contaminante	Medio Atmós- fera	Media Agua¹		
79	Cloruros (como Cl total)		•		
80	Cloro y compuestos inorgánicos (como HCl)				
83	Fluoruros (como F total)				
84	Flúor y compuestos inorgánicos (como HF)				
86	PM				

¹ Tal y como se ha indicado anteriormente, no existen vertidos hídricos asociados al proceso productivo

En relación a los contaminantes incluidos en la tabla anterior, se deben realizar las siguientes consideraciones:

- Todos los metales (N° PRTR 17 24) se comunicarán como la masa total del elemento en todas las formas químicas presentes en la emisión.
- Para la información sobre emisiones a la atmósfera, los Hidrocarburos Aromáticos Policíclicos (HAP, Nº PRTR 72) incluyen: benzo(a)pireno, benzo(b)fluoranteno, benzo(k)fluoranteno e indeno(1,2,3-cd)pireno.

Por otro lado, en el Real Decreto 508/2007 han sido incluidos una serie de contaminantes que deben notificarse, aunque en principio no se incluirán en la información que el MITERD remita a organismos europeos o a cualquier otro organismo de carácter internacional. Además también se incluye como contaminante PRTR al aire el COT (n° PRTR 76). Estos contaminantes se recogen en la siguiente tabla:

Tabla 3. Contaminantes PRTR incluidos por R.D. 508/2007

I° PRTR	ATMÓSFERA	N° PRTR	AGUA		
76	COT (Carbono Orgánico Total)	98	DQO		
92	Partículas totales en suspensión (PST)	200	o,p'-DDT		
93	Talio	201	p,p'-DDD		
94	Antimonio	202	p,p'-DDE		
95	Cobalto	203	p,p'-DD		
96	Manganeso	204	Benzo(a)pireno		
97	Vanadio	205	Benzo(b)fluoranteno		
		206	Benzo(k)fluoranteno		
		207	Indeno(1,2,3-cg)pireno		

OTRAS SUSTANCIAS INCLUIDAS EN EL PRTR POR EL REAL DECRETO 508/2007					
N° PRTR	ATMÓSFERA	N° PRTR	AGUA		
		208	1,2,3-Triclorobenceno		
		209	1,2,4-Triclorobenceno		
		210	1,3,5-Triclorobenceno		
		211	p-xileno		
		212	o-xileno		
		213	m-xileno		
		214	Penta-BDE		
		215	Octa-BDE		
		216	Deca-BDE		

Las sustancias con número PRTR desde el 200 al 216 corresponden a isómeros de otras sustancias incluidas en la lista de contaminantes PRTR (DDT, HAP, Triclorobencenos, Xilenos y Bromodifenileteres).

4. Metodología de notificación de emisiones

Según el **Reglamento (CE) 166/2006, de 18 de enero de 2006**, la notificación de las emisiones puede realizarse de tres formas distintas:

- Datos Medidos (M): Los datos notificados proceden de mediciones realizadas utilizando métodos normalizados o aceptados.
- Datos Calculados (C): Los datos que la instalación declara proceden de cálculos realizados utilizando métodos de estimación y factores de emisión aceptados en el ámbito nacional e internacional y representativos de los sectores industriales.
- **Datos Estimados (E):** Los datos notificados proceden de estimaciones no normalizadas fundamentadas en hipótesis óptimas o en las previsiones de expertos.

La casuística asociada a cada una de las posibilidades citadas queda descrita en el siguiente documento "Notificación de Datos PRTR – Guía de Apoyo", de diciembre de 2022. No obstante, se detalla de forma explícita la notificación a través de datos calculados puesto que los factores de emisión son específicos según la actividad.

4.1. C - Datos calculados

Dada la existencia de factores de emisión de reconocido prestigio disponibles a nivel internacional, característicos para el proceso productivo y de fácil utilización, se consideran éstos como una herramienta útil para la determinación de las emisiones en ausencia de otro tipo de datos de mayor fiabilidad.

Las principales fuentes bibliográficas consultadas para la selección de los factores de emisión han sido:

- **CORINAIR.** Inventario de emisiones atmosféricas realizado por la European Environmental Agency.
- **EPA.** Environmental Protection Agency U.S.

Para escoger un factor de emisión se debe seguir el siguiente orden de preferencia:

- 1. En primer lugar sería deseable utilizar F.E. propios del proceso productivo y del ámbito geográfico en el que se encuentra la instalación. En la actualidad no se han desarrollado F.E. específicos para la industria de fabricación de elementos de construcción en la comunidad autónoma de Andalucía.
- 2. Utilización de F.E. reconocidos a nivel europeo (CORINAIR).
- 3. Utilización de F.E. desarrollados por otros organismos de reconocido prestigio (EPA).

Cada F.E. lleva asociado un índice de calidad que representa la capacidad que posee dicho factor para aproximarse a las tasas medias de emisión de una determinada fuente, estando siempre referido a las condiciones de operación y medida en las que se ha determinado.

Tabla 4. Códigos de calidad de los factores de emisión EPA

Tipo de Factor	Calidad del Factor
А	Excelente
В	Medio - Alto
С	Medio
D	Medio - Bajo
Е	Bajo
U	Sin datos

Fuente: AP-42 FAQ

Por otro lado, los factores de emisión se asocian bien a datos de consumo (de materia prima y/o de combustible), bien a datos de producción. Si una instalación notifica parámetros distintos con factores de emisión basados en distinto tipo de datos (consumo o producción) se deberá justificar la correlación entre ambos, debiendo resultar coherente los datos suministrados.

4.1.1. Factores de emisión del CORINAIR

En el capítulo 1.A.2 "Manufacturing industries and construction (combustion)" de la Guía para inventarios de emisión de EMEP/CORINAIR (EMEP CORINAIR Emission Inventory Guidebook – 2019), se dan factores de emisión genéricos para el proceso de producción de ladrillos, tejas y azulejos. Estos factores se encuentran recogidos en la tabla A1-1 del Anexo 1.

En el capítulo B3319 de la Guía para inventarios de emisión de EMEP/CORINAIR (EMEP/ CORINAIR Emission Inventory Guidebook - 2006), dedicado a la fabricación de ladrillos y azulejos, se dan dos grupos de factores de emisión expresados en unidades distintas. Estos factores están recogidos en tablas del Anexo 1.

En la Tabla A1-2 del Anexo 1 se expresan los factores propuestos por el CORINAIR en kg/t de producción que varían según la tecnología del horno de cocción. En la tabla A1-3 del Anexo 1 se recogen los factores que propone el CORINAIR relacionados con el consumo de combustible. En la mayoría de los casos no se propone un único factor, sino un intervalo expresado en g/GJ.

Después de su aplicación en instalaciones andaluzas, se recomienda la utilización de los factores que aparecen en el punto 5, por ser más específicos, ya que además de la tecnología empleada también tienen en cuenta el tipo de combustible utilizado. Asimismo, el CORINAIR para este tipo de factores, da un único valor en lugar de un intervalo como ocurre en el caso de los factores expresados por tipo de combustible.

La abreviatura que se debe indicar acompañando estos factores es SSC.

4.1.2. Factores de emisión de la EPA

La EPA dispone de dos fuentes de factores de emisión específicos para el sector de fabricación de elementos cerámicos de construcción:

- Capítulo 11.3 AP-42 (Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources). En este documento se describe el sector de fabricación de ladrillos y otros elementos de construcción obtenidos a partir de arcilla. Asimismo, se incluyen los códigos SCC (Source Classification Code) que identifican cada una de las etapas del proceso productivo. Los factores incluidos en este documento son para horno túnel (tecnología predominante en las instalaciones de Estados Unidos).
- **Programa FIRE.** En esta base de datos se incluyen los factores que aparecen en el Capítulo 11 del AP-42 para horno túnel y otros factores para horno Hoffmann. La búsqueda se puede realizar por contaminante o por código SCC de la etapa del proceso productivo.

La mayoría de los factores propuestos en estas fuentes están expresados en kg/t de producción, excepto en el caso de los factores asociados a las etapas de molienda que están expresados en kg/t de materia prima. En ambas fuentes los factores de emisión definidos tienen en cuenta:

- La etapa del proceso: molienda, secado, horno de cocción, etc.
- El tipo de horno: Hoffmann o Túnel.
- Tipo de combustible: carbón, serrín o gas natural. Los factores de emisión para serrín se han considerado válidos para biomasa en general.

Asimismo, cada factor de emisión tiene asociado un código de calidad.

La abreviatura que se debe indicar acompañando a estos factores es OTH.

4.1.3. Seguimiento y notificación de las emisiones de gases de efecto invernadero en aplicación de la Directiva 2003/87/CE del Parlamento Europeo y del Consejo

En relación con la Directiva 2003/87/CE, por la que se establece un régimen para el comercio de derechos de emisión de gases de efecto invernadero, el 31 de diciembre de 2018 se publicó en el Diario Oficial de la Unión Europea el Reglamento (UE) 2018/2066 de la Comisión de 19 de diciembre de 2018 sobre el seguimiento y la notificación de las emisiones de gases de efecto invernadero en aplicación de la Directiva 2003/87/CE del Parlamento Europeo y del Consejo y por el que se modifica el Reglamente (UE) n.º 601/2012 de la Comisión. Este Reglamento es de aplicación a partir del 1 de enero de 2021, por lo que las emisiones se determinarán en base a él.

El Reglamento comentado anteriormente es modificado por el Reglamento (UE) 2020/2085 de la Comisión de 14 de diciembre de 2020 por el que se modifica y corrige el Reglamento de Ejecución (UE) 2018/2066 sobre el seguimiento y la notificación de las emisiones de gases de efecto invernadero en aplicación de la Directiva 2003/87/CE del Parlamento Europeo y del Consejo.

Los Anexos II y IV del Reglamento (UE), nº 2018/2066, de 19 de diciembre, modificados por el Reglamento (UE) 2020/2085, de 14 de diciembre, contienen las directrices generales para el seguimiento y la notificación de las emisiones de los gases de efecto invernadero resultantes de las actividades relacionadas en el anexo I de la Ley 1/2005 (BOE nº 59, de 10 de marzo de 2005), modificada por la Ley 13/2010 (BOE nº 163, de 10 de julio de 2010), entre las que se encuentran incluidas las instalaciones de fabricación de productos cerámicos mediante horneado, en particular de tejas, ladrillos, refractarios, azulejos, gres cerámico o porcelanas, con una capacidad de producción superior a 75 t/día.

En la metodología propuesta en esta Decisión se han tenido en cuenta las Directrices del IPCC (Panel Intergubernamental para el Cambio Climático) para inventarios de gases de efecto invernadero.

Según estas directrices las emisiones de CO₂ originadas en este tipo de industrias se deben fundamentalmente a las siguientes causas:

- Procesos de combustión que tienen lugar en la industria de fabricación de productos cerámicos.
- Descomposiciones de los carbonatos y del carbono contenido en la arcilla, materia prima, convertida en el proceso.

Todas las instalaciones de fabricación de ladrillos afectadas por el Real Decreto 815/2013, en su epígrafe 3.g, y que están afectadas por la Ley 1/2005, por la que se regula el régimen del comercio de derechos de emisión de gases de efecto invernadero, y por su modificación posterior (Ley 13/2010, de 5 de julio) **tienen que realizar** su notificación PRTR de emisiones de CO₂ con la misma metodología empleada que la utilizada para el informe verificado de emisiones remitido al órgano autonómico competente, aunque en el caso de utilizar como combustible biomasa, se deberá tener en cuenta las emisiones generadas por la misma. En este caso, **la abreviatura que se debe emplear acompañando la notificación será PER.**

4.1.4. Determinación emisiones de NOx y SOx según el decreto 503/2004

La ley 18/2003 por la que se aprueban medidas fiscales y administrativas, crea y regula determinados impuestos, calificados como ecológicos, entre los cuales se encuentra el Impuesto sobre Emisión de Gases a la

Atmósfera. Con posterioridad a dicha ley, el Decreto 503/2004 regula determinados aspectos para la aplicación de los impuestos y las distintas metodologías existentes para la determinación de las emisiones.

La abreviatura que se debe emplear acompañando la notificación será NRB.

4.2. E - Datos estimados

La notificación de emisiones mediante estimaciones se basa en el empleo de métodos no normalizados, mediante la adopción de hipótesis contrastadas u opiniones autorizadas.

Determinación de las emisiones de PM.

Para el parámetro PM₁₀ se puede realizar una estimación a partir de factores de emisión y medidas de partículas totales, en el caso de disponer de dichas medidas realizadas en el horno o en el secadero.

Esta estimación se realiza mediante un cociente entre los factores de emisión de PM₁₀ (Tabla 8) y partículas totales (Tabla A1-6, en el Anexo 1), por lo que se calcula un porcentaje que aplicar a las medidas de partículas totales.

Para utilizar este método de estimación se deben calcular las partículas medidas a partir de un Informe de Emisión de una ECCA o por otra vía. Este resultado da unas emisiones de kg/año de partículas totales (PT), por lo que aplicando el cociente entre factores PM₁₀/PT indicados en la tabla anterior se obtienen el dato de emisión de las PM₁₀ en kg/año.

A estas emisiones de PM₁₀ habría que añadirles la molienda y las emisiones de las instalaciones auxiliares calculadas mediante factores de emisión, en el caso de no tener medidas de dichas instalaciones.

5. Factores de emisión propuestos para la notificación de emisiones mediante cálculo

A continuación se indican los factores de emisión recomendados para la notificación de los parámetros PRTR correspondientes a las instalaciones de fabricación de elementos cerámicos.

5.1. Cálculo de las emisiones de contaminantes distintos de CO₂

A continuación se adjuntan las tablas que recogen los factores de emisión seleccionados para los contaminantes PRTR distintos del CO₂ en función de cada etapa del proceso productivo.

En aquellos casos en los que se utilicen varios combustibles es necesario aplicar el factor de forma ponderada en función de la energía aportada por cada combustible, por lo que si se emplean dos combustibles diferentes (combustible A y combustible B), la proporción energética se obtiene aplicando las siguientes ecuaciones:

Ecuación 1. Cálculo del porcentaje energético del combustible A

Ecuación 2. Cálculo del porcentaje energético del combustible B

Proporción de combustible B = 1 - Proporción de combustible A

En las ecuaciones anteriores, PCI es el poder calorífico inferior del combustible. Los poderes caloríficos inferiores correspondientes a los combustibles más empleados en el sector cerámico se incluyen en la Tabla 23.

En general no existen factores de emisión específicos para coque de petróleo aunque, por similitud con el carbón, se recomienda emplear los factores de emisión correspondientes al carbón para la utilización de coque como combustible.

En el caso de los factores propuestos para el proceso de cocción y biomasa, en la fuente original de la EPA se especifica que el tipo de biomasa empleado es serrín, en las siguientes tablas se han considerado para todo tipo de biomasa.

Para otros casos en los que no existan factores de emisión específicos, se debe emplear el factor que más se asemeje según el tipo de combustible o tecnología empleada e indicar las hipótesis realizadas.

Para los procesos de molienda, conformado y secadero natural no existen emisiones de contaminantes a excepción de las partículas totales y de las PM₁₀.

Los factores que aparecen sombreados en las siguientes tablas, están expresados en kg de contaminante por t de combustible y se han determinado a partir del factor correspondiente de la bibliografía y empleando datos característicos de cada combustible (poderes caloríficos, densidades, etc).

Tabla 5. Factores de emisión para el CO

ETAPA DEL PROCESO /COMBUSTIBLE		FACTOR DE EMI- SIÓN	UNIDAD	CÓDIGO	FUENTE
Sec	adero				
Artificial		CONSIDERAR LOS F. TALACIONES AUXIL	_,		A TABLA "INS-
Cocción					
Combustible	Tipo de horno				
Gas natural	Túnel	0,030		С	CORINAIR
Gas natural	Hoffmann	0,075		С	CORINAIR
Fuel oil / Gasoil	Túnel	0,060		С	CORINAIR
Fuel oil / Gasoil	Hoffmann	0,095	kg/t producto	С	CORINAIR
Carbón / coque	Túnel	0,715		С	CORINAIR
Carbón / coque	Hoffmann	1,195		С	CORINAIR
Biomasa	Túnel	0,800		D	EPA

INSTALACIONES AUXILIARES / SECADERO

COMBUSTIBLE	FACTOR DE EMI- SIÓN (kg/GJ)	PODER CALORÍFICO INFERIOR (GJ/t)	FACTOR DE EMISIÓN (kg/t comb.)	FUENTE
Orujillo ^a	0,570	17,20	9,80	CORINAIR
Resto de biomasa ^a	0,570	14,20	8,09	CORINAIR
Fuel Oil	0,040	40,40	1,62	CORINAIR
Gas Oil	0,093	43,00	4,00	CORINAIR
Butano	0,029	47,30	1,37	CORINAIR
Propano	0,029	47,30	1,37	CORINAIR
Gas natural	0,030	48,62	1,46	CORINAIR

^a Factor correspondiente a "Otra biomasa". En ausencia de otros factores más específicos para cada tipo de biomasa, se ha aplicado este valor multiplicándolo por el poder calorífico correspondiente a cada combustible

Tabla 6. Factores de emisión para NO_x

ETAPA DEL PROCESO / COMBUSTIBLE		FACTOR DE EMISIÓN	UNIDAD	CÓDIGO	FUENTE
Sec	adero				
Artificial		CONSIDERAR LOS F.E. I		RIOR DE ESTA	TABLA " INSTA -
Co	cción				
Combustible	Tipo de horno	_			
Gas natural	Túnel	0,090		С	D. 503/04
Gas natural	Hoffmann	0,250		С	CORINAIR
Fuel oil / Gasoil	Túnel	0,550		С	D. 503/04
Fuel oil / Gasoil	Hoffmann	0,810	kg/t producto	С	D. 503/04
Carbón / coque	Túnel	0,725		С	D. 503/04
Carbón / coque	Hoffmann	1,175		С	D. 503/04
Biomasa	Túnel	0,185		E	D. 503/04

INSTALACIONES AUXILIARES / SECADERO

COMBUSTIBLE	FACTOR DE EMI- SIÓN (kg/GJ)	PODER CALORÍFICO INFERIOR (GJ/t)	FACTOR DE EMISIÓN (kg/t comb.)	FUENTE
Orujillo ^a	0,200	17,20	3,44	D. 503/04
Resto de biomasa ^a	0,200	14,20	2,84	D. 503/04
Fuel Oil	0,159	40,40	6,42	D. 503/04
Gas Oil	0,089	43,00	3,83	D. 503/04
Butano	0,174	47,30	8,23	D. 503/04
Propano	0,174	47,30	8,23	D. 503/04
Gas natural	0,100	48,62	4,86	D. 503/04

^{*} Factor correspondiente a Biomasa. En ausencia de otros factores más específicos para cada tipo de biomasa, se ha aplicado este valor multiplicándolo por el poder calorífico correspondiente a cada combustible

Tabla 7. Factores de emisión para SOxª

	L PROCESO BUSTIBLE	FACTOR DE EMISIÓN	UNIDAD	CÓDIGO	FUENTE
Secadero					
Artificial		CONSIDERAR LOS F.E. LACIONES AUXILIARE		ERIOR DE ESTA	TABLA " INSTA-
Co	cción				
Combustible	Tipo de horno	_			
Gas natural	Túnel	0,335		С	D. 503/04
Gas natural	Hoffmann	2,950		С	CORINAIR
Fuel oil/ gasoil	Túnel	2,000		С	D. 503/04
Fuel oil/ gasoil	Hoffmann	2,950	kg/t producto	U	D. 503/04
Carbón/ coque	Túnel	3,665		С	D. 503/04
Carbón/ coque	Hoffmann	6,065		U	D. 503/04
Biomasa	Túnel	0,335		С	D. 503/04

INSTALACIONES AUXILIARES / SECADERO^b

COMBUSTIBLE	FACTOR DE EMISIÓN (kg/GJ)	PODER CALORÍFICO INFERIOR (GJ/t)	FACTOR DE EMISIÓN (kg/t comb.)	FUENTE
Orujillo ^c	0,099	17,20	1,70	D. 503/04
Resto de biomasa ^c	0,0035	14,20	0,0497	D. 503/04
Fuel Oil	0,495	40,40	20,0	D. 503/04
Gas Oil	0,093	43,00	4,00	D. 503/04
Butano	0,00211	47,30	0,0998	D. 503/04
Propano	0,00211	47,30	0,0998	D. 503/04
Gas natural	0,00411	48,62	0,2 ^d	D. 503/04

^a Debido a la gran variabilidad de porcentaje de azufre en la materia prima, las emisiones de azufre se calculan de forma más exacta considerando que todo el azufre de la materia prima se libera como SO₂ durante la cocción y que cada kg de azufre da lugar a 2 kg de SO₂. Es necesario considerar en los balances de masa el azufre presente en el combustible.

^b Para instalaciones de combustión, los F.E. de SO_x se han obtenido aplicando la fórmula propuesta por el CORINAIR: F.E. $_{500}$ (kg/GJ)=20 xS/PCI, en la que S es el % de azufre en el combustible, PCI el poder calorífico inferior y se ha supuesto que no existe retención en las cenizas ni medidas secundarias. Se consideran por defecto, según el Decreto 503/2004, los siguientes porcentajes de azufre en los combustibles: Fuel Oil (1%); Gasoil (0,2%); Gas natural (0,01%); Butano y propano (0,005%); Orujillo (0,085%); Resto de biomasa (0,0025%).

^c En ausencia de otros factores más específicos para cada tipo de biomasa, se ha aplicado este valor multiplicándolo por el poder calorífico correspondiente a cada combustible.

^d Si se tiene el consumo de gas natural en m³, se debe pasar a toneladas multiplicando por la densidad (0,8 kg/m³) y dividiendo por 1000 para pasar de kg a t. En el caso de disponer el dato en kWh se debe pasar a toneladas dividiendo por 10,67 kWh/m³, por lo que ya se tiene en m³, y después pasarlo a toneladas como se indicó anteriormente.

Biomasa

Tabla 8. Factores de emisión para PM₁₀

ETAPA DEL PROCESO / COMBUSTIBLE	FACTOR DE EMISIÓN	UNIDAD	CÓDIGO	FUENTE
Molienda				
Material seco (≈ 4% humedad)	0,265		E	EPA
Material húmedo (≈ 13 % humedad)	0,00115	kg/t materia prima	E	EPA
Filtro de mangas (≈ 6,5 % hume- dad)	0,0016	prima	E	EPA
Conformado ^a				
Secadero				

INSTALACIONES AUXILIARES / SECADERO

D

0,425

COMBUSTIBLE	FACTOR DE EMISIÓN (g/GJ)	PODER CALORÍFICO INFERIOR (GJ/t)	FACTOR DE EMISIÓN (kg/t comb.)	FUENTE
Orujillo ^b	163	17,20	2,80	CORINAIR
Resto de biomasa⁵	163	14,20	2,31	CORINAIR
Fuel Oil	40	40,40	1,62	CORINAIR
Gas Oil	21	43,00	0,903	CORINAIR
Butano	0,78°	47,30	0,0369	CORINAIR
Propano	0,78°	47,30	0,0369	CORINAIR
Gas natural	0,45°	48,62	0,0219	CORINAIR

^a En las fuentes de la EPA existe un factor de emisión para la etapa de conformado, pero se indica que no es aplicable a líneas de extrusión típicas, por tanto no se ha propuesto en este documento

EPA

^b Factor correspondiente a Otra biomasa, en ausencia de otros factores más específicos para cada tipo de biomasa, se ha aplicado este valor con el poder calorífico correspondiente a cada combustible

[°] Para estos combustibles se ha considerado que todas las partículas producidas son PM₁₀

Respecto a los F.E. para metales cabe indicar lo siguiente:

- Los factores de emisión propuestos en estas tablas son los publicados por la EPA tanto en el documento del AP-42 como en el programa FIRE para horno túnel. Debido a que no existen publicados otros factores para metales y horno Hoffmann, se han propuesto los mismos para ambos tipos de horno.
- Para los casos en los que no exista un F.E. específico, se recomienda emplear el que tenga mayor similitud con el proceso empleado e indicar en el formulario de notificación las hipótesis realizadas.
- Para el Cu se ha propuesto el mismo factor que para el As, y para el Cd el mismo que el Zn ya que sus volatilidades son similares.

Tabla 9. Factores de emisión para el As y el Cu en kg/t producción

ETAPA DEL PROCESO / COMBUSTIBLE	FACTOR DE EMISIÓN	CÓDIGO	FUENTE
Secadero			
Artificial	\	/er Tabla 18	
Cocción			
Gas natural	1,55 x 10 ⁻⁵	D	EPA
Fuel oil	No existe factor esp	pecífico para este	e combustible
Carbón / coque	6,5 x 10 ⁻⁵	Е	EPA
Biomasa	1,55 x 10 ⁻⁵	D	EPA

Tabla 10. Factores de emisión para el Cd/Zn en kg/t producción

ETAPA DEL PROCESO / COMBUSTIBLE	FACTOR DE EMISIÓN	CÓDIGO	FUENTE
Secadero			
Artificial		Ver Tabla 18	
Cocción			
Carbón, Gas natural o Biomasa	7,55 x 10 ⁻⁶	D	EPA
Fuel Oil	No existe factor específico para este combustible		

Tabla 11. Factores de emisión para el Cr en kg/t producción

ETAPA DEL PROCESO / COMBUSTIBLE	FACTOR DE EMISIÓN	CÓDIGO	FUENTE
Secadero			
Artificial		Ver Tabla 18	
Cocción			
Carbón, Gas natural o Biomasa	2,55 x 10 ⁻⁵	D	EPA
Fuel Oil	No existe factor específico	para este combu	stible

Tabla 12. Factores de emisión para el Hg en kg/t producción

ETAPA DEL PROCESO / COMBUSTIBLE	FACTOR DE EMISIÓN	CÓDIGO	FUENTE
Secadero			
Artificial		Ver Tabla 18	
Cocción			
Gas natural	3,75 x 10 ⁻⁶	D	EPA
Fuel oil	No existe factor es	pecífico para este	e combustible
Carbón / coque	4,8 x 10 ⁻⁵	Е	EPA
Biomasa	3,75 x 10 ⁻⁶	D	EPA

Tabla 13. Factores de emisión para el Ni en kg/t producción

ETAPA DEL PROCESO / COMBUSTIBLE	FACTOR DE EMISIÓN	CÓDIGO	FUENTE
Secadero			
Artificial		Ver Tabla 18	
Cocción			
Carbón, Gas natural o Biomasa	3,60 x 10 ⁻⁵	D	EPA
Fuel Oil	No existe factor es	specífico para este	e combustible

Tabla 14. Factores de emisión para el Pb en kg/t producción

ETAPA DEL PROCESO / COMBUSTIBLE	FACTOR DE EMISIÓN	CÓDIGO	FUENTE
Secadero			
Artificial		Ver Tabla 18	
Cocción			
Carbón, Gas natural o Biomasa	7,50 x 10 ⁻⁵	D	EPA
Fuel Oil	No existe factor específico para este combustib		

Tabla 15. Factores de emisión para el Antimonio (Sb) en kg/t producción

ETAPA DEL PROCESO / COMBUSTIBLE	FACTOR DE EMISIÓN	CÓDIGO	FUENTE
Secadero			
Artificial		Ver Tabla 18	
Cocción			
Carbón, Gas natural o Biomasa	1,35 x 10 ⁻⁵	D	EPA
Fuel Oil	No existe factor específico para este combustible		

Tabla 16. Factores de emisión para el Cobalto (Co) en kg/t producción

ETAPA DEL PROCESO / COMBUSTIBLE	FACTOR DE EMISIÓN	CÓDIGO	FUENTE
Secadero			
Artificial		Ver Tabla 18	
Cocción			
Carbón, Gas natural o Biomasa	1,05 x 10 ⁻⁶	E	EPA
Fuel Oil	No existe factor específico para este combustible		

Tabla 17. Factores de emisión para el Manganeso (Mn) en kg/t producción

ETAPA DEL PROCESO / COMBUSTIBLE	FACTOR DE EMISIÓN	CÓDIGO	FUENTE			
Secadero						
Artificial		Ver Tabla 18				
Cocción						
Carbón, Gas natural o Biomasa	1,45 x 10 ^{-⁴}	D	EPA			
Fuel Oil	No existe factor e	No existe factor específico para este combustible				

En el caso de disponer de un secadero artificial habría que incluir en las emisiones totales aquellas emisiones de metales correspondientes al secadero y otras instalaciones de combustión auxiliares (Vg.: caldera de extrusión).

En la siguiente tabla se incluyen los factores de emisión propuestos de metales para las instalaciones auxiliares de combustión:

Tabla 18. Factores de emisión para las emisiones de metales en instalaciones auxiliares

FACTOR DE EMISIÓN CORINAIR (kg/t combustible)						
METALEC	COMBUSTIBLE					
METALES	Orujillo	Fuel Oil	Gas Oil			
Arsénico (As)	0,00000327	0,0000404	0,0000215			
Cadmio (Cd)	0,000224	0,0000121	0,00000645			
Cromo (Cr)	0,000396	0,000808	0,000430			
Cobre (Cu)	0,000103	0,000121	0,000129			
Mercurio (Hg)	0,00000963	0,00000404	0,0000043			
Níquel (Ni)	0,0000344	0,00808	0,00538			
Plomo (Pb)	0,000464	0,000404	0,000344			
Cinc (Zn)	0,00881	0,000202	0,000774			
Antimonio (Sb)*	0,0000585	0,000654				
Cobalto (Co)*	0,0000482	0,000747				
Manganeso (Mn)*	0,0119	0,000373	0,000112*			
Vanadio (V)*	0,00000722	0,00396				

^{*} Estos factores de emisión proceden de la EPA

A continuación se incluyen los F.E. propuestos para los parámetros que se incluyeron en el Registro PRTR (COVDM (Compuestos Orgánicos Volátiles distintos del Metano); Benceno; HAP (Hidrocarburos Policíclicos Aromáticos) y COT (Carbono Orgánico Total)), para las instalaciones de fabricación de elementos cerámicos:

Tabla 19. Factores de emisión para los COVDM

		нс	ORNO DE C	DCCIÓN,			
COMBUSTIE	BLE	FACTOR DE (lb/to		FACTOR DE (kg/t prod		CALIDAD	FUENTE
Biomasa, coque, fu oil y gas natural	el oil, gas	0,024 0,012		0,024 0,012		D	EPA
INSTALACIONES AUXILIARES / SECADERO							
COMBUSTIBLE		DE EMISIÓN g/GJ)		ALORÍFICO OR (GJ/t)		DE EMISIÓN nbustible)	FUENTE
Orujillo ^b		0,3	1	7,20	5,	,16	CORINAIR
Resto de biomasa ^b		0,3	1	4,20	4,	,26	CORINAIR
Fuel Oil	C	,005	4	0,40	0,2	202	CORINAIR
Fuel Oil	C),005	4	0,40	0,2	202	

HORNO DE COCCIÓN ^a					
COMBUSTIBLE FACTOR DE EMISIÓN FACTOR DE EMISIÓN CALIDAD FU (lb/ton) (kg/t producción)					
Gasoil	0,020	43,00	0,860	CORINAIR	
Gas natural	0,002	48,62	0,0972	CORINAIR	

^a En la EPA se indica que el tipo de combustible no influye en la emisión de este contaminante. El factor de emisión se ha obtenido para hornos túneles, aunque se puede utilizar también este F.E. para los hornos Hoffmann

Tabla 20. Factores de emisión para el benceno

HORNO DE COCCIÓN ^a					
COMBUSTIBLE	FACTOR DE EMISIÓN (lb/ton)	FACTOR DE EMISIÓN (kg/t producción)	FUENTE	CALIDAD	
Biomasa⁵	0,00052	0,00026	EPA	E	
Coque	0,00029	0,000145	EPA	E	
Gas natural	0,0029	0,00145	EPA	Е	
	INSTALACIONES	AUXII IARES / SECADERO			

COMBUSTIBLE	FACTOR DE EMISIÓN	FACTOR DE EMISIÓN (kg/t combustible)	FUENTE	CALIDAD
Orujillo ^b	1,81 g/GJ ^c	0,0311	EPA	А
Resto de biomasa ^b	1,81 g/GJ ^c	0,0257	EPA	Α
Fuel Oil	0,13 g/m ³	0,000135	EPA	С
Gas natural	3,4 x 10° kg/m³	0,0000425	EPA	В

^{*} En la EPA no realizan distinción entre los tipos de hornos, por lo que se proponen los F.E. para cualquier tipo de horno

Tabla 21. Factores de emisión para los HAP^a

INSTALACIONES AUXILIARES / SECADERO					
COMBUSTIBLE	FACTOR DE EMISIÓN	FACTOR DE EMISIÓN (kg/t combustible)	FUENTE	CALIDAD	
Orujillo ^b	0,035 g/GJ	0,000602	CORINAIR		
Resto de biomasa⁵	0,035 g/GJ	0,000497	CORINAIR		
Fuel Oil	0,005 g/GJ	0,000202	CORINAIR		

^b Factor correspondiente a Otra biomasa, en ausencia de otros factores más específicos para cada tipo de biomasa, se ha aplicado este valor con el poder calorífico correspondiente a cada combustible

^b Factor correspondiente a madera, en ausencia de otros factores más específicos para cada tipo de biomasa, se ha aplicado este valor con el poder calorífico correspondiente a cada combustible

Éstos F.E. corresponden a focos sin control o con control de partículas

INSTALACIONES AUXILIARES / SECADERO					
COMBUSTIBLE	FACTOR DE EMISIÓN	FACTOR DE EMISIÓN (kg/t combustible)	FUENTE	CALIDAD	
Gasoil	20,1 μg/GJ	0,000000864	CORINAIR		

^{*}Se corresponden con la suma HAP 4 Borneff: Benzo(a) pireno, benzo(b) fluoranteno, benzo(k) fluoranteno e indeno(1,2,3-cd) pireno

Tabla 22. Factores de emisión para el COT

HORNO DE COCCIÓN°					
COMBUSTIBLE	FACTOR DE EMISIÓN (lb/ ton)	FACTOR DE EMISIÓN (kg/t producción)	CALIDAD	FUENTE	
Biomasa, coque, fuel oil, gas oil y gas natural	0,062	0,031	С	EPA	

INSTALACIONES AUXILIARES / SECADERO

COMBUSTIBLE	FACTOR DE EMISIÓN	PODER CALORÍFICO INFERIOR (GJ/t)	FACTOR DE EMISIÓN (kg/t combustible)	FUENTE
Orujillo ^b	0,0168 kg/GJ	17,20	0,289	EPA
Resto de biomasa⁵	0,0168 kg/GJ	14,20	0,239	EPA
Fuel Oil	0,00128 lb/gal (A)	40,40	0,159	EPA
Gasoil	0,000252 lb/gal (A)	43,00	0,0336	EPA
Gas natural	0,000011 lb/ft³ (B)	48,62	0,22	EPA

^a En la EPA se indica que el tipo de combustible no influye en la emisión de este contaminante. El factor de emisión se ha obtenido para hornos túneles, aunque se puede utilizar también este F.E. para los hornos Hoffmann

5.2. Cálculo de las emisiones de CO₂

Como se ha comentado anteriormente, aquellas instalaciones que dispongan de Autorización de Emisiones de Gases de Efecto Invernadero deben realizar los cálculos para la determinación del Dióxido de Carbono (CO₂) de la misma forma que se describe en su autorización.

En el caso de utilizar biomasa deben añadirse las emisiones correspondientes a dicho combustible.

Según las directrices, las emisiones deben incluir las resultantes de la combustión de todos los combustibles de la instalación, así como las emisiones de los procesos debida a la descarbonatación de la arcilla.

Para los datos notificados utilizando esta metodología, se debe indicar la abreviatura PER.

^b Factor correspondiente a madera, en ausencia de otros factores más específicos para cada tipo de biomasa, se ha aplicado este valor con el poder calorífico correspondiente a cada combustible

^b Factor correspondiente a madera, en ausencia de otros factores más específicos para cada tipo de biomasa, se ha aplicado este valor con el poder calorífico correspondiente a cada combustible

La Comisión europea publicó el Diario Oficial de la Unión Europea el Reglamento (UE) 2018/2066 de la Comisión de 19 de diciembre de 2018 sobre el seguimiento y la notificación de las emisiones de gases de efecto invernadero en aplicación de la Directiva 2003/87/CE del Parlamento Europeo y del Consejo y por el que se modifica el Reglamente (UE) n.º 601/2012 de la Comisión. Este Reglamento es de aplicación a partir del 1 de enero de 2021.

El Reglamento anterior es modificado por el Reglamento (UE) 2020/2085 de la Comisión de 14 de diciembre de 2020 por el que se modifica y corrige el Reglamento de Ejecución (UE) 2018/2066 sobre el seguimiento y la notificación de las emisiones de gases de efecto invernadero en aplicación de la Directiva 2003/87/CE del Parlamento Europeo y del Consejo.

A continuación se resume la metodología general para determinar las emisiones PRTR de CO₂. Para notificar las emisiones de gases de efecto invernadero, válidas para el régimen de comercio de derechos de emisión, es necesario seguir detenidamente todas las indicaciones para la medición de los consumos de combustible, materia prima, poderes caloríficos, etc. Recalcar que el dato notificado al Registro PRTR debe coincidir con el suministrado para el comercio de los derechos de emisión de gases de efecto invernadero sumándole la parte correspondiente a la biomasa en caso de su utilización.

En el caso de que la instalación no se encuentre afectada por el anexo I de la Ley 1/2005 y su modificación posterior (Ley 13/2010), deberá seguir los pasos que se indican en el siguiente punto. En este caso la abreviatura que debe utilizarse dependerá de la fuente de donde se extraigan los factores de emisión.

El cálculo de las emisiones de CO, debe realizarse en dos pasos:

A) Cálculo de las emisiones asociadas a procesos de combustión. Las emisiones de CO₂ asociadas a los procesos de combustión se calculan aplicando la Ecuación 3 a cada uno de los combustibles, incluyendo la biomasa. El total de las emisiones de combustión se obtiene sumando las emisiones debidas a cada uno de los combustibles.

Ecuación 3. Cálculo de las emisiones asociadas a la combustión

Emisiones de CO ₂	Consumo de		Poder	Factor de	Factor de
asociadas a combustión=	combustible	×	Calorífico	× emisión	× oxidación
(kg/año)	(kg/año)		Inferior	(kg/MJ)	Oxidación
			(MJ/kg)		

A título orientativo, en la Tabla 23 se recogen los poderes caloríficos, F.E. y factores de oxidación para los combustibles que se utilizan más frecuentemente en la industria cerámica, incluyéndose también en la Tabla 24 las densidades típicas. En los casos en los que el consumo de combustible esté expresado en unidades de volumen, se pasará a unidades másicas utilizando la siguiente ecuación:

Ecuación 4. Cambio de unidades en consumos de combustible

Tabla 23. Datos de combustibles utilizados en cerámicas

COMBUSTIBLE	PCI (MJ/kg)	F.E. (kg/MJ)	FACTOR DE OXIDACIÓN
Orujillo	17,20	0,096°	0,99
Resto de biomasa	14,20	0,096°	0,99
Coque de petróleo ^b	32,50	0,0975 [°]	1
Fuel Oil ^b	40,40	0,0774°	1
Gasoil⁵	43,00	0,0741°	1
Gas natural ^b	48,62	0, 05604 ^c	1

^a Factor de emisión obtenido del CORINAIR 2007

Tabla 24. Densidades típicas de combustibles

COMBUSTIBLE	DENSIDAD (kg/m³)
Fuel Oil	964
Gasoil	900
Gas natural	0,8

B) Cálculo de las emisiones asociadas al proceso. Estas emisiones se pueden calcular a partir de los carbona tos presentes en la materia prima o a partir de los óxidos alcalinos y alcalino-térreos presentes en el pro ducto final. A continuación se describe la metodología basada en la materia prima, ya que esta informa ción suele ser más accesible para la mayoría de los fabricantes.

Para obtener las emisiones de CO₂ asociadas a los compuestos presentes en la materia prima a partir de la metodología basada en los carbonatos es necesario conocer el porcentaje de cada tipo de carbonato presente en la materia prima y aplicar la siguiente ecuación para cada tipo de carbonato:

Ecuación 5. Cálculo de las emisiones de CO2 debidas a la descarbonatación

Emisiones CO ₂ debidas a	=	Consumo de materia	×	Proporción carbonato Z	×	Factor de emisión
carbonato Z		prima		presente en la		estequiométrico
(kg/año)		(kg/año)		materia prima		

Donde carbonato Z es un carbonato cualquiera y el factor de emisión estequiométrico es el que se obtiene de la siguiente tabla:

Datos comunicados por España en el inventario presentado a la Secretaría de la Convención Marco de las Naciones Unidas sobre el Cambio Climático (Informe Inventarios GEI 1990-2020 (Edición de 2022). Tabla A7.1)

^{&#}x27;En estos valores se encuentra incluido el factor de oxidación

Tabla 25. Factores de emisión estequiométricos

CARBONATO Z	F.E. (kg CO ₂ /kg carbonato)
CaCO ₃	0,440
$MgCO_{\scriptscriptstyle 3}$	0,522

Es necesario aplicar la Ecuación 5 para cada uno de los carbonatos presentes en la materia prima. En el caso de no disponer de datos sobre la cantidad de carbonato cálcico existente en la materia prima, se deberá usar el 20% por defecto.

Para obtener las emisiones totales de CO₂ de la instalación hay que sumar las obtenidas mediante la Ecuación 3 y la Ecuación 5.

Ecuación 6. Emisiones totales de CO,

Emisiones totales de CO, = Emisiones combustión + Emisiones de proceso

6. Esquema resumen del proceso de notificación

A continuación se muestra un esquema del proceso de notificación para las instalaciones del epígrafe 3.g dedicadas a la fabricación de elementos cerámicos de construcción.

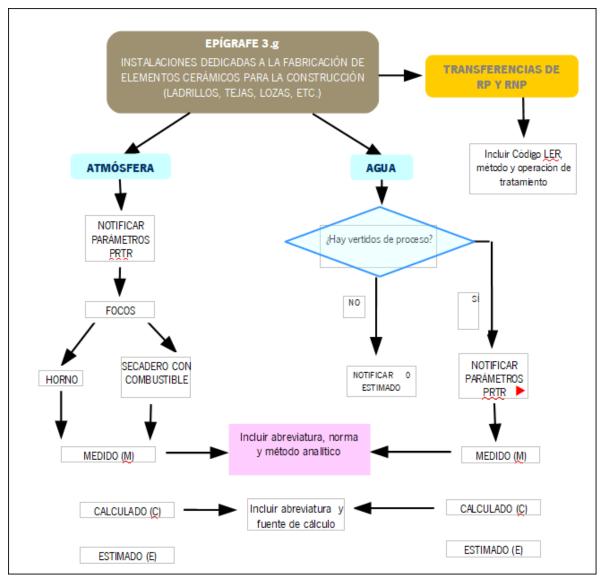


Figura 2. Esquema resumen del proceso de notificación

7. Documentación de referencia

CORINAIR: Guía para la realización del inventario de emisiones atmosféricas de la Agencia Europea de Medioambiente ("EMEP/ CORINAIR Emission Inventory Guidebook").

http://www.eea.europa.eu//publications/emep-eea-guidebook-2019

EPA: Agencia de Protección Medioambiental de los Estados Unidos.

• Capítulo 11 AP- 42. Industria de productos minerales (Mineral products industry).

AP-42, CH 11.3: Brick And Structural Clay Product Manufacturing (epa.gov)

• Programa Fire: WebFire Search | US EPA

REGLAMENTO (UE) 2018/2066 DE LA COMISIÓN de 19 de diciembre de 2018 sobre el seguimiento y la notificación de las emisiones de gases de efecto invernadero en aplicación de la Directiva 2003/87/CE del Parlamento Europeo y del Consejo y por el que se modifica el Reglamente (UE) n.º 601/2012 de la Comisión.

REGLAMENTO (UE) 2020/2085 DE LA COMISIÓN de 14 de diciembre de 2020 por el que se modifica y corrige el Reglamento de Ejecución (UE) 2018/2066 sobre el seguimiento y la notificación de las emisiones de gases de efecto invernadero en aplicación de la Directiva 2003/87/CE del Parlamento Europeo y del Consejo.

Decreto 503/2004, de 13 de octubre, por el que se regulan determinados aspectos para la aplicación de los impuestos sobre emisión de gases a la atmósfera y sobre vertidos a aguas litorales.

Reglamento 166/2006 del Parlamento Europeo y del Consejo, de 18 de enero de 2006, relativo al establecimiento de un registro europeo de emisiones y transferencia de contaminantes y por el que se modifica las Directivas 91/689/CE y 96/61/CE del Consejo.

Guía para la implantación del E-PRTR de 31 de mayo de 2006.

Desde la página web del **Registro PRTR** del Ministerio para la Transición Ecológica y el Reto Demográfico se puede descargar la Guía Tecnológica de fabricación de elementos de construcción, así como información sobre los métodos de medida de los distintos parámetros PRTR.

http://www.prtr-es.es

ANEXO 1

Tablas de recopilación de los factores de emisión disponibles en la bibliografía

Tabla A1-1. Factores de emisión genéricos (kg/t producción) (CORINAIR)

Parámetro	Factor de Emisión
Monóxido de Carbono (CO)	0,189
Óxidos de Nitrógeno (NOx)	0,184
Óxidos de Azufre (SOx)	0,0396

Fuente: Tabla 3-28 del capítulo 1.A.2 Manufacturing industries and construction (combustion) del Guidebook 2019

Tabla A1-2. Factores de emisión (kg/t producción) (CORINAIR)

DESCRIPCIÓN	ÓXIDOS DE AZUFRE (SO _x)	ÓXIDOS DE NITRÓGENO (NO _x)	MONÓXIDO DE CARBONO (CO)
General	0,354	0,500	
General, gas natural 94%		0,120	240 g/GJ
Valor EPA, industria cerámica			1,600
Cocción horno túnel gas		0,090	0,030
Cocción horno túnel fuel oil / gasoil	2,000	0,550	0,060
Cocción horno túnel carbón	3,665	0,725	0,715
Cocción horno Hoffmann gas	2,950	0,250	0,075
Cocción horno Hoffmann fuel oil / gasoil	6,065	0,810	0,095
Cocción horno Hoffmann carbón		1,175	1,195

Fuente: Pie de tabla 4 del capítulo B3319 del CORINAIR Emission Inventory Guidebook de 2007

Tabla A1-3. Factores de emisión (CORINAIR)

COMBUSTIBLE	NAPFUE code	SO ₂ (g/GJ)	NO _x (g/GJ)	COVDM (g/GJ)	CO (g/GJ)	CO¸ (g/GJ)
CARBÓN						
Coking	101	159	569			86
Vapor	102	407-787	150-334	15-21	10-120	79-95
Subbituminoso	103	170	30	15	50	99
Carbón marrón/lignito	105	500-2.900	140-300	1,5-20	14-110	86-113
Briquetas	106	175	140	15	100	97-98
COQUE						
Coke oven	107	400-540	140-300	0,5-15	15-100	100-105
Petróleo	110	680	200	1,5	97	102

COMBUSTIBLE	NAPFUE code	SO ₂ (g/GJ)	NO _x (g/GJ)	COVDM (g/GJ)	CO (g/GJ)	CO¸ (g/GJ)
BIOMASA						
Biomasa	111	130	130-200	48-50	160	83-102
COMBUSTIBLES LÍQUIDOS						
Fuel Oil	203	57-1.470	57-330	3-57	10-234	76-78
Gasoil	204	55-1.410	54-330	1,5-2,5	10-54	72-74
Keroseno	206	68,6		2	12	71
Gasolina motor	208	44,7		2	12	71
COMBUSTIBLES GASEOSOS						
Gas natural	301	0,4-8	50-330	4-26	10-343	34-66
GLP	303	0,04-2	20-100	1-4	13	60-65
Coke oven	304	9,6	50	2,5	10	44-49

Fuente: Tabla 4 del capítulo B3319 del CORINAIR Emission Inventory Guidebook de 2007

Tabla A1- 4. Factores de emisión (kg/t producción) PM₁₀, SO_x, CO, CO₂, NO_x (EPA)^a

PROCESO	PM ₁₀	SO _x b	СО	CO,	NO _x
Molienda y tamizado					
Material seco (máximo 4% de humedad)	0,265 °				
Material húmedo (máximo 13% de humedad)	0,00115°				
Con filtro de mangas	0,0016°				
Horno de gas natural	0,435	0,379	0,6	200	0,175
Horno gas natural materiales alto contenidos de azufre					
Sin control		2,55	0,6	200	0,175
Scrubber vía húmeda eficiencia media		0,5	0,6	200	0,175
Scrubber relleno alta eficiencia		0,0025	0,6	200	0,175
Horno carbón	0,7	0,6	0,4	150	0,255
Horno túnel serrín	0,425	0,379	0,8	245	0,185
Horno biomasa y secadero (gases del horno de cocción utilizados para secar la biomasa)	0,155				

Fuente: Tablas 11.3-2, 11.3-3 del capítulo 11.3 del AP-42

[°] En el AP-42, los factores están expresados en lb/ton, en esta tabla se han expresado en unidades del sistema internacional

^b El F.E. de SO_x para gas natural y serrín se han obtenido sumando los factores publicados para SO₂ y SO₃. Para el resto de casos no se dispone de F.E. para SO₃ y los que aparecen en esta tabla corresponden únicamente a SO₃.

Las unidades de estos F.E. son kg/t materia prima procesada

Tabla A1-5. Factores de emisión (kg/t producción) Metales (EPA)°

Descripción	Horno túnel con carbón, gas natural o serrín	Horno túnel carbón	Horno túnel gas natural	Horno tú- nel serrín	Horno túnel serrín con secadero calentado con gases del horno
Arsénico		6,5 x 10 ⁻⁵	1,55 x 10 ⁻⁵	1,55 x 10 ⁻⁵	1,05 x 10 ⁻⁵
Cadmio	7,5 x 10 ⁻⁶				1,1 x 10 ⁻⁵
Cromo	2,55 x 10 ⁻⁵				2,4 x 10 ⁻⁵
Mercurio		4,8 x 10 ⁻⁵	3,75 x 10 ⁻⁶	3,75 x 10 ⁻⁶	5,5 x 10 ⁻⁶
Níquel	3,6 x 10 ⁻⁵				1,7 x 10 ⁻⁵
Plomo	7,5 x 10 ⁻⁵				6,0 x 10 ⁻⁵
Antimonio	1,35 x 10 ⁻⁵				1,4 x 10 ⁻⁶
Cobalto	1,05 x 10 ⁻⁶				
Manganeso		1,45 x 10 ⁻⁴	1,45 x 10 ⁻⁴	1,45 x 10 ^{-⁴}	2,4 x 10 ⁻⁴

Fuente: Tablas 11.3-7 del capítulo 11.3 del AP-42

Tabla A1-6. Factores de emisión para Partículas totales

ETAPA DEL PROCESO / COMBUSTIBLE	FACTOR DE EMISIÓN	UNIDAD	CÓDIGO	FUENTE
Molienda				
Material seco (≈ 4% humedad)	4,25		Е	EPA
Material húmedo (≈ 13 % humedad)	0,0125	kg/t materia prima	E	EPA
Filtro de mangas (≈ 6,5 % humedad)	0,0031		Е	EPA
Secadero Artificial	00110122101112	OS F.E. DE LA PARTE I ALACIONES AUXILIAR		
Cocción				
Gas natural	0,48		D	EPA
Fuel oil / Gasoil	No disponible	les /henen de caha	-	
Carbón / Coque	0,9	kg/t producto	С	EPA
Biomasa	0,465		D	EPA

^a El F.E. del <u>Cobre</u> se puede asimilar al del <u>Arsénico</u> debido a que, según el documento BREF de la Producción de Cemento y Cal, tienen volatilidades semejantes. Por este mismo motivo, y según la misma fuente de información, el F.E. del <u>Zinc</u> se puede asimilar al del <u>Cadmio</u>

INSTALACIONES AUXILIARES / SECADERO						
COMBUSTIBLE	FACTOR DE EMI- SIÓN (g/GJ)	PODER CALORÍFICO INFERIOR(GJ/t)	FACTOR DE EMISIÓN (kg/t comb.)	FUENTE		
Orujillo ^b	170	17,20	2,92	CORINAIR		
Resto de biomasa⁵	170	14,20	2,41	CORINAIR		
Fuel Oil	50	40,40	2,02	CORINAIR		
Gas Oil	21	43,00	0,903	CORINAIR		
Butano	0,78°	47,30	0,0369	CORINAIR		
Propano	0,78°	47,30	0,0369	CORINAIR		
Gas natural	0,45°	48,62	0,0218	CORINAIR		

[°] En las fuentes de la EPA existe un factor de emisión para la etapa de conformado, pero se indica que no es aplicable a líneas de extrusión típicas, por tanto no se ha propuesto en este documento

Por último, en la siguiente tabla se incluyen los códigos SCC (Source Classification Code) que se utilizan en la EPA para cada tipo de horno y combustible. Estos códigos se pueden utilizar para buscar los factores de emisión asociados a cada proceso en el programa FIRE.

Tabla A1-7. Códigos SCC asociados a cada tipo de horno y combustible

PROCESO	CÓDIGO SCC
HORNO TÚNEL CON SERRÍN	3-05-003-10
HORNO TÚNEL GAS	3-05-003-11
HORNO TÚNEL FUEL OIL / GASOIL	3-05-003-12
HORNO TÚNEL CARBÓN	3-05-003-13
HORNO HOFFMANN GAS	3-05-003-14
HORNO HOFFMANN FUEL OIL / GASOIL	3-05-003-15
HORNO HOFFMANN CARBÓN	3-05-003-16

^b Factor correspondiente a madera, en ausencia de otros factores más específicos para cada tipo de biomasa, se ha aplicado este valor con el poder calorífico correspondiente a cada combustible

[°] Para estos combustibles se ha considerado que todas las partículas producidas son PM به

ANEXO 2

Ejemplos de aplicación de los factores de emisión atmosféricos

Se van a desarrollar dos ejemplos de determinación de emisiones a partir de métodos de cálculo, por lo que todos estos resultados deberían ir acompañados del código C (datos calculados). En el primer ejemplo el horno es tipo Hoffmann y utiliza coque de petróleo como combustible; en el segundo ejemplo se usa como combustible en el horno coque de petróleo y biomasa y además dispone de un secadero que utiliza orujillo como combustible de forma intermitente (todos los valores se dan con tres cifras significativas).

EJEMPLO 1

Datos y características de la instalación:

- **Producción:** 35.000 t/año.
- Materia prima procesada: 40.000 t/año. (15% carbonato cálcico, siendo el resto de carbonatos despreciable)
- Horno Hoffmann que usa como combustible coque de petróleo.
- **Consumo de coque:** 1.300 t de coque.
- Molienda vía húmeda.
- Secado natural.

Cálculo de las emisiones:

Monóxido de Carbono (CO)

Utilizando el factor de emisión propuesto en la Tabla 5 se tiene:

1,195 kg/t prod. x 35.000 t prod. = 41.825 kg/año

41.800 kg/año (Resultado expresado con tres cifras significativas)

Óxidos de nitrógeno (NO_x)

Empleando el factor de la Tabla 6:

1,175 kg/t prod. x 35.000 t prod. = 41.125 kg/año

41.100 kg/año (Resultado expresado con tres cifras significativas)

Óxidos de azufre (SO_x)

A partir de los datos de la Tabla 7:

6,065 kg/t prod. x 35.000 t prod. = 212.275 kg/año

212.000 kg/año (Resultado expresado con tres cifras significativas)

PM₁₀

Empleando los factores propuestos en la Tabla 8:

0,00115 kg/t materia prima x 40.000 t mat. prima = 46 kg/año (Molienda)

0,7 kg/t prod. x 35.000 t prod. = 24.500 kg/año (Horno carbón)

24.546 kg/año

24.500 kg/año (Resultado expresado con tres cifras significativas)

Fluoruros y HCl: No hay datos

Metales:

A partir de los factores incluidos desde la Tabla 9 a la Tabla 17 y expresando los resultados con tres cifras significativas se tiene:

As y Cu: $6,50 \times 10^{-5} \text{ kg/t prod.} \times 35.000 \text{ t prod.} = 2,28 \text{ kg/año}$ $7,50 \times 10^{-6} \text{ kg/t prod.} \times 35.000 \text{ t prod.} = 0,263 \text{ kg/año}$ Cd y Zn: $2,55 \times 10^{-5} \text{ kg/t prod.} \times 35.000 \text{ t prod.} = 0,893 \text{ kg/año}$ Cr: 4,80 x 10⁻⁵ kg/t prod. x 35.000 t prod. = **1,68 kg/año** Hg: Ni: $3,60 \times 10^{-5} \text{ kg/t prod.} \times 35.000 \text{ t prod.} = 1,26 \text{ kg/año}$ Pb: $7,50 \times 10^{-5} \text{ kg/t prod.} \times 35.000 \text{ t prod.} = 2,63 \text{ kg/año}$ $1,35 \times 10^{-5} \text{ kg/t prod.} \times 35.000 \text{ t prod.} = 0,473 \text{ kg/año}$ Sb: $1,05 \times 10^{-6} \text{ kg/t prod.} \times 35.000 \text{ t prod.} = 0,0368 \text{ kg/año}$ Co: Mn: $1,45 \times 10^{-4} \text{ kg/t prod.} \times 35.000 \text{ t prod.} = 5.08 \text{ kg/año}$

Dióxido de Carbono (CO₃)

Las emisiones de CO₂ se determina según la metodología indicada en la Reglamento 601/2012:

1. En primer lugar se determinan las emisiones asociadas al consumo de combustible empleando los datos de la Tabla 23 y la Ecuación 3. Se tiene:

```
1.300.000 \text{ kg coque x } 32,5 \text{ MJ/kg x } 0,0983 \text{ kg/MJ} = 4.153.175 \text{ kg CO}_{2}
```

2. En segundo lugar se determinan las emisiones asociadas a la descomposición de los carbonatos presentes en la materia prima. Para ello es necesario conocer la composición de la arcilla empleada (15% de CaCO₃ en este caso) y los factores de emisión estequiométricos que se incluyen en la Tabla 25. Empleando la Ecuación 5 se tiene:

```
40.000.000 kg arcilla x 0,15 kg CaCO<sub>3</sub>/kg arcilla x 0,440 = 2.640.000 kg CO<sub>2</sub>
```

3. Sumando los resultados obtenidos en el punto 1 y 2 y expresando el resultado con tres dígitos significativos se tiene: **6.790.000 kg/año**.

Compuestos Orgánicos Volátiles distintos del Metano (COVDM)

Empleando el factor de la tabla 19 se tiene:

0,012 kg/t prod. x 35.000 t prod. = 420 kg NMVOC/año

Benceno

Empleando el factor de la Tabla 20:

0,000145 kg/t prod. x 35.000 t prod. = 5,075 kg/año

5,08 kg/año (Resultado expresado con tres cifras significativas)

Hidrocarburos Policíclicos Aromáticos (HAP)

No se disponen de F.E. para el horno.

COT (Carbono Orgánico Total)

Empleando el factor de la Tabla 22:

0,031 kg/t prod. x 35.000 t prod. = 1.085 kg/año

1.090 kg/año (Resultado expresado con tres cifras significativas)

Tabla A2-1. Ejemplo 1 de notificación mediante factores de emisión

N° PRTR	Contaminante	Tabla a con- sultar	Emisiones (kg/ año)	Con tres cifras significativas	Mét.	Abrev.	Fuente
2	Monóxido de Carbono (CO)	Tabla 5	41.825	41.800	С	SSC	CORINAIR
3	Dióxido de Carbono (CO ₂)	Reglamento 601/2012	6.793.175	6.790.000	С	PER [*]	Reglamento 601/2012
7	Compuestos Orgánicos Volátiles distintos del Metano (COVDM)	Tabla 19	420	420	С	ОТН	EPA
8	Óxidos de Nitrógeno (NO _x /NO₂)	Tabla 6	41.125	41.100	С	NRB	D.503/04
11	Óxidos de Azufre (SO _x /SO ₂)	Tabla 7	212.275	212.000	С	NRB	D.503/04
17	Arsénico y sus compuestos (como As)	Tabla 9	2,28	2.28	С	ОТН	EPA
18	Cadmio y sus compuestos (como Cd)	Tabla 10	0,263	0,263	С	ОТН	EPA
19	Cromo y sus compuestos (como Cr)	Tabla 11	0,893	0,893	С	ОТН	EPA
20	Cobre y sus compuestos (como Cu)	Tabla 9	2,28	2,28	С	ОТН	EPA
21	Mercurio y sus com- puestos (como Hg)	Tabla 12	1,68	1,68	С	ОТН	EPA
22	Níquel y sus compues- tos (como Ni)	Tabla 13	1,26	1,26	С	ОТН	EPA
23	Plomo y sus compues- tos (como Pb)	Tabla 14	2,63	2,63	С	ОТН	EPA

N° PRTR	Contaminante	Tabla a con- sultar	Emisiones (kg/ año)	Con tres cifras significativas	Mét.	Abrev.	Fuente
24	Cinc y sus compuestos (como Zn)	Tabla 10	0,263	0,263	С	ОТН	EPA
62	Benceno	Tabla 20	5,075	5,08	С	ОТН	EPA
76	СОТ	Tabla 22	1.085	1.090	С	OTH	EPA
86	$PM_{\scriptscriptstyle 10}$	Tabla 8	24.546	24.500	С	OTH	EPA
94	Antimonio	Tabla 15	0,473	0,473	С	OTH	EPA
95	Cobalto	Tabla 16	0,0368	0,0368	С	ОТН	EPA
96	Manganeso	Tabla 17	5,08	5,08	С	ОТН	EPA

En el caso de que la instalación no estuviera afectada por el anexo I de la Ley 1/2005, de 9 de marzo, por la que se regula el régimen del comercio de derechos de emisión de gases de efecto invernadero, la abreviatura a utilizar dependería de la fuente de los factores de emisión utilizados.

EJEMPLO 2

Datos de la instalación:

Producción: 30.000 t

• Materia prima: 35.000 t (15% carbonato cálcico, siendo el resto de carbonatos despreciable)

• Horno Hoffmann que usa como combustible coque de petróleo y orujillo.

• Consumo de coque: 1.000 t.

• **Consumo de orujillo:** 250 t en el horno y 350 t en el secadero.

Molienda vía húmeda.

Secado utilizando como combustible adicional orujillo.

CÁLCULO DE EMISIONES:

En este caso, los factores de emisión se obtienen ponderando los factores de emisión correspondientes a cada tipo de combustibles con las fracciones másicas. En el caso de no tener factores de emisión para el coque de petróleo se usarán los factores de emisión correspondientes a la utilización de carbón como combustible.

En primer lugar es necesario obtener la proporción energética de cada combustible, para ello se emplea el poder calorífico de cada uno de los combustibles (ver Tabla 23). En general, si se dispone de dos combustibles A y B la proporción de cada uno de ellos se obtiene aplicando las Ecuaciones 1 y 2.

Por tanto, aplicando las fórmulas anteriores a los datos del Ejemplo 2 se tiene:

Proporción coque =
$$\frac{1.000.000 \text{ kg coque} \cdot 32,5 \text{ MJ/kg}}{1.000.000 \text{ kg coque} \cdot 32,5 \text{ MJ/kg} + 250.000 \text{ kg orujillo} \cdot 17,2 \text{ MJ/kg}} = 0,88$$
Proporción orujillo = 1 - 0,88= 0,12

Monóxido de Carbono (CO)

Utilizando los factores de emisión propuestos en la Tabla 5 se tiene:

Horno. El F.E. a emplear se determina teniendo en cuenta las proporciones energéticas de los combustibles, es decir, el 88% corresponde a coque de petróleo y el 12% orujillo. Para el coque de petróleo se emplean los F.E. de carbón y para el orujillo los de biomasa. Como no se disponen de factores específicos para horno Hoffmann que emplea biomasa, se han usado los correspondientes a horno túnel que utiliza biomasa. Todo esto debería indicarse en el formulario de notificación.

$$(1,195 \times 0,88) + (0,8 \times 0,12) = 1,1476 \text{ kg/t prod.}$$

Las emisiones de CO correspondientes al horno son:

1,1476 kg/t prod. x 30.000 t prod. = 34.428 kg/año

Secadero. Las emisiones asociadas al secadero se determinan empleando los factores de emisión expresados por kg de combustible de la Tabla 5:

9,8 kg/t orujillo x 350 t orujillo = 3.430 kg/año

El resultado total se obtiene sumando las emisiones correspondientes al horno y al secadero y expresando el resultado con tres dígitos significativos: **37.900 kg/año**

Óxidos de Nitrógeno (NOx)

Utilizando los F.E. propuestos en la Tabla 6 y de la misma forma que para el CO se tiene:

Horno.

Factor de emisión = $(1,175 \times 0,88 + 0,185 \times 0,12) = 1,056 \text{ kg/t prod.}$

Aplicando el factor obtenido a la producción de la instalación se tiene:

 $1,056 \text{ kg/t prod.} \times 30.000 \text{ t prod.} = 31.680 \text{ kg NO}_{\text{x}}$

Secadero.

3,44 kg/t orujillo x 350 t orujillo = 1.204 kg NO_{x}

El resultado total se obtiene como la suma de las emisiones correspondientes al secadero y de las emisiones correspondientes al horno y expresando el resultado con tres dígitos significativos: **32.900 kg NO_x/año**

<u>Óxidos de Azufre (SO_x)</u>

A partir de los datos de la Tabla 7, y actuando de la misma manera que anteriormente:

Horno.

Factor de emisión = $(6,065 \times 0,88 + 0,335 \times 0,12) = 5,377 \text{ kg/t prod.}$

Aplicando el factor obtenido a la producción:

 $5,377 \text{ kg/t prod.} \times 30.000 \text{ t prod.} = 161.310 \text{ kg SO}_{x}$

Secadero.

1,70 kg/t orujillo x 350 t orujillo = $595 kg SO_x$

La suma de ambos resultados es 161.905, y expresando este dato con tres dígitos significativos se tiene **162.000 kg/año**

<u>PM</u>₁₀

A partir de los factores de la Tabla 8:

Molienda.

0,00115 x 35.000 = 40,25 kg/año

Horno.

Factor de emisión = $(0.7 \times 0.88 + 0.425 \times 0.12) = 0.667 \text{ kg/t prod.}$

Aplicando el factor a la producción de la instalación:

0,667 kg/t prod. x 30.000 t prod. = 20.010 kg/año

Secadero.

2,8 kg/t orujillo x 350 t orujillo = 980 kg/año

Total: $40,25 + 20.010 + 980 = 21.000 \text{ kg PM}_{10}/\text{año}$

Metales

Horno. A partir de los factores en las tablas existentes entre las Tablas 9 y 17, ponderando los factores con la proporción energética de cada combustible y expresando los resultados con tres cifras significativas se tienen las emisiones correspondientes al horno de cocción:

As y Cu: $(6.5 \times 10^{5} \times 0.88 + 1.55 \times 10^{5} \times 0.12)$ kg/t prod. x 30.000 t prod. = **1,77 kg/año**

Cd y Zn: $7.5 * 10^{\circ} \text{ kg/t prod. x } 30.000 \text{ t prod.} =$ **0.225 kg/año**

Cr: $2,55 * 10^{5} \text{ kg/t prod.} \times 30.000 \text{ t prod.} = 0,765 \text{ kg/año}$

Hg: $(4.8 \times 10^{5} \times 0.88 + 3.75 \times 10^{6} \times 0.12)$ kg/t prod. x 30.000 t prod. = **1.28 kg/año**

Ni: $3.6 \times 10^{-5} \text{ kg/t prod.} \times 30.000 \text{ t prod.} = 1.08 \text{ kg/año}$

Pb: $7.5 * 10^{\circ} \text{ kg/t prod.} \times 30.000 \text{ t prod.} = 2.25 \text{ kg/año}$

Sb: $1,35 * 10^{-5} \text{ kg/t prod.} \times 30.000 \text{ t prod.} = 0,405 \text{ kg/año}$

Co: $1,05 * 10^{\circ} \text{ kg/t prod.} \times 30.000 \text{ t prod.} = 0,0315 \text{ kg/año}$

Mn: $1,45 * 10^4 \text{ kg/t prod.} \times 30.000 \text{ t prod.} = 4,35 \text{ kg/año}$

Secadero. A partir de los factores incluidos en la Tabla 18, y expresando los resultados con tres cifras significativas se tienen las emisiones correspondientes al secadero.

As: 0,00000327 kg/t comb. = 0,001145 kg/año

Cd: 0,000224 kg/t comb. x 350 t comb. = **0,0784 kg/año**

Cr: 0,000396 kg/t comb. x 350 t comb. = **0,1386 kg/año**

Cu: 0,000103 kg/t comb. x 350 t comb. = **0,03605 kg/año**

Hg: 0,00000963 kg/t comb. x 350 t comb. = **0,0033705 kg/año**

Ni: 0,0000344 kg/t comb. x 350 t comb. = **0,01204 kg/año**

Pb: 0,000464 kg/t comb. x 350 t comb. = **0,1624 kg/año**

Zn: 0,00881 kg/t comb. x 350 t comb. = **3,0835 kg/año**

Sb: 0,0000585 kg/t comb. x 350 t comb. = **0,0205 kg/año**

Co: 0,0000482 kg/t comb. x 350 t comb. = 0,0169 kg/año

Mn: 0,0119 kg/t comb. x 350 t comb. = 4,17 kg/año

V: 0,0000072 kg/t comb x 350 t comb. = 0,00252 kg/año

Sumando los términos anteriores, y expresando los resultados con tres cifras significativas, las emisiones totales de los metales son:

As: 1,77 + 0,001145 = 1,77 kg/año

Cd: 0,225 + 0,0784 = 0,303 kg/año

Cr: 0,765 + 0,1386 = 0,904 kg/año

Cu: 1,77 + 0,03605 = 1,81 kg/año

Hg: 1,28 + 0,0033705 = 1,28 kg/año

Ni: 1,08 + 0,01204 = 1,09 kg/año

Pb: 2,25 + 0,1624 = **2,41 kg/año**

Zn: 0,225 + 3,0835 = 3,31 kg/año

Sb: 0,405 + 0,0205 = 0,426 kg/año

Co: 0.0315 + 0.0169 = 0.0484 kg/año

Mn: 4,35 + 4,17 = **8,52** kg/año

V: 0,00252 kg/año

Dióxido de Carbono (CO,)

Las emisiones de CO₂ se determinan según el Reglamento 2018/2066 y su modificación posterior.

1. En primer lugar se determinan las emisiones asociadas al consumo de combustible empleando los datos de la Tabla 23 y la Ecuación 3. Se tiene:

 $1.000.000 \text{ kg coque x } 32,5 \text{ MJ/kg x } 0,0983 \text{ kg/MJ} = 3.194.750 \text{ kg CO}_{2}$

(250.000+350.000) kg orujillo x 17,2 MJ/kg x 0,096 kg/MJ x 0,99 = 990.720 kg CO₂

2. En segundo lugar se determinan las emisiones asociadas a la descomposición de los carbonatos presentes en la materia prima. Para ello es necesario conocer la composición de la arcilla materia prima empleada (15% de CaCO3 en este caso) y los factores de emisión estequiométr;cos que se incluyen en la Tabla 25. Empleando la Ecuación 5 se tiene:

35.000.000 kg arcilla x 0,15 kg $CaCO_3/kg$ arcilla x 0,440 = 2.310.000 kg CO_3/kg

3. Sumando los resultados obtenidos en el punto 1 y 2 y expresando el resultado con tres dígitos significativos se tiene: **6.500.000 kg CO**₃.

Compuestos Orgánicos Volátiles distintos del Metano (COVDM)

A partir de los datos de la Tabla 19:

Horno.

0,012 kg/t prod. x 30.000 t prod. = 360 kg/año

Secadero.

5,16 kg/t comb. x 350 t comb. = 1.806 kg/año

El resultado expresado con tres dígitos significativos: 2.170 kg COVDM/año

Benceno

A partir de los datos de la Tabla 20, y actuando de la misma manera que anteriormente:

Horno.

Factor de emisión = $(0,000145 \times 0,88 + 0,00026 \times 0,12) = 0,0001588 \text{ kg/t prod.}$

Aplicando el factor obtenido a la producción:

0,0001588 kg/t prod. x 30.000 t prod. = 4,764 kg/año

Secadero.

0,0311 kg/t orujillo x 350 t orujillo = 10,885 kg/año

La suma de ambos resultados es 15,649 kg/año, y expresando este dato con tres dígitos significativos se tiene **15,6 kg/año**

Hidrocarburos Policíclicos Aromáticos (HAP)

Empleando los factores de la Tabla 21:

 $0,000602 \text{ kg/t comb.} \times 350 \text{ t comb.} = 0,2107 \text{ kg/año}$

0,211 kg/año (Resultado expresado con tres cifras significativas)

COT (Carbono Orgánico Total)

A partir de los datos de la Tabla 22, y actuando de la misma manera que anteriormente:

Horno.

0,031 kg/t prod. x 30.000 t prod. = 930 kg/año

Secadero.

0,289 kg/t orujillo x 350 t orujillo = 101,15 kg/año

La suma de ambos resultados es 1.031,15, y expresando este dato con tres dígitos significativos se tiene **1.030 kg/año**

En los casos en los que se utilizan factores de emisión procedentes de diversas fuentes, se indica la abreviatura correspondiente a la mayor parte de la emisión.

Tabla A2-2. Ejemplo 2 de notificación de emisiones mediante factores de emisión

Nº PRTR	Contaminante	Tabla a consultar	Emisiones (kg/ año)	Con tres cifras significativas	Mét.	Abrev.	Fuente
2	Monóxido de Carbono (CO)	Tabla 5	37.858	37.900	С	SSC	CORINAIR
3	Dióxido de Carbono (CO ₂)	Reglamento 601/2012	6.495.470	6.500.000	С	PER [*]	Reglamento 601/2012
7	Compuestos Orgánicos Volátiles distintos del Metano (COVDM)	Tabla 19	2.166	2.170	С	SSC	CORINAIR
8	Óxidos de Nitrógeno (NO _x /NO ₂)	Tabla 6	32.884	32.900	С	NRB	D. 503/04
11	Óxidos de Azufre (SO _x /SO ₂)	Tabla 7	161.905	162.000	С	NRB	D. 503/04
17	Arsénico y sus compuestos (como As)	Tablas 9 y 18	1,771	1,77	С	ОТН	EPA
18	Cadmio y sus compuestos (como Cd)	Tablas 10 y 18	0,3034	0,303	С	ОТН	EPA
19	Cromo y sus compuestos (como Cr)	Tablas 11 y 18	0,9036	0,904	С	ОТН	EPA
20	Cobre y sus compuestos (como Cu)	Tablas 9 y 18	1,806	1,81	С	ОТН	EPA
21	Mercurio y sus compuestos (como Hg)	Tablas 12 y 18	1,283	1,28	С	ОТН	EPA
22	Níquel y sus compues-	Tablas 13 y	1,092	1,09	С	ОТН	EPA

N° PRTR	Contaminante	Tabla a consultar	Emisiones (kg/ año)	Con tres cifras significativas	Mét.	Abrev.	Fuente
	tos (como Ni)	18					
23	Plomo y sus compuestos (como Pb)	Tablas 14 y 18	2,412	2,41	С	ОТН	EPA
24	Cinc y sus compuestos (como Zn)	Tablas 10 y 18	3,3085	3,31	С	SSC	CORINAIR
62	Benceno	Tabla 20	15,649	15,6	С	ОТН	EPA
72	Hidrocarburos Aromá- ticos Policíclicos	Tabla 21	0,2107	0,211	С	SSC	CORINAIR
76	СОТ	Tabla 22	1.031,15	1.030	С	ОТН	EPA
86	PM ₁₀	Tabla 8	21.030,25	21.000	С	ОТН	EPA
94	Antimonio	Tablas 15 y 18	0,4255	0,426	С	ОТН	EPA
95	Cobalto	Tablas 16 y 18	0,0484	0,0484	С	ОТН	EPA
96	Manganeso	Tablas 17 y 18	8,52	8,52	С	ОТН	EPA
97	Vanadio	Tabla 18	0,00252	0,00252	С	ОТН	EPA

En el caso de que la instalación no estuviera afectada por el anexo I de la Ley 1/2005, de 9 de marzo, por la que se regula el régimen del comercio de derechos de emisión de gases de efecto invernadero, la abreviatura a utilizar dependería de la fuente de los factores de emisión utilizados.