GUÍA DE LUGARES DE INTERÉS GEOLÓGICO DEL PARQUE NATURAL SIERRA NORTE DE SEVILLA GEOPARQUE MUNDIAL DE LA UNESCO
Actividades de Geología en el Parque Natural Sierra Norte de Sevilla
Un geositio es un lugar de interés geológico, que sirve como foco fundamental para la articulación del Geoturismo: actividad turística que tiene en la geología o en un elemento geológico su motivo de atracción principal.

El Geoparque Sierra Norte de Sevilla estudia, cataloga y preserva los geositios de su territorio. Aunque la geología es siempre el tema principal de los geoparques, se adopta un enfoque amplio en la definición de los geositios, por lo que se consideran otros criterios:

- la relación entre la geodiversidad y la biodiversidad,
- el patrimonio arqueológico relacionado con la geología,
- el patrimonio minero histórico,
- el uso histórico de los recursos geológicos por el ser humano,
- el patrimonio intangible: usos, tradiciones y costumbres locales.

El actual Inventario de Geositios del Geoparque Sierra Norte de Sevilla comprende 39 geositios, con los lugares de mayor importancia científica y/o pedagógica, paisajes más singulares y de mayor belleza, y los lugares más significativos para comprender la interacción del ser humano con el territorio a lo largo de la historia.
Se han organizado los geositios en capítulos en función de sus características primordiales: las rocas sedimentarias paleozoicas principales y sus fósiles más significativos; la zona de sutura entre las antiguas placas tectónicas de Ossa-Morena y Sudportuguesa; las rocas plutónicas y los paisajes que generan; los depósitos post-orogénicos: las rocas y sedimentos que se han formado posteriormente a la creación de Sierra Morena; los elementos geomorfológicos e hidrogeológicos más singulares; y varias explotaciones mineras singulares y sitios arqueológicos ligados a la minería prehistórica. La numeración de cada geositio corresponde con su número de entrada en el Inventario de Geositios del Geoparque, no guardan ninguna relación con su ordenación en cada capítulo.

Se completa esta guía con información sobre la geología de la región y sobre los geoparques, un glosario de los términos y expresiones geológicas utilizadas en esta guía, y una relación de contactos y enlaces con más información.
¿Qué son los Geoparques?

Los geoparques son territorios de alto valor geológico en los que se desarrollan estrategias de conservación de la Geodiversidad y del Patrimonio Geológico, al mismo tiempo que se hace un uso sostenible de sus recursos geológicos para potenciar el desarrollo socioeconómico en áreas rurales.

Un geoparque es un territorio de límites claros y definidos, que cuenta con un patrimonio geológico singular (geositios), con un área suficiente para un desarrollo económico real, con una estructura de gestión sólida, y con una estrategia de desarrollo socioeconómico sostenible.

Los geoparques en Europa se integran en la Red Europea de Geoparques (European Geoparks Network, EGN), creada en junio de 2000 por cuatro regiones de varios países europeos. En diciembre de 2015 la Red Europea de Geoparques estaba integrada por 69 geoparques miembros, de 23 países europeos.

En octubre de 2005 se firmó la Declaración de Madonie, en el marco del acuerdo con la UNESCO, por la que se reconoció a la Red Europea de Geoparques como la división europea de la Red Global de Geoparques.

En septiembre de 2011 se aprobó la incorporación del Parque Natural Sierra Norte de Sevilla en la Red Europea de Geoparques y en la Red Global de Geoparques.

Cuatro años después de su integración en la Red Europea y Red Global de Geoparques, en septiembre de 2015, Sierra Norte de Sevilla superó el proceso de revalidación tras acreditar que el Geoparque trabaja conforme a los criterios y parámetros establecidos, en materias como el desarrollo sostenible y la conservación y promoción de los valores geológicos y culturales.
Los geoparques se integran igualmente en la Red Global de Geoparques (Global Geoparks Network, GGN), que es una red voluntaria apoyada por la UNESCO, desde la División de Ecología y Ciencias de la Tierra. La GGN «es una red dinámica donde sus miembros se comprometen a trabajar conjuntamente e intercambiar ideas sobre buenas prácticas y unirse en proyectos comunes para elevar los estándares de calidad de todos los productos y prácticas de un Geoparque Global».

La Red Global de Geoparques ha crecido hasta incluir en 2015 a 120 geoparques de 33 países, convirtiéndose en una herramienta cada vez más importante para la UNESCO, a fin de involucrar a los estados miembros y sus comunidades en la difusión de las Ciencias de la Tierra y la conservación del patrimonio geológico.

El 17 de noviembre de 2015, los Estados miembros de la UNESCO en la Conferencia General, raticaron los estatutos del nuevo Programa Internacional de Geociencias y Geoparques, aprobando legalmente la nueva etiqueta “Geoparque Mundial de la UNESCO”. Por lo tanto el Parque Natural Sierra Norte de Sevilla tiene desde entonces la designación como Geoparque Mundial de la UNESCO.
Desde el punto de vista geológico, la Península Ibérica está formada por tres grandes grupos de afloramientos que reciben el nombre de dominios geológicos:

a) Dominio varisco: forma la mayor parte de la mitad occidental de la península, sus rocas son de edad proterozoico y paleozoico, y de naturaleza ígnea, sedimentaria y metamórfica. Este domino representa los restos del Macizo Hespérico, una gran cadena montañosa formada durante la Orogenia Varisca (u Orogenia Hercínica) entre el Devónico superior y el Carbonífero inferior. Las características de las rocas del Macizo Hespérico, permiten diferenciar cinco zonas (de norte a sur): Cantábrica, Asturoccidental-Leonesa, Centroibérica, Ossa-Morena y Sudportuguesa.

b) Dominio alpino: formado por las principales cordilleras de la península: Cordilleras Béticas, Pirineos y Cordillera Ibérica. Se originaron en la orogenia Alpina, durante el cenozoico. Sus rocas son de edad paleozoica, mesozoica y cenozoica, y de naturaleza ígnea, metamórfica y sedimentaria.

c) Materiales mesozoicos, cenozoicos y cuaternarios de plataforma: son los materiales más jóvenes de la península. Son rocas sedimentarias, de composición diversa, no afectadas por el ciclo alpino, que se depositaron rellenando las depresiones topográficas (cuencas) originadas en épocas anteriores. Sus principales afloramientos son las cuencas sedimentarias del Ebro, Duero y Tajo, la depresión del Guadalquivir y la cuenca Lusitánica.

Modificado de:
Geología de España
J. A. Vera., ed. pral.
Sociedad Geológica de España - Instituto Geológico y Minero de España, 2004
El Geoparque Sierra Norte de Sevilla se localiza en el Macizo Hespérico Ibérico, mayoritariamente en la Zona de Ossa-Morena, en sólo un pequeño sector en la Zona Sudportuguesa (al suroeste del Geoparque).

De una forma sencilla, se podría considerar a la Zona de Ossa-Morena como una placa tectónica continental aplastada y estrujada entre otras dos placas tectónicas, una de naturaleza continental al norte (Zona Centroibérica) y otra, la del sur (Zona Sudportuguesa), parte oceánica y parte continental. El movimiento de estos bloques fue una aproximación de una a otra con colisión posterior de las placas.

Por el norte, la Zona de Ossa-Morena está limitada por el “Corredor Blastomiloníntico” que es una banda de rocas intensamente deformadas y de naturaleza diversa, que representan una sutura continental antigua. El límite por el sur es una banda de rocas metamórficas muy deformadas, que se interpreta como los restos de un antiguo océano, denominada “Zona de Sutura”.

La Zona Sudportuguesa es la más meridional de las que componen el Macizo Hespérico y está compuesta por rocas sedimentarias e ígneas cuya edad comprende desde el Devónico medio hasta el Carbonífero superior. El aspecto geológico más significativo de esta zona es el vulcanismo tan intenso que tuvo lugar durante el Devónico superior y el Carbonífero inferior, que dio lugar a una gran acumulación de rocas volcánicas y subvolcánicas. Al mismo tiempo y en el mismo lugar que se produjo este vulcanismo, se formaron enormes yacimientos minerales de sulfuros masivos en lo que entonces era el fondo de un mar con un ambiente enrarecido por la actividad volcánica.

Modificado de:
El Geoparque Sierra Norte de Sevilla es geológicamente muy variado si atendemos a la naturaleza, edad y composición de sus rocas, con más de 130 unidades litológicas y cronológicas diferentes, por lo que se utiliza habitualmente un mapa geológico de síntesis que resalta los grandes dominios geológicos.
En el geoparque afloran rocas correspondientes a las tres tipos: ígneas, metamórficas y sedimentarias.

Las rocas más frecuentes son las sedimentarias que se distribuyen por toda la superficie de la región, aunque son más abundantes en la mitad norte.

Las rocas ígneas aparecen especialmente concentradas en la mitad meridional.

Las rocas metamórficas en sentido estricto se encuentran en varios sectores: al noreste, en la Sierra del Aire y Sierra Albarra; al norte, en Sierra Padrona; al oeste, en el núcleo metamórfico de Almadén de la Plata; y finalmente en el sur, en el núcleo metamórfico de Lora del Río.

Las rocas del geoparque son principalmente de edad precámbrica y paleozoica, con solo unos escasos depósitos de edad cenozoica.

Las rocas de edad precámbrica (Neoproterozoico, entre 1.000 y 540 Ma = millones de años) están presentes fundamentalmente en el Anticlinorio de Monesterio, entre el embalse de El Pintado y El Real de la Jara, y su prolongación al sur, entre El Pedroso, Constantina y la Puebla de Los Infantes.

Las rocas de la era paleozoica (entre 540 y 325 Ma) son muy abundantes y se encuentran prácticamente en cualquier sector del geoparque. El Cámbrico es el sistema con los afloramientos más extensos de la región, mientras que las rocas del Ordovícico y Silúrico se encuentran en el Sinclinal del Valle, que se extiende como una estrecha banda al este del embalse de El Pintado, y en el sinclinal del Cerrón del Hornillo, entre Constantina y la Puebla de los Infantes. Los materiales del Devónico y Carbonífero inferior se encuentran sobre todo en la parte del geoparque perteneciente a la Zona Sudportuguesa, al sur de Almadén de la Plata, aunque también hay algunos afloramientos Devónicos en el sinclinal del Valle y en otros puntos.

La gran mayoría de las rocas del geoparque muestran una intensa deformación. De hecho los materiales más antiguos, anteriores al Paleozoico, están especialmente deformados pues han sufrido los efectos de dos orogenías, la Cadomiense que tuvo lugar al final del Precámbrico y la Varisca, al final del Paleozoico.

Localmente, sobre esta base de rocas deformadas, aparecen los restos de lo que fueron pequeñas cuencas continentales que se rellenaron con sedimentos fluviales, lagunares y materiales volcánicos durante el Carbonífero superior, Pérmico y quizás Triásico inferior (entre 300 y 250 Millones de años). Estas cuencas contienen abundantes fósiles de plantas, incluyendo grandes troncos, y lechos de carbón.
Las rocas sedimentarias del Paleozoico y sus fósiles

- FORMACIÓN CAPAS DE CAMPOALLA
- FORMACIÓN CAPAS DE BENALIJA
- CALIZAS MARMÓREAS DE GUADALCANAL
- SINCLINAL DEL VALLE
- HUELLAS DE MEDUSAS DEL CÁMBRICO INFERIOR
Las rocas sedimentarias del Paleozoico y sus fósiles

Las rocas de la era Paleozoica son muy abundantes en el Geoparque Sierra Norte de Sevilla, en especial de los primeros sistemas, del Cámbrico al Devónico. Durante casi toda la era Paleozoica, la zona occidental de la Península Ibérica formaba parte de la zona marina del antiguo continente Gondwana y de las placas continentales menores en las que estaba fragmentado, y por lo tanto tuvo una sedimentación típica marina, de plataforma o de fondo oceánico, durante un largo periodo que va desde el comienzo del Cámbrico, hace 541 Ma, hasta el Carbonífero inferior, hace 320 Ma.

El Cámbrico (541 a 485 Ma) es el sistema paleozoico con los afloramientos más extensos de la región, predominando en la mitad nororiental del geoparque. Son varias las formaciones sedimentarias existentes de este sistema, que afloran en abundancia en la denominada Unidad de Benalija, siendo las más significativas la Formación Torreárboles, la Formación Capas de Campoallá y la Formación Capas de Benalija, por su gran extensión superficial y por sus implicaciones paleogeográficas y geomorfológicas.

Las rocas de los sistemas Ordovícico (485 a 443 Ma), Silúrico (443 a 419 Ma) y Devónico (419 a 359 Ma), se encuentran fundamentalmente en el Sinclinal del Valle, en el municipio de Cazalla de la Sierra, y en el Sinclinal del Cerrón del Hornillo, entre Constantina y la Puebla de los Infantes. La sucesión sedimentaria recogida en estos sinclinales refleja un contexto paleogeográfico y ambiental muy distinto al de las restantes zonas del Macizo Ibérico, con predominio de sedimentos y faunas pelágicas de ambientes marginales de la plataforma continental de Gondwana.

En las rocas del geoparque del Paleozoico se han encontrado múltiples fósiles: estromatolitos, arqueociatos, trilobites, graptolites, icnofósiles, etc. Sin embargo el yacimiento paleontológico más importante es el de las “Huellas de medusas” del Cámbrico inferior, tanto por ser un registro en sedimentos terrígenos de animales de cuerpos blandos, como por el elevado número de huellas en un mismo afloramiento.
NATURALEZA: Historia geológica.

LOCALIZACIÓN: Toda la mitad nororiental del geoparque.

MUNICIPIO: Guadalcánal, Alanís, San Nicolás del Puerto, Cazalla de la Sierra, Constantina, Las Navas de la Concepción.

DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

Las “Capas de Campoallá” es el nombre de una unidad estratigráfica de edad cámbica, constituida por rocas sedimentarias detriticas y carbonatadas (pizarras, areniscas y calizas), que está ampliamente representada en el geoparque, ocupando grandes zonas de la mitad nororiental del geoparque y otros muchos afloramientos en otras zonas.

La proporción relativa de pizarras, areniscas y calizas varía fuertemente de unos puntos a otros, de manera que en ocasiones está formada casi íntegramente por solo una de estas litologías, por dos de ellas o por las tres en proporciones variables. Cuando esto último ocurre, las “Capas de Campoallá” se muestran como una secuencia alternante de estratos de espesor centimétrico de pizarras, calizas y areniscas, de aspecto muy llamativo, como el que puede apreciarse en los taludes de las carreteras de: Cazalla de la Sierra a Alanís, Cazalla de la Sierra a San Nicolás del Puerto y Constantina-Las Navas de la Concepción, o en la Vía Verde de la Sierra Norte. En la parte superior de la formación hay un aumento significativo de los carbonatos respecto a las areniscas y pizarras, llegando a constituir un tramo de calizas masivas que forman los relieves más altos de diversas sierras.

La sedimentación de estos materiales tuvo lugar en una cuenca marina amplia, homogénea y poco profunda, probablemente en un mar cerrado.

ELEMENTOS DE INTERÉS

Son muy abundantes diversas estructuras sedimentarias: ripples (ondulaciones que se forman en cualquier fondo arenoso debido a la acción de una corriente que puede ser fluvial, marina o eólica), concreciones calcáreas, brechas intraformacionales, etc.

Dada la organización en estratos de pequeño espesor, se pueden observar en múltiples afloramientos diversas estructuras tectónicas: fracturas y diaclasas, brechas de falla, pliegues, etc.
FORMACIÓN CAPAS DE CAMPOALLÁ

ACCESO
Se puede acceder a la Vía Verde de la Sierra Norte desde la carretera entre Cazalla de la Sierra y San Nicolás del Puerto o desde esta última población. Al Sendero de Las Laderas se accede desde Cazalla de la Sierra.

PUNTO DE OBSERVACIÓN
A lo largo del sendero “Las Laderas” y de la Vía Verde de la Sierra Norte se pueden realizar una visión general de esta formación, además de contemplar diferentes estructuras sedimentarias y tectónicas.

EQUIPAMIENTOS DE USO PÚBLICO
Senderos de uso público señalizados: Sendero de Las Laderas; Vía Verde de la Sierra Norte de Sevilla.
Paneles interpretativos.

VALORACIÓN
Interés científico, educativo y turístico.
La Formación Capas de Benalija, también denominada “Esquistos de Benalija” o “Capas de Alanís”, es el nombre de una unidad sedimentaria del Cámbrico, que aflora en el sector noroccidental del geoparque, ocupando una gran extensión del valle del río Rivera de Benalija, entre la Sierra del Agua al noreste, y las Sierras de Santiago y San Antonio al suroeste, así como otras áreas menores en el Cerro del Hierro, Constantina y Las Navas de la Concepción.

Sobre el tramo de calizas masivas que constituye la parte superior de la Formación Capas de Campoallá, se apoyan unos sedimentos terrígenos, en su mayor parte formada por pizarras verdes, a veces moradas, siempre con algo de carbonatos, que contienen pequeñas capas de areniscas y rocas volcánicas básicas. Estas pizarras presentan un aspecto muy característico, con fracturación en astillas, que muestran un color verde azulado en los cortes frescos. Dentro de esta formación se han podido diferenciar unos niveles más carbonatados y otros de pizarras moradas.

La cartografía permite visualizar la estructura en el valle de Benalija, constituida por el flanco de un gran sinclinal de plano axial casi vertical, repetido y roto por varias fallas longitudinales.

Los yacimientos de fósiles encontrados (trilobites) permiten datar esta formación en el Cámbrico inferior.

La sedimentación de estos materiales tuvo lugar en una cuenca marina, más profunda y alejada de la costa que la Formación Capas de Campoallá.
FORMACIÓN CAPAS DE BENALIJA

ACCESO

A la población de Alanís se puede acceder desde Guadalcanal por la carretera A-433, desde San Nicolás del Puerto por la carretera SE-8100, y desde Cazalla de la Sierra, por la carretera A-432.

A la población de Guadalcanal se puede acceder desde Alanís y Fuente del Arco (Extremadura) por la carretera A-433, y desde Cazalla de la Sierra, por la carretera A-8200.

En la carretera A-432, antes de llegar a la población de Alanís, existen diversos taludes con excelentes afloramientos de la formación.

Igualmente en la carretera A-8200 hay múltiples taludes con buenos afloramientos de la formación.

VALORACIÓN

De interés científico, educativo y turístico.
CALIZAS MARMÓREAS DE GUADALCANAL

NATURALEZA: Historia geológica
LOCALIZACIÓN: Carretera A-8200, entre Cazalla de la Sierra y Guadalcanal
MUNICIPIO: Cazalla de la Sierra

DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

En la zona elevada al noroeste de Cazalla de la Sierra se encuentra una sucesión detrítico-carbonatada, denominada “Calizas del Agua”, que se observa con claridad en los taludes de la carretera comarcal que va desde Cazalla de la Sierra a Guadalcanal, donde se pueden apreciar varios pliegues que afectan a varias capas de calizas y limolitas.

Esta unidad sedimentaria se sitúa por encima de las arcosas, pizarras y arenitas de la Formación Torreárboles. Los términos más bajos de las “Calizas del Agua”, están formados por una alternancia de pizarras, areniscas y arcosas, con capas de calizas y limolitas carbonatadas. Los términos siguientes se caracterizan por la mayor abundancia de carbonatos. El último tramo de esta unidad está constituido por un paquete potente de calizas marmóreas, que en esta zona forma la Sierra de Santiago, donde se ubica el complejo kárstico de las cuevas de Santiago. Los restos fósiles encontrados adjudican a esta unidad una edad Cámbrico inferior, similar a muchas de las rocas calcáreas de la zona oriental del geoparque.

Las calizas del tramo intermedio, que están ligeramente metamorfizadas lo que les confiere un carácter marmóreo, aparecen estratificadas en capas de pequeño espesor con intercalaciones de limolitas; con abundantes pliegues.

ELEMENTOS DE INTERÉS

Se pueden observar varios pliegues de carácter cilíndrico, de orden métrico a decamétrico, con fallas asociadas a las charnelas de los pliegues.

Múltiples huellas de disolución en las capas de calizas.
ACCESO

Carretera A-8200, entre Cazalla de la Sierra y Guadalcanal.

PUNTO DE OBSERVACIÓN

El mejor lugar es la misma carretera A-8200, entre Cazalla de la Sierra y Guadalcanal, a unos 14 kilómetros de Cazalla y a la misma distancia de Guadalcanal. Existen varias curvas con amplio arcén lateral en el que poder detenerse.

VALORACIÓN

Buen lugar por su interés didáctico para la observación de pliegues en las calizas, y fracturas de plano axial asociadas

CONSERVACIÓN

Inventario Andaluz de Georrecursos (2011), código 564: “Calizas marmóreas de Guadalcanal”.
NATURALEZA: Historia geológica
LOCALIZACIÓN: Brazo sureste del Embalse del Pintado
MUNICIPIO: Cazalla de la Sierra

DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

El Sinclinal del Valle consiste en un pliegue sinclinal separado por fallas de las calizas y las vulcanitas del Cámbrico, con su eje más o menos coincidiendo con la rama sureste del embalse de El Pintado, que contiene una serie sedimentaria casi completa que abarca gran parte del Paleozoico inferior, del Ordovícico al Devónico.

La secuencia ordovícica comienza con pizarras verdes, seguido de areniscas y una sucesión de pizarras y calizas, entre los que destacan la “Caliza de Pelmatozoos”. Por encima de esta sucesión y en discordancia se encuentran las “Pizarras del Valle”

La sucesión Silúrico - Devónico consiste en pizarras negras con graptolites con dos intercalaciones de carbonatos en la mitad superior; la más delgada denominada “Caliza de Orthoceras”, y la otra denominada “Caliza con Scyphocrinites”. Esta segunda unidad divide la sucesión en “Pizarras de graptolites inferiores” con remarkables intercalaciones de liditas, y “Pizarras de graptolites superiores”, donde se enmarca el límite Silúrico-Devónico. El resto de la sucesión del Devónico está representado por el Grupo El Pintado, con una unidad inferior de esquistos y pizarras verde-marrón, seguido de un conjunto de calizas, areniscas calcáreas y pizarras.

La sucesión paleozoica del Sinclinal del Valle refleja un contexto paleogeográfico y ambiental muy distinto al existente en las restantes zonas del Macizo Ibérico, con predominio de sedimentos y faunas pelágicas de ambientes marginales de la plataforma que circundaba Gondwana y con un registro fosilífero muy completo entre el Ordovícico (480 Ma) y el Devónico (360 Ma). En esta zona predominaban unos ambientes marinos más profundos y alejados de la antigua costa, frente a las sucesiones más someras, con potentes unidades cuarcíticas existentes en la Zona Centroibérica (“Cuarcita Armoricana”).

La abundancia de fósiles pelágicos en el Sinclinal del Valle ha permitido reconocer una sucesión completa del Silúrico al Devónico Inferior, con 25 biozonas consecutivas de graptolites. Estas biozonas posibilitan una correlación de alta resolución con otras áreas mundiales, así como una contribución al conocimiento detallado de grandes acontecimientos globales, entre ellos el calentamiento y la glaciación del Ordovícico terminal, o los eventos de radiación y extinción del Silúrico.

Pizarras negras del Silúrico, en los taludes de la carretera SE-179.

Graptolites en pizarras negras.
ACCESO

Carretera SE-179, entre Cazalla de la Sierra y el Real de la Jara. Gran parte del Sinclinal del Valle no es accesible por estar en una propiedad privada.

PUNTO DE OBSERVACIÓN

Los afloramientos principales del Silúrico y Devónico se encuentran cerca del embalse y a lo largo de las corrientes que fluyen en él desde el norte, mientras que la sucesión Ordovícica aflora principalmente en tres localidades cercanas: Cortijo de Las Cañas, finca del Valle, y en el kilómetro 14 de la carretera SE-179. Se puede observar parte de la sucesión paleozoica en los taludes de la carretera SE-179, a unos 3 kilómetros al Este de la localidad de El Pintado.

DOCUMENTACIÓN

VALORACIÓN

Alto valor científico (de gran interés para expertos en Sedimentología y Paleontología).

CONSERVACIÓN

SINCLINAL DEL VALLE

01
El yacimiento consiste en noventa huellas discoidales de gran tamaño, registradas en un plano de estratificación de unas grauvacas arcósicas de edad Cámbrico inferior (541 a 521 Ma). Antiguamente se creía que estas marcas en la roca eran petroglifos, creados por el ser humano primitivo, de ahí la denominación del afloramiento como la “Piedra Escrita”.

Los estudios paleontológicos realizados han permitido interpretar estas estructuras como impresiones de cuerpos blandos de antiguos organismos marinos. Los estudios taxonómicos, biométricos y morfológicos sugieren que serían moldes externos de antiguos celentéreos tipo hidrozoo, similares al género actual Aequorea.

Los caracteres icnológicos, litológicos y sedimentológicos indican que las grauvacas son depósitos de aguas muy someras. El escenario más probable sería la acumulación masiva de estos organismos, que quedaron varados en la costa durante un episodio puntual de tormenta.

El yacimiento paleontológico es importante, tanto por ser un registro anómalo de hidrozoos en rocas siliciclásticas groseras, como por el elevado número de especímenes en una sola superficie. Además, las biotas de cuerpos blandos de esta edad son muy escasas, por lo que este yacimiento puede aportar una mejor comprensión de los importantes eventos que ocurrieron durante la transición entre el Neoproterozoico y el Fanerozoico, particularmente en la evolución de los hidrozoos.
HUELLAS DE MEDUSAS DEL CÁMBRICO INFERIOR

ACCESO

Acceso restringido (propiedad privada).
En la carretera entre Constantina y Las Navas de la Concepción, a unos 14 kilómetros de Constantina, sale el carril de acceso a la finca.

PUNTO DE OBSERVACIÓN

Las huellas se observan solo sobre el yacimiento.

VALORACIÓN

Alto valor científico y turístico

CONSERVACIÓN

Inventario Andaluz de Georrecursos (2011), código 639: “Yacimiento de medusas cámbricas de Constantina”.

RIESGOS

Peligros por caídas debido a la fuerte pendiente de la ladera.

AMENAZAS

Grave riesgo de deterioro debido a la fragilidad de la roca sobre la que están impresas las huellas.
La sutura entre las zonas de Ossa-Morena y Sudportuguesa

05 ANFIBOLITAS EN ALMADÉN DE LA PLATA
06 GRUPO PULO DO POLO
Las zonas geológicas de Ossa-Morena y Sudportuguesa del Macizo Ibérico tienen características muy diferentes tanto en la composición y edad de las rocas, como en su estructura y grado de deformación, lo que ha permitido diferenciarlas con claridad.

Entre estas dos zonas geológicas se sitúa un conjunto de rocas, desde Beja en Portugal hasta Almadén de la Plata en Sevilla, que son muy distintas a las existentes en cualquiera de las dos zonas citadas: las llamadas “Anfibolitas de Beja-Acebuches”, que provienen del metamorfismo de lavas basálticas de fondo oceánico, y el denominado “Grupo Pulo do Lobo”, materiales típicos de un prisma de acreción, con sedimentos finos depositados en fondos oceánicos y sedimentos arenosos más gruesos procedentes de un continente cercano.

En la zona de Almadén de la Plata se encuentra también el denominado “Núcleo metamórfico de Almadén”: un conjunto de rocas que han sufrido un metamorfismo de alta temperatura y baja presión, y además, parte de las anfibolitas y de las rocas del Pulo do Lobo, han sufrido una intensa deformación, evidenciada en la presencia de múltiples boudines de areniscas, cuarzos acintados, pliegues en cofre y una fuerte lineación de estiramiento.

Es por ello que esta zona se considera que es la zona de sutura entre dos antiguas placas tectónicas continentales, que estaban separadas por un océano y fueron convergiendo hasta que colisionaron (la zona oceánica de la placa Sudportuguesa se introdujo por debajo de la placa de Ossa-Morena).
A la altura de la población de Almadén de la Plata se encuentran unas rocas de color gris azulado, formando una banda de orientación Este-Oeste y unos 10 kilómetros de largo. Estas rocas son unas anfibolitas denominadas “Anfibolitas de Beja-Acebuches”.

Las anfibolitas se pueden separar cartográficamente en dos unidades según el aspecto que presentan. Las rocas situadas más al norte son rocas de grano medio a grueso, con un bandeado en función de su composición: niveles de color claro, ricos en plagioclasa y cuarzo, y niveles de color oscuro, ricos en anfibol. Las rocas situadas justo al sur de la población de Almadén de la Plata, que constituyen las zonas topo-gráficamente mas bajas de esta región, son de grano fino y color gris-azulado. Tienen una foliación muy fina, con pérdida de continuidad de los estrechos niveles ricos en plagioclasa y cuarzo, lineación mineral de estiramiento y charnelas de pliegues sin flancos; estas características fueron producidas por una intensa deformación.

Estas anfibolitas, que aparecen discontinuamente a los largo de más de 200 kilómetros, provienen del metamorfismo de antiguas rocas volcánicas básicas; los análisis geoquímicos indican una composición similar a los basaltos existentes en las zonas de dorsales oceánicas.

ACCESO

Por la carretera A-450 se llega a la población de Almadén de la Plata, desde la autovía A-66 o desde la población de Castilblanco de los Arroyos.

PUNTO DE OBSERVACIÓN

La facies bandeada de grano grueso puede observarse cerca del Punto Limpio de Almadén, en el camino al Cerro de los Covachos y en el antiguo camino de Almadén de la Plata a Cazalla de la Sierra.

La facies de grano fino puede observarse en varios puntos de las inmediaciones de la población de Almadén de la Plata, como en el cercano cauce del Arroyo de la Calzadilla, y en varios barrancos cerca de la estación depuradora.

EQUIPAMIENTOS DE USO PÚBLICO

Panel interpretativo en el camino desde el Cordel del Pedroso al Punto Limpio de Almadén de la Plata, al lado del Arroyo de la Calzadilla.

VALORACIÓN

Alto valor científico y didáctico.

AMENAZAS

Posible daño por vertido ilegal de residuos, en varios puntos de la zona.
Al sur de la población de Almadén de la Plata se sitúa un conjunto de materiales terrígenos, en una banda alargada de unos 15 kilómetros de largo y menos de 1 kilómetro de ancho, constituido por un conjunto de esquistos blancos y cuarcitas claras, derivados del metamorfismo de arcillas y arenas.

Habitualmente en medio del afloramiento de este conjunto se encuentra un banco de cuarcitas de unos pocos metros de espesor, que dada su dureza genera la línea de cumbres de una sierra de orientación Este-Oeste: Loma del Puerto, Cerro del Calvario, Cerro Palomares, Cerro Montes, Cerro Traviesa, Cerro Gallego; aunque existen otros bancos de cuarcitas dentro del conjunto de rocas.

Dentro de los esquistos se encuentran abundantes boudines de cuarcitas y venas de cuarzo estiradas, que son la evidencia de una intensa deformación de estos antiguos sedimentos.

Este grupo sedimentario, denominado “Grupo Pulo do Lobo”, se ha interpretado como un “prisma o complejo de acreción”, de edad Devónico inferior-medio (420 a 380 Ma). En las zonas de subducción entre placas tectónicas, la mayor parte de los sedimentos oceánicos transportados sobre la corteza oceánica no es subducida bajo el continente, sino que queda adherida al mismo. Los sedimentos finos de las llanuras oceánicas incorporan sedimentos arenosos del continente cercano, y se producen intensos procesos de deformación y metamorfismo en relación con el apilamiento y compresión del prisma de acreción durante la subducción y la subsiguiente colisión continental.
Por la carretera A-450 se llega a la población de Almadén de la Plata, desde la autovía A-66 o desde la población de Castilblanco de los Arroyos.

Al Sur de la población de Almadén de la Plata el camino de El Calvario corta transversalmente esta unidad. El Cordel del Pedroso corta también esta unidad a unos 2 kilómetros al sureste de la población de Almadén de la Plata.

Alto valor científico y didáctico

Alto valor científico y didáctico
Las rocas plutónicas y sus paisajes

08 BERROCAL DE ALMADÉN DE LA PLATA
09 BERROCAL DE EL REAL DE LA JARA
10 BERROCAL DE EL PEDROSO
38 BERROCAL DE LA JAROSA
16 DIORITA DE CAZALLA DE LA SIERRA

Afloramientos de rocas plutónicas y localización de geositios. En rojo, rocas plutónicas acídicas; en azul, rocas plutónicas básicas.
La mayoría de las rocas plutónicas del geoparque presentan composiciones ácidas: son granitos, granodioritas y tonalitas. Estas rocas de colores claros están compuestas por cuarzo, feldespatos y distintas proporciones de micas y anfibol; los minerales accesorios más comunes son apatito, circón, granate y turmalina. Se presentan formando plutones de gran extensión en la mitad occidental del Geoparque.

Existen unos cuantos afloramientos de rocas plutónicas básicas que corresponden a gabros y dioritas. Ambos tipos de rocas presentan a simple vista un aspecto similar, con colores oscuros, siendo su composición parecida: los gabros están formados esencialmente por una asociación de olivino, piroxeno y plagioclasa cálcica con anfibol, titanita e ilmenita como minerales accesorios; la composición mineral de las dioritas está dominada por la presencia de plagioclasa intermedia, anfibol y piroxeno, con pequeñas cantidades de cuarzo e ilmenita y aparecen formando plutones de menores dimensiones que las rocas plutónicas ácidas.

En general, los afloramientos de rocas plutónicas generan paisajes alomados, con suelos arenosos y grandes bolos que han resistido la meteorización. Este tipo de paisajes se denominan berrocales y como tales aparecen frecuentemente en la denominación de varios lugares.

Una característica común de las rocas plutónicas es su homogeneidad; no presentan grandes irregularidades en cuanto a su composición y textura. En función de ello, la alteración progresa a través de las discontinuidades existentes en los macizos de rocas plutónicas (diaclasas, fallas, venas rellenas de otros minerales y rocas), que están expuestas a la acción de los agentes geológicos externos, desde la superficie hacia el interior. Como consecuencia, la tendencia natural es a dar formas esféricas o redondeadas cuando el nivel de meteorización es elevado.
Geomorfología
Monte público El Berrocal
Almadén de la Plata

Al sureste de Almadén de la Plata aflora un plutón granítico, conocido como “Granito del Berrocal”. Es una intrusión relativamente pequeña, de unos 16 km² en superficie, que se emplazó durante el Carbonífero superior en la parte más septentrional de la Zona Sudportuguesa. Es un granito de color rosado compuesto por cuarzo, feldespato alcalino, plagioclasas, biotita y granate. Su textura es granuda con un tamaño grueso de los cristales.

La meteorización del granito ha dado lugar a un paisaje característico de tipo berrocal, que constituye un excelente espacio para observar distintos aspectos del modelado de rocas graníticas: acumulaciones de bolos, lanchares, piedras caballeras y navas arenosas.

Son múltiples los elementos geomorfológicos del granito: domos, lanchares, bolos, navas y piedras caballeras.

Se conservan varios colmenares (asientos de colmenas o corrales de colmenas) que se construyeron con piedras del granito, y antiguos pozos y abrevaderos para aprovechar la escasa agua que circula subterráneamente por la parte superior del plutón.
ACCESO

El acceso a esta zona se realiza desde el pueblo de Almadén de la Plata, siguiendo el cordel del Pedroso. A 4,5 km del pueblo se toma un camino a la derecha y se cruza la cancela de Vegas de Tirado en la que aparece indicado “Centro de Visitantes Cortijo del Berrocal”, adonde se llega tras recorrer 1,5 kilómetros.

PUNTO DE OBSERVACIÓN

Circulando por los senderos de uso público y por los caminos del monte público, se tiene una visión general del plutón y varias vistas del modelado de los granitos.

EQUIPAMIENTOS DE USO PÚBLICO

Centro de Visitantes Cortijo El Berrocal.
Área recreativa y sendero adaptado
Varios senderos señalizados: sendero de Los Arrianales; sendero de La Mancha del Berrocal; sendero Las Rañas
Senderos cicloturísticos: Morilla y Cancela Negra.
Paneles interpretativos.

CONSERVACIÓN

Inventario Andaluz de Georrecursos (2011), código 559: “Berrocal del batolito de Almadén de la Plata”.

VALORACIÓN

Alto valor educativo y turístico.

RIESGOS

Riesgo de caídas por fuertes desniveles.
El plutón del Cala es un macizo semicircular que se extiende entre las poblaciones de Cala y El Real de la Jara, con cerca de 100 kilómetros cuadrados de superficie. Intruye principalmente en las rocas del complejo volcánico Bodonal-Cala, sobre el que produce una intensa aureola de metamorfismo y numerosos procesos de skarn. Esta limitado al sur por una gran fractura normal de dirección aproximada este-oeste.

El complejo plutónico muestra un zonado inverso, con contactos graduales, desde cuarzo-dioritas en el borde a tonalitas y monzogranitos en el núcleo, con pequeños cuerpos y diques de leucogranitos y pórfidos. En afloramiento es una roca granuda de color grisáceo rica en biotita y anfíbol. A menudo presenta una foliación magmática bien desarrollada y ha sido datado con una edad de aproximadamente 332 Ma.

En el municipio de El Real de la Jara predominan las tonalitas y granodioritas, con múltiples diferenciados de aplitas, pero en el extremo oriental se encuentra una banda de dioritas, granitos, granodioritas y tonalitas. En las cercanías de la población de El Real de la Jara se encuentra un pequeño macizo de gabros que intruye a través de las rocas de esta banda.

La meteorización del granito ha dado lugar a un paisaje característico, con morfologías de tipo berrocal, aunque muy evolucionado por la alta erosión del plutón y la intensa acción humana, por lo que los elementos más comunes son los lanchares y las navas arenosas.

ELEMENTOS DE INTERÉS

Existen diversas morfologías de alteración de las rocas graníticas: distintos tipos de domos, berrocales, campos de bolos y majanos originados por la acción humana para la creación de pastizales y terrenos cultivables.

Son también muy abundantes los pequeños frentes de cantera para la extracción de piezas de construcción y roca ornamental.
BERROCAL DE EL REAL DE LA JARA

ACCESO

El acceso a esta zona se realiza por la carretera Santa Olalla de Cala – El Real de la Jara.

PUNTO DE OBSERVACIÓN

Alrededor del área recreativa de la Rivera de Cala y por el sendero del Batrocal.

EQUIPAMIENTOS DE USO PÚBLICO

Centro de Interpretación Ribera del Cala.
Área Recreativa.
Sendero del Batrocal, entre el área recreativa y la población de El Real de la Jara.

CONSERVACIÓN

Inventario Andaluz de Georrecursos (2011), código 389: “Batolito de Santa Olalla del Cala”

VALORACIÓN

Alto valor educativo y turístico.
El batolito de El Pedroso es un plutón de gran extensión, con más de 150 kilómetros cuadrados de superficie y de orientación aproximada Norte-Sur, situado entre el Monte Público de UPA al norte y la población de Villanueva del Río y Minas al sur, y enclavado entre dos grandes estructuras tectónicas; al oeste la Falla del Viar, y al este la falla que limita el Anticlinorio de Monesterio y el sinclinal cámbrico de la Sierra de El Pedroso.

El batolito muestra un cierto zonado composicional, con monzogranitos biotíticos en la zona central y meridional, y granodioritas biotíticas en la zona exterior y septentrional. Son abundantes los cuerpos de leucogranitos cordieríticos y los diques de pórfidos riolíticos. Los pequeños cuerpos de gabros ocupan una posición externa al cuerpo principal del batolito.

Dentro del territorio del Parque Natural Sierra Norte de Sevilla estas rocas ígneas presentan distintos grados de alteración: los monzogranitos de la parte central del batolito están muy meteorizados, dando lugar a amplios valles arenosos con un gran desarrollo de suelos y con escasos afloramientos de roca intacta; mientras que las granodioritas de la zona externa tiene un grado de meteorización bastante inferior, debido a su mayor resistencia a la alteración química, por lo que ofrecen un paisaje característico de berrocal, dentro de un relieve suave en el que dominan los suelos arenosos.

Son abundantes los lanchares, las piedras caballeras y las acumulaciones de bolos, y en esta zona hay varios restos arqueológicos prehistóricos.

La granodiorita de El Pedroso ha sido explotada desde la época romana para la obtención de piedras de construcción y recientemente para uso ornamental, con la denominación tezal.
ACCESO

Se puede acceder a El Pedroso por el norte desde Cazalla de la Sierra y por el este desde Constantina. La carretera de Cantillana a El Pedroso corta transversalmente el batolito.

PUNTO DE OBSERVACIÓN

Desde el pueblo de El Pedroso sale el sendero público Arroyo de Las Cañas, que es uno de los mejores recorridos para ver los berrocales. El camino de acceso al monte público La Atalaya es también en un buen lugar de observación de los paisajes graníticos.

EQUIPAMIENTOS DE USO PÚBLICO

Sendero Arroyo de Las Cañas.
Varios paneles indicativos e interpretativos.

VALORACIÓN

Alto valor educativo y turístico

CONSERVACIÓN

Inventario Andaluz de Georrecursos (2011), código 570: “Berrocales del Batolito del Pedroso”.
En el sector al norte del Embalse del Huéznar se encuentra un plutón granítico de forma alargada, de unos 16 kilómetros de largo por unos 5 kilómetros de ancho, con una orientación aproximada noroeste – sureste.

Este plutón está compuesto por varios tipos de rocas graníticas: granito biotítico de grano grueso (denominado Granito de El Garrotal), granito leucocrático y leucogranitos cordieríticos, con una distribución espacial muy heterogénea entre los cuerpos de rocas plutónicas, y con las diversas rocas encajantes: esquistos, cuarcitas negras, gneises y migmatitas (Formación Montemolín); pizarras, areniscas y calizas (Formación Capas de Campoallá); y areniscas feldespáticas y pizarras (Alternancia de Cumbres).

La meteorización de las rocas graníticas está muy desarrollada, debido a sus características composicionales y estructurales, por lo que se ha conformado un paisaje de berrocal muy evolucionado, con lomas y valles muy suaves, donde resaltan algo los sectores donde se encuentra el granito leucocrático.

Son abundantes los bolos de granito (llamados en esta zona “porrillas”) aislados entre los prados, y las navas arenosas.

Destacan los bolos agrupados en majanos, generados por la acción humana para la creación de pastizales y zonas de siembra.
Se puede acceder a la zona desde Cazalla de la Sierra y desde El Pedroso por la carretera A-432, o desde Constantina por la carretera A-452. Desde la carretera de Constantina a El Pedroso sale la antigua carretera que lleva hasta el embalse del Huéznar.

El mejor lugar de observación es la antigua carretera de El Pedroso a Constantina, que hoy lleva hasta el embalse del Huéznar, saliendo de la actual carretera de Constantina a El Pedroso (A-452), a unos 4,5 kilómetros de la población de El Pedroso.

Monte Público La Jarosa (Ayuntamiento de El Pedroso)

De interés educativo y turístico.
NATURALEZA: Petrología-Geomorfología
LOCALIZACIÓN: Al noroeste de la población de Cazalla de la Sierra
MUNICIPIO: Cazalla de la Sierra

DESCRIPTORIÓN E INTERPRETACIÓN DEL SITIO

Esta roca plutónica se presenta en un afloramiento alargado de unos 9 kilómetros de longitud y unos 7 kilómetros cuadrados de superficie, al noroeste de la población de Cazalla de la Sierra, en la zona central de un gran anticlinorío.

La diorita de Cazalla de la Sierra es una roca plutónica de color oscuro, compuesta esencialmente de dos tercios de plagioclasa sódica y un tercio de minerales oscuros como hornblenda, biotita y a veces cantidades menores de piroxeno y epidota. El tamaño de los minerales es medio y se disponen formando una trama entrelazada de cristales.

Los gabros y dioritas son rocas plutónicas de composición parecida, siendo la principal diferencia que la diorita tiene variedades de plagioclasas más ricas en sodio y el gabro tiene variedades de plagioclasas más ricas en calcio. A diferencia de los granitos la diorita es una roca de composición intermedia, es decir es más básica.

Al oeste del pueblo de Cazalla de la Sierra, en la zona llamada Los Peñasquitos puede observarse la morfología en bolos derivada de los procesos de meteorización sobre esta roca, semejante al que se produce en las rocas graníticas. Los suelos son más ricos en nutrientes, como es habitual en los que se desarrollan sobre rocas magmáticas más básicas.

ELEMENTOS DE INTERÉS

Alrededor de la Fuente del Judío, a la salida de Cazalla de la Sierra por la carretera de El Real de la Jara, existen excelentes afloramientos de la diorita, en los que puede observarse su composición y textura.

En el límite sur del afloramiento de diorita existen varias zonas con abundantes diques de pegmatitas y aplitas, con feldespatos sódicos de calidad variable que se siguen explotando en la actualidad.
A la población de Cazalla de la Sierra se puede acceder desde Constantina y San Nicolás del Puerto (por la carretera A-455), desde El Pedroso (por la carretera A-432), desde El Real de la Jara (por la carretera A-450), y desde Guadalcanal y Alanís (por la carretera A-432).

En la carretera A-432, antes de entrar en la población de Cazalla de la Sierra, se encuentra la Fuente de los Judíos, donde hay excelentes afloramientos de la diorita.

Al oeste de Cazalla de la Sierra sale el camino Vereda de El Sotillo que lleva al arroyo y el embalse del Sotillo, y que termina en la carretera A-450, al lado del cementerio municipal. A lo largo de este camino se observan diversos afloramientos de la diorita.

De interés educativo y turístico
Los depósitos postorogénicos

Mapa de localización de las cuencas postorogénicas y de los geositios relacionados
Con posterioridad a la formación de las cadenas montañosas generadas por la Orogenia Hercínica, se crearon múltiples depresiones topográficas continentales en respuesta a la tectónica de distensión posterior a la deformación varisca. Esta tectónica distensiva supuso el comienzo de una nueva fase de “rifting”, y con ello, la transición hacia un nuevo ciclo orogénico, el ciclo alpino. En esas depresiones se depositaron sedimentos continentales en posición horizontal durante un largo periodo de tiempo, entre el Carbonífero superior (310 a 300 Ma), el sistema Pérmico (300 a 250 Ma) y posiblemente el Triásico inferior (250 a 245 Ma).

En el Geoparque Sierra Norte de Sevilla se localizan dos de estas cuencas sedimentarias postorogénicas: la Cuenca del Viar, al sureste de Almadén de la Plata, y la Cuenca de Alanís - San Nicolás del Puerto, entre estas dos poblaciones. Aunque existen unos depósitos de conglomerados que bordean el Embalse de El Retortillo, parece que están en continuidad geográfica con esta última cuenca. La localización y disposición de estas cuencas postorogénicas estuvo controlada por las estructuras mayores de plegamiento y fracturación hercínica, de manera que están orientadas según la dirección dominante de las estructuras varisicas: noroeste - sureste.

Los sedimentos que rellenan estas cuencas están constituidos por una mezcla de depósitos de abanicos aluviales, corrientes fluviales y rellenos de fondo de valle, depósitos lagunares, y diversos episodios volcánicos, con capas de lavas y depósitos piroclásticos. En una región al noreste de la Cuenca del Viar se han localizado varios conductos volcánicos que indican donde estaba el campo eruptivo que alimentó los depósitos de origen volcánico de esta cuenca.

Muchos de los cantos de los conglomerados presentan superficies pulimentadas con una pátina brillante denominada “barniz del desierto”, que indica que los cantos, antes de ser depositados, sufrieron unas condiciones ambientales extremadamente áridas. Al final del Carbonífero, hace 300 Ma, todas las masas continentales de la Tierra se unieron formando un único megacontinente llamado Pangea, y la Península Ibérica en ese periodo se encontraba en el interior de ese continente, lejos de ambientes húmedos marítimos.
DEPÓSITOS ALUVIALES

NATURALEZA: Historia geológica
LOCALIZACIÓN: Cordel de Almadén de la Plata a El Pedroso
MUNICIPIO: Almadén de la Plata, El Pedroso

DESCRIPTOR Y INTERPRETACIÓN DEL SITIO

Es el primer episodio del relleno de la Cuenca del Viar. Sobre el zócalo deformado por la orogenia varisca, se depositaron los primeros sedimentos, un conjunto heterogéneo de sedimentos aluviales y fluviales.

Estos sedimentos están constituidos por una mezcla de depósitos de abanicos aluviales, corrientes fluviales y rellenos de fondo de valle, depositados antes del primer episodio volcánico de la cuenca. Están constituidos por: conglomerados y areniscas conglomeráticas, con cantos rodados angulosos de diversos materiales y de diferentes tamaños, y areniscas gruesas. Son habituales las cicatrices de erosión en la base de las capas de conglomerados, así como una cierta disminución del tamaño de los cantos hacia techo, pasando comúnmente a areniscas de grano grueso a medio; los cantos y las areniscas muestran una intensa coloración rojiza.

Estos materiales se depositaron por la acción de abanicos aluviales y ríos debido a la fuerte y rápida erosión de las zonas montañosas cercanas.

ELEMENTOS DE INTERÉS

Son abundantes diversas estructuras sedimentarias: superficies de erosión en la base de los conglomerados, granoselección positiva, estratificación cruzada, etc.

Muchos de los cantos rodados de los conglomerados presentan superficies pulimentadas con pátina brillante denominada “barniz del desierto”, lo que indica que los cantos estuvieron expuestos a un clima árido; desértico o subdesértico.
La Cuenca del Viar está atravesada longitudinalmente por la vía pecuaria del Cordel de El Pedroso, a la que se puede acceder desde Cantillana o El Pedroso por la carretera A-432, o desde la población de Almadén de la Plata (donde termina la vía). También se puede acceder al Cordel de El Pedroso desde Cazalla de la Sierra, por la carretera A-450 y posteriormente recorrer el camino que cruza el Monte Público UPA.

Los mejores lugares para observar estas rocas y formaciones se encuentran en el sector norte de la Cuenca del Viar, a unos 6 kilómetros de la población de Almadén de la Plata, en la zona donde el Cordel de El Pedroso discurre paralelo al Arroyo Calzadilla o Cezadilla.

R. H. Wagner y E. J. Mayoral
“The Early Permian of Valdeviar in Sevilla province, SW Spain: basin history and climatic / palaeogeographic implications”.

De interés científico, educativo y turístico.

GR-48 Sendero de Sierra Morena: Etapa El Real de la Jara - Cazalla de la Sierra.
DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

Estas lavas constituyen la segunda unidad de relleno de la Cuenca del Viar.

En el primer episodio de relleno de la cuenca, sobre el basamento deformado por la orogenia varisca, se depositaron sedimentos fluviales y aluviales. Por encima de estos depósitos se encuentra una potente sucesión de lavas, que constituyen la primera etapa de actividad volcánica. Estas lavas están constituidas por basaltos olivínicos.

Los depósitos volcánicos comienzan con una unidad masiva de basaltos, sin señales de flujos individuales detectadas, de 15 metros de espesor, con una superficie superior degradada mostrando un recubrimiento de limos rojos y una brecha sedimentaria en la parte superior. Este basalto recubre una paleotopografía en el borde noroccidental de la cuenca. El siguiente depósito en la sucesión son 20 metros de basalto en coladas de lavas, con una superficie superior degradada con lutitas rojas y verdes que incorporan bolas erosionadas de basalto con vesículas. Entre los dos grupos de basaltos se intercala una lutita roja de 3 metros de espesor.

ELEMENTOS DE INTERÉS

Vacuolas en los basaltos, especialmente abundante en determinados niveles. Meteorización de las rocas dando lugar a bolos con una organización en “capas de cebolla”. Superficies de meteorización atmosférica, con la presencia de limos de alteración.
La Cuenca del Viar está atravesada longitudinalmente por la vía pecuaria del Cordel de El Pedroso, a la que se puede acceder desde Cantillana o El Pedroso por la carretera A-432, o desde la población de Almadén de la Plata (donde termina el camino). También se puede acceder al Cordel de El Pedroso desde Cazalla de la Sierra, por la carretera A-450 y posteriormente el camino que cruza el Monte Público UPA.

Los mejores lugares para observar estas rocas y formaciones se encuentran en el sector norte de la Cuenca del Viar, a unos 7,5 kilómetros de la población de Almadén de la Plata, en la zona donde el Cordel de El Pedroso cruza el Arroyo de la Calzadilla.

De interés científico, educativo y turístico.

R. H. Wagner y E. J. Mayoral
“The Early Permian of Valdeviar in Sevilla province, SW Spain: basin history and climatic / palaeogeographic implications”.

De interés científico, educativo y turístico.
NATURALEZA: Historia geológica
LOCALIZACIÓN: Monte Público Dehesa de UPA; Loma del Gallinero
MUNICIPIO: Cazalla de la Sierra

DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

El centro volcánico, que presumiblemente es responsable de los depósitos piroclásticos de la cuenca del Viar, se ha detectado a unos 5 kilómetros de distancia al noreste de la cuenca, al sur de la Loma del Gallinero, en la Dehesa de UPA.

Se ha reconocido la presencia de varios conductos volcánicos, en una zona con una extensión de unos 3 kilómetros cuadrados. Estos conductos o chimeneas se identifican por la presencia de brechas con fragmentos de la roca huésped: areniscas feldepatíticas y pizarras de edad cámbica, y una matriz de tobas volcánicas. En algunos casos se encuentran rocas piroclásticas de grano fino y depósitos de ceniza volcánica, que representan la base de los volcanes.

Estas rocas, claramente relacionadas con los múltiples depósitos volcánicos de la cercana Cuenca del Viar, indican la existencia de un centro volcánico importante con varios cráteres; se han localizado más de 15 posibles conductos con posición vertical, de los que en varios se ha certificado su naturaleza volcánica. Debido a la erosión posterior solo se conservan las rocas que rellenan los conductos, en la mayoría de los afloramientos.

DOCUMENTACIÓN

R. H. Wagner y E. J. Mayoral
Desde Cazalla de la Sierra, por la carretera A-450 se acceden al camino que se encuentra al pie de la Loma del Gallinero.

La carretera A-450, al llegar al Monte Público Dehesa de UPA, continúa en uno de los caminos de servicio del monte. A 1 kilómetro del inicio del camino empiezan a parecer los afloramientos de las chimeneas volcánicas.

De interés científico y educativo
La penúltima unidad sedimentaria presente en la Cuenca del Viar es la denominada “Serie Roja Superior”, para diferenciarla de las otras unidades de capas rojas de inferior posición en el relleno de la cuenca.

Esta unidad está compuesta por conglomerados, areniscas, lutitas rojas y niveles de carbonatos en nódulos. El medio de sedimentación general es lacustre, con evidencia de secado y fuerte meteorización con edafogénesis, aunque esta serie sedimentaria contiene algunas capas fluviales producidas por depósitos de corrientes temporales de carácter local; los niveles de conglomerados y areniscas no exceden de un 20-30% del total de la serie.

Lo más espectacular de esta formación sedimentaria son los depósitos de transporte masivo de litología mezclada, compuesta por varias capas producidas por flujo en masa, que dada su significación, se ha considerado como un geositio único (ver “Coladas de fango”).

También existen varios niveles de caliches entre las capas de limolitas y arcillas rojas, que se formaron por la precipitación de calizas, por capilaridad en periodos secos.

R. H. Wagner y E. J. Mayoral
La Cuenca del Viar está atravesada longitudinalmente por la vía pecuaria Cordel de El Pedroso, a la que se puede acceder por la carretera A-8102 que sale de la carretera A-432 que une Cantillana y/o El Pedroso, o desde la población de Almadén de la Plata (donde termina el camino). También se puede acceder al Cordel de El Pedroso desde Cazalla de la Sierra, por la antigua carretera a Almadén de la Plata y posteriormente recorrer el camino que cruza el Monte Público Dehesa de UPA.

El mejor lugar para observar esta serie se encuentran en la zona central de la Cuenca del Viar, en los primeros kilómetros del Cordel de El Pedroso (desde la carretera A-8102 entre Castilblanco de los Arroyos y El Pedroso).

De interés científico, educativo y turístico.
GEO SITIOS

NATURALEZA: Historia geológica
LOCALIZACIÓN: Cordel de El Pedroso
MUNICIPIO: El Pedroso

DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

Uno de los sitios geológicamente más importantes de la Cuenca del Viar se corresponde con los sedimentos producidos por transporte en masa, ubicados dentro de la penúltima unidad sedimentaria presente en la Cuenca del Viar, la denominada “Serie Roja Superior”.

Estos depósitos están formados por varios niveles de depósitos arcillosos-arenosos de color rojo oscuro, de unos 20 cm de espesor, que contienen pequeños cantos y, ocasionalmente, fragmentos de flora fósil. Estos depósitos se atribuyen a la movilización de preexistentes depósitos situados sobre las antiguas laderas (arenas y arcillas volcánicas, y cantos), en periodos de lluvia intensa con inundaciones, que producían avalanchas de fangos, semejantes a los lahares.

Las superficies de la parte superior de cada depósito de flujo presentan pequeños cantos poco clasificados, angulares y sub-redondeados, por lo que fueron transportados flotando, debido a la alta densidad de este mecanismo de transporte.

DOCUMENTACIÓN

R. H. Wagner y E. J. Mayoral
“The Early Permian of Valdeviar in Sevilla province, SW Spain: basin history and climatic / palaeogeographic implications”.

Esquema explicativo de la generación de las coladas de fango

Aspecto general de las coladas de fango

Detalle de la superficie superior de las coladas, cubiertas con cantos
COLADAS DE FANGO

ACCESO
La Cuenca del Viar está atravesada longitudinalmente por la vía pecuaria Cordel de El Pedroso, a la que se puede acceder por la carretera A-8102 que sale de la carretera A-432 que une Cantillana y/o El Pedroso, o desde la población de Almadén de la Plata (donde termina el camino). También se puede acceder al Cordel de El Pedroso desde Cazalla de la Sierra, por la antigua carretera a Almadén de la Plata y posteriormente recorrer el camino que cruza el Monte Público Dehesa de UPA.

VALORACIÓN
Alto interés científico, educativo y turístico.

PUNTO DE OBSERVACIÓN
El mejor lugar para observar estos depósitos se encuentra en la zona central de la Cuenca del Viar, a unos 20 kilómetros de la población de Almadén de la Plata, en la zona del Cortijo de la Zamarrona.

AMENAZAS
Posibles daños por actuaciones en el Cordel de El Pedroso y en la finca adyacente.
Historia geológica
Dehesa del Viar, Cordel de El Pedroso
Almadén de la Plata - El Pedroso

En la cuenca del Viar se localizan varios puntos con restos fósiles de flora del Carbonífero superior-Pérmico, consistentes tanto en hojas como trozos de troncos.

Se han encontrado alrededor de 40 especies de flora que confirman una edad Carbonífero superior (303 Ma) - Pérmico inferior (290 Ma), para los sedimentos de esta cuenca.

Prácticamente la mayoría de los restos de plantas se encontraron en depósitos producidos en un ambiente húmedo, generalmente facies aluviales o lacustres, con diversos aportes de origen volcánico: depósitos de nube ardiente y/o brechas piroclásticas. Este aporte de material volcánico favoreció los procesos de silicificación, por el cual la celulosa que constituía la materia vegetal de los árboles fue reemplazada progresivamente por dióxido de silicio (sílex: SiO$_2$), que es el compuesto que forma actualmente estos fósiles.

Son abundantes los fósiles de troncos de árboles, algunos de gran tamaño, y en ocasiones en posición de vida.

DOCUMENTACIÓN
R. H. Wagner y E. J. Mayoral
“The Early Permian of Valdeviar in Sevilla province, SW Spain: basin history and climatic / palaeogeographic implications”.

R. H. Wagner y C. Álvarez-Vázquez
“The Carboniferous floras of the Iberian Peninsula: A synthesis with geological connotations”.
ACCESO
La Cuenca del Viar está atravesada longitudinalmente por la vía pecuaria Cordel de El Pedroso, a la que se puede acceder por la carretera A-8102 que sale de la carretera A-432 que une Cantillana y El Pedroso, o desde la población de Almadén de la Plata (donde termina el camino). También se puede acceder al Cordel de El Pedroso desde Cazalla de la Sierra, por la antigua carretera a Almadén de la Plata y posteriormente recorrer el camino que cruza el Monte Público Dehesa de UPA.

VALORACIÓN
De interés científico.

PUNTO DE OBSERVACIÓN
Hay múltiples afloramientos con fósiles de flora.

AMENAZAS
Posible expolio de los yacimientos.
El borde oriental de la Cuenca del Viar está deformado por una gran zona de fracturas, denominada generalmente como “Falla del Viar”. Esta zona, con una anchura entre 200 y 1.200 metros y una extensión longitudinal superior a los 25 kilómetros, superpone las rocas de la zona de Ossa-Morena, de edad paleozoica, sobre los depósitos continentales de la Cuenca del Viar, de edad posterior a la orogenia varisca.

Las fracturas que forman la “Falla del Viar”, de tres a cinco fallas inversas, superponen las rocas paleozoicas (calizas marmóreas cámbricas, calizas biodetríticas devónicas y esquistos con vulcanitas ordovícicos), sobre las limolitas con niveles de carbonatos y conglomerados de la Serie Roja Superior de la Cuenca del Viar. Estos sedimentos están en posición invertida, tal como se evidencia en la polaridad sedimentaria de los conglomerados (grano selección positiva). La deformación de los depósitos de la Cuenca del Viar es leve y, pocos metros hacia el oeste, las cuencas recuperan su posición horizontal original.

La deformación de la Falla del Viar es posterior a la generación de Sierra Morena y al depósito sedimentario de la Cuenca del Viar, posiblemente de época alpina, aunque es muy posible que por removilización de la fractura, o fracturas, que constituían el límite oriental de la cuenca.

Historia geológica

La historia geológica de la Falla del Viar es rica en eventos geológicos que han contribuido a la formación de la actual escena geológica. La Falla del Viar es uno de los grandes fenómenos del tectonismo, que ha dejado huella en la geología de la región. La formación de la Falla del Viar se basa en una serie de eventos geológicos que han tenido lugar en diferentes épocas geológicas.

La Falla del Viar es una de las más grandes de la región, con una anchura que varía entre 200 y 1.200 metros y una extensión longitudinal superior a los 25 kilómetros. Esta zona superpone las rocas de la zona de Ossa-Morena, de edad paleozoica, sobre los depósitos continentales de la Cuenca del Viar, de edad posterior a la orogenia varisca.

La deformación de la Falla del Viar es posterior a la generación de Sierra Morena y al depósito sedimentario de la Cuenca del Viar, posiblemente de época alpina, aunque es muy posible que por removilización de la fractura, o fracturas, que constituían el límite oriental de la cuenca.
ACCESO

Carretera A-432 entre Cantillana (y Castilblanco de los Arroyos) y El Pedroso.

VALORACIÓN

Alto valor científico y educativo.

CONSERVACIÓN

Inventario Andaluz de Georrecursos (2011), código 566: “Falla del Viar”.

PUNTO DE OBSERVACIÓN

El mejor lugar para la observación son los taludes de la antigua carretera, situada a la izquierda del actual trazado. Se accede a este tramo desde el cruce con la carretera a Castilblanco de los Arroyos.
Entre las poblaciones de Alanís y San Nicolás del Puerto se encuentra un conjunto de rocas sedimentarias en múltiples afloramientos inconexos y de composición heterogénea, que se sitúan sobre una extensión de unos 14 kilómetros de largo por 5 kilómetros de ancho, con una disposición aproximada noroeste – sureste.

Estas rocas están constituidas por conglomerados, areniscas, lutitas y algunas lavas, con fósiles de hojas y algunos troncos, pero, dado que no hay una gran visibilidad debido a que están parcialmente recubiertos por depósitos cuaternarios, no se ha podido establecer una serie estratigráfica continua. Estas rocas corresponden a una sedimentación por abanicos aluviales, sistemas fluviales y zonas lacustres, con la ocurrencia de algunos episodios volcánicos.

Se considera que constituyen el relleno de una cuenca continental, parcialmente desmantelada, de edad Carbonífero Superior a Pérmico, sobre el basamento deformado, similar en disposición espacial y edad a la Cuenca del Viar. La localización y disposición de estas cuencas estuvo controlada por las estructuras de plegamiento y fracturación variscas, de manera que están alineadas según la dirección dominante Noroeste-Sureste.
CUENCA DE ALANÍS - SAN NICOLAS DEL PUERTO

ACCESO

A la población de Alanís se puede acceder desde Cazalla de la Sierra y Guadalcanal por la carretera A-432. A San Nicolás del Puerto se accede desde Cazalla de la Sierra por la carretera SE-168 y desde Constantina por la carretera SE-163.

EQUIPAMIENTOS DE USO PÚBLICO

Sendero señalizado Las Dehesas.

VALORACIÓN

De interés científico, educativo y turístico.

PUNTO DE OBSERVACIÓN

Al sur de la población de Alanís hay un camino público que corta varios afloramientos de rocas sedimentarias y coladas de lavas basálticas.
El sendero de uso público Las Dehesas, que se inicia y termina en la población de San Nicolás del Puerto, atraviesa la mayor extensión superficial del relleno de la Cuenca de Alanís – San Nicolás del Puerto: se observan en varios puntos afloramientos de conglomerados, areniscas, lutitas y pizarras.
DEPÓSITOS ALUVIALES EN EL RETORTILLO

NATURALEZA: Historia geológica
LOCALIZACIÓN: Embalse de El Retortillo
MUNICIPIO: La Puebla de los Infantes

DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

Bordeando el embalse de El Retortillo se encuentran unos conglomerados y areniscas de grano grueso de color rojizo, que presentan una facies similar a los sedimentos aluviales existentes en la Cuenca del Viar y en la Cuenca de Alanís-San Nicolás del Puerto, por lo que se han considerado igualmente rellenos de cuencas intramontañosas, con posterioridad a la orogenia varisca, en el periodo comprendido entre el Carbonífero superior (307 Ma) y el Pérmico (250 Ma).

Por encima de diversas rocas del zócalo deformado: esquistos, cuarcitas negras, gneises y migmatitas de la Formación Montemolín; tobas y lavas; conglomerados y arcos masivas de la Formación Torreárboles, de edad Neoproterozoico (1000-540 Ma) y Cámbrico inferior (540-510 Ma), se sitúan, discordantes y dispuestos horizontalmente, un conjunto de conglomerados de cantos angulares de diferentes tamaños, entre los que se intercalan diversos niveles de areniscas gruesas.

Los depósitos conglomeráticos que bordean el embalse de El Retortillo están en la misma disposición espacial, aunque distanciados unos 20 kilómetros, que la Cuenca de Alanís – San Nicolás del Puerto, por lo que parecen situarse en la misma depresión estructural generada con posterioridad al levantamiento montañoso hercínico.

ELEMENTOS DE INTERÉS

Se pueden observar estructuras sedimentarias típicas de sedimentos fluviales: cicatrices de erosión, estratificación cruzada de bajo ángulo, granoselección positiva, etc.

Muchos de los cantos rodados de los conglomerados presentan superficies pulimentadas con una pátina brillante denominada “barniz del desierto”, que indica que los cantos, antes de ser depositados, estuvieron en clima árido.
ACCESO

Al embalse de El Retortillo se puede acceder desde Las Navas de la Concepción o desde La Puebla de los Infantes, por la carretera A-7104.

PUNTO DE OBSERVACIÓN

La carretera A-7104 presenta varios taludes donde hay excelentes afloramientos de estos depósitos.

EQUIPAMIENTOS DE USO PÚBLICO

Mirador del embalse de El Retortillo.

VALORACIÓN

De interés científico, educativo y turístico.
Mapa de situación de geositios geomorfológicos y principales cursos fluviales del geoparque.
El paisaje del Geoparque Sierra Norte de Sevilla, las formas del relieve y su morfología, son el resultado en primer lugar de la disposición espacial de las rocas, producida por la deformación tectónica generada en la Orogenia Hercínica, y el posterior levantamiento generado por la Orogenia Alpina, y en segundo lugar por la erosión diferencial sobre las diversas rocas. Ello es debido a que la erosión actúa con distinta intensidad en función de la dureza de los materiales, de su grado de fracturación y de las diferencias meteorológicas a las que están, o han estado, sometidos. El modelado general existente en la actualidad es un paisaje de sierras en el que alternan alineaciones de montañas abruptas, con valles estrechos y profundos, y zonas de planicies o con lomas suaves y valles amplios.

Gran parte de los sitios de carácter geomorfológico tienen su origen en la acción erosiva del agua. La red hidrográfica del geoparque está constituida por numerosos cursos de agua, generalmente con valles fluviales muy encajados. Esta red hidrográfica está compuesta por cinco cuencas hidrográficas principales, que son subcuencas de la Cuenca hidrográfica del Río Guadalquivir, formadas por los ríos: Rivera del Cala, Viar, Rivera de Huéznar, Retortillo y Onza. Aparte de estos ríos principales hay otros afluentes de gran importancia en la constitución del paisaje de la Sierra Norte de Sevilla: Rivera de Benalija, Arroyo del Valle, Arroyo de Gargantafria y Rivera de Ciudadelja.

La mayoría de los materiales existentes en el geoparque son rocas compactas, metamorfizadas, plegadas y fracturadas por la intensa deformación. La heterogeneidad de las rocas y las diferencias en la composición y disposición espacial de las mismas ha propiciado la generación de múltiples elementos geomorfológicos, que resaltan por su especial belleza, su singularidad y/o su significación geológica.
En la formación sedimentaria de las Capas de Campoallá, la parte superior está constituida por un tramo de calizas masivas que son las que forman el Cerro del Hierro. Este potente tramo superior, con más de cien metros de espesor, está formado por calizas bioconstruidas, es decir, por restos fósiles de seres vivos: arqueociatos (animales) y estromatolitos (bacterias).

Por encima de estas calizas, ocupando el núcleo de una estructura sinclinal, se encuentra un conjunto de lutitas pizarrosas, que presentan una característica disyunción astillosa, denominada en el ámbito regional como “Capas de Alanís” o “Pizarras de Alanís”. Estas pizarras tienen abundantes restos de trilobites, con una asociación que indica una edad aproximada de 520 Millones de años. Las capas de este último conjunto descansan sobre las calizas, fosilizando una antigua superficie de karstificación.

La disolución de las calizas del Cerro del Hierro empezó inmediatamente después de su sedimentación en un ambiente tropical, con la generación de varias estructuras kársticas: grandes lapiaces, profundas depresiones rodeadas de pináculos (torrecillas), callejones de gran longitud y múltiples oquedades rellenas de óxidos de hierro.

Actualmente el Cerro del Hierro es un sistema kárstico en funcionamiento, que forma parte del acuífero subterráneo Guadalcanal-San Nicolás, cuya principal zona de descarga es el Nacimiento del Huéznar.
En la carretera SE-163, entre Constantina y San Nicolás del Puerto, a unos 11 kilómetros de Constantina, sale el carril de acceso al antiguo poblado minero de Cerro del Hierro. Desde el antiguo poblado minero o desde el aparcamiento contiguo al Punto de Información, parten varios senderos por los que acceder al Cerro del Hierro.

Una visión general se puede obtener desde el mirador y el sendero de El Cerro del Hierro. A la zona de Calizas Chicas se accede por un camino desde el poblado.

Punto de Información del Cerro del Hierro.
Varios senderos señalizados: sendero de el Rebollar; sendero adaptado de Cerro del Hierro.
Mirador y paneles interpretativos.
Inicio de la Vía Verde de la Sierra Norte de Sevilla

Alto valor científico, educativo y turístico.

Riesgos para los visitantes por el gran número de huecos y desniveles existentes: se recomienda no abandonar los itinerarios autorizados.

Grave riesgo de deterioro debido al gran número de visitantes y a la recolección ilegal de minerales, rocas y fósiles.
DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

El Cerro de La Capitana es un espléndido punto de observación del modelado general del Geoparque Sierra Norte de Sevilla.

Este cerro, localizado en la Sierra del Viento, es la cota máxima del geoparque con 952 metros de altitud sobre el nivel del mar, y por su situación resulta ser un magnífico mirador del paisaje de sierras del geoparque, en el que alternan alineaciones de montañas abruptas, valles fluviales estrechos y profundos y zonas de planicies suaves y alomadas.

La Sierra del Viento, al noroeste de la población de Guadalcanal, separa las cuencas hidrográficas de dos ríos: al norte la del Bembezar y al sur la del Viar. Esta sierra está constituida por calizas marmóreas de colores claros, con niveles de pizarras. Son calizas laminadas de algas, con estructuras de estromatolitos, entre las que se intercalan algunos niveles de calizas dolomíticas de aspecto brechoide. Estas calizas marmóreas se correlacionan con las calizas masivas del tramo superior de la Formación Capas de Campoallá, que afloran en esta región de la zona de Ossa-Morena.

Elementos de Interés

Este alto es un espléndido mirador con vistas a las depresiones, sierras y elevaciones situadas al suroeste de esta sierra, que reflejan la erosión diferencial motivada por la presencia de rocas con diferente susceptibilidad a la erosión, que están orientadas según la dirección estructural predominante noroeste – sureste. Hacia al noreste se contempla la planicie extremeña entre Llerena y Azuaga.

En el Cerro se encuentra, dentro de los límites del Cordel de los Molinos, una antigua construcción en piedra denominada en la zona como “turruca”, de base redonda y tejado en cúpula. Este tipo de construcciones eran utilizadas por los pastores para resguardarse de las inclemencias meteorológicas.
CERRO DE LA CAPITANA

ACCESO
A la población de Guadalcanal se puede acceder desde Alanís y Fuente del Arco (Extremadura) por la carretera A-433, y desde Cazalla de la Sierra por la carretera A-8200.

PUNTO DE OBSERVACIÓN
A un kilómetro de la salida de la población de Guadalcanal por la carretera A-433 en dirección a Fuente del Arco, se encuentra el sendero señalizado de la Sierra del Viento. El Mirador de La Capitana se encuentra al final del sendero (a unos 4,7 kilómetros de su inicio).

EQUIPAMIENTOS DE USO PÚBLICO
En el Cerro se encuentra el Mirador de La Capitana, al final del sendero señalizado Sierra del Viento.
Paneles interpretativos.

VALORACIÓN
De interés educativo y turístico.
El Chorro es un grupo de cascadas y rápidos de gran belleza y singularidad, localizados en el Arroyo Calzadilla (o Cezadilla).

El Arroyo de la Calzadilla, que nace al norte de la población de Almadén de la Plata, corta a unos 5 kilómetros al sur del núcleo urbano el extremo septentrional del plutón granítico de El Berrocal, generando una garganta de gran espectacularidad.

La mayor parte de las rocas del sustrato en este punto son granodioritas biotíticas, que están fracturadas y atravesadas por diques de diabasas, que al ser de composición más básica son más erosionables que los granitos que las contienen y se produce un proceso de erosión diferencial. En este punto, el dique de diabasa con disposición vertical, se ha erosionado en superficie casi completamente, mientras que el granito resiste más a la erosión, en parte debido a la silicificación producida por la intrusión de las diabasas.

El resultado es una garganta de paredes verticales, con un hueco alargado donde antes estaba la diabasa, y varios saltos de agua. Otro aspecto interesante es la caída en la garganta de grandes bolos de las granodioritas adyacentes, que van quedando encajados en la garganta al ser arrastrados por la corriente del arroyo, que en épocas de avenidas puede alcanzar grandes caudales de agua durante cortos periodos de tiempo.
Desde la población de Almadén de la Plata sale el Cordel de El Pedroso, y a unos 6 kilómetros del pueblo se vuelve a cruzar el Arroyo Calzadilla. Coger la senda de la izquierda, paralela al arroyo, y subir unos 600 metros aguas arriba. Desde la poza situada en la base se tiene una visión general del sitio. Para observarla en detalle hay que entrar en la parte inferior de la garganta, o rodeándola por la izquierda, acceder a la parte superior.

Desde la población de Almadén de la Plata sale el Cordel de El Pedroso, y a unos 6 kilómetros del pueblo se vuelve a cruzar el Arroyo Calzadilla. Coger la senda de la izquierda, paralela al arroyo, y subir unos 600 metros aguas arriba. Desde la poza situada en la base se tiene una visión general del sitio. Para observarla en detalle hay que entrar en la parte inferior de la garganta, o rodeándola por la izquierda, acceder a la parte superior.

VALORACIÓN

Alto valor educativo y turístico.

DOCUMENTACIÓN

Consejería de Medio Ambiente, Junta de Andalucía.

RIESGOS

Peligros para las personas por el fuerte desnivel, tanto en el interior de la garganta como en la parte superior. No se recomienda acceder en época de lluvias.
Las Hoyas de Riscos Blancos son una sucesión de rápidos, cascadas y hoyas de gran belleza, a lo largo de dos tramos de unos 300 metros de longitud cada uno, en el curso fluvial del Arroyo de Risco Blanco (también llamado Arroyo de las Mojoneras). Este arroyo se encuentra al sur del monte Público Las Navas-El Berrocal constituye el límite entre los municipios de Almadén de la Plata y Castilblanco de los Arroyos, y es el límite del geoparque en su extremo suroeste.

Las rocas del sustrato que atraviesa el arroyo son pizarras, grauvacas, areniscas y cuarcitas, pertenecientes a la Zona Sudportuguesa del Macizo Hespérico. Por debajo de este grupo de rocas sedimentarias metamorizadas, y aflorando al sur del arroyo, se encuentra un conjunto de rocas volcánicas denominadas “Andesitas y Basaltos de El Pimpollar”, de edad Carbonífero Inferior. El arroyo ha cortado verticalmente varios paquetes de cuarcitas claras, los llamados “Riscos Blancos”. La erosión ha expuesto a la acción fluvial las rocas volcánicas inferiores, que son más fácilmente meteorizables que las cuarcitas que están por encima, generando un paisaje espectacular con una sucesión de gargantas, rápidos, cascadas, marmitas de gigante y hoyas a lo largo de dos tramos del curso fluvial. Su recorrido es de gran dificultad por lo que se suele utilizar esta zona para la realización de prácticas de barranquismo.
ACCESO

Al Monte Público Las Navas – El Berrocal se puede acceder desde la población de Almadén de la Plata, tomando el Cordel de El Pedroso y accediendo al Centro de Visitantes Cortijo El Berrocal; o por la carretera de Castilblanco a Almadén de la Plata SE-5405), por el acceso al Cortijo Morilla. Desde estos dos accesos hay varios caminos por los que llegar al Arroyo de Risco Blanco.

Las Hoyas de Riscos Blancos están constituidas por dos tramos separados unos 500 metros entre sí. Existe un camino de servicio del monte público que transcurre paralelo al Arroyo de Risco Blanco. El tramo occidental de las hoyas está a unos 800 metros del camino, mientras que el tramo oriental está a menos de 300 metros de dicho camino.

VALORACIÓN

De interés científico y turístico.

RIESGOS

Peligro de caídas por la existencia de grandes desniveles. De difícil tránsito en la temporada de lluvias.
El curso alto del Río Viar, desde el embalse de El Pintado hasta las cercanías del contraembalse de Los Melonares, presenta una morfología de cañón fluvial: una profunda hendidura de paredes casi verticales, con una longitud de más de 21 kilómetros.

Este cañón ha sido generado por la erosión del río Viar, que ha excavado diversas rocas metamórficas y sedimentarias, que están alineadas con una orientación general noroeste – sureste. Aunque la dirección geográfica principal del curso alto del río es norte - sur, este largo cañón presenta orientaciones alternantes de direcciones aproximadas noroeste-sureste y noreste-suroeste. Estas direcciones del río no concuerdan con las orientaciones habituales de las rocas que atraviesa, por lo que se deduce que son debidas a la existencia de diversas fallas, posiblemente generadas durante la Orogenia Alpina. Esta orogenia provocó un levantamiento general de la región de Ossa-Morena y su fracturación según diversos sistemas de fallas.

Este cañón tiene unos altos valores de biodiversidad, pues el clima de esta zona es más cálido dado que el valle del río Viar está abierto hacia el sur, hacia la cuenca del río Guadalquivir. El curso alto del río Viar está catalogado como Zona de Reserva, dedicada a la conservación de la biodiversidad mediante la protección de los ecosistemas.
A la zona del embalse de El Pintado se puede acceder por carretera desde El Real de la Jara y desde Cazalla de la Sierra. También se puede acceder al curso alto del río Viar desde Almadén de la Plata. A la zona de contraembalse de Melonares se accede por el Cordel de El Pedroso, desde Almadén de la Plata o desde la carretera de Castilblanco de los Arroyos a El Pedroso.

Existen varios puntos desde los que se puede observar el cañón: Mirador de Bajos de Jadraga, al sur del Embalse del Pintado; la antigua carretera de Almadén de la Plata a Cazalla de la Sierra, que llega hasta el río Viar; desde el Monte Público de UPA, en Cazalla de la Sierra, donde hay caminos desde donde puede observarse el cañón.

De interés científico y turístico.

Peligro de caídas por grandes desniveles y terreno muy agreste.

Difícil de transitar en la temporada de lluvias.
CAÑÓN DEL ARROYO GARGANTAFRÍA

NATURALEZA: Geomorfología
LOCALIZACIÓN: Al este de la población de Almadén de la Plata
MUNICIPIO: Almadén de la Plata

DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

El arroyo Gargantafría en su curso medio, al este del núcleo urbano de Almadén de la Plata, presenta una morfología de cañón fluvial, con una profunda hendidura de paredes muy empinadas.

Este cañón, con una longitud de unos 2 kilómetros, ha sido generado por la erosión fluvial al excavar verticalmente un macizo de rocas más duras y menos erosionables que las de su entorno, las areniscas y cuarcitas del conjunto sedimentario denominado “Grupo Pulo do Lobo”, que presentan una orientación aproximada este-oeste. Este macizo de rocas está cortado por una falla vertical que es la que ha aprovechado el arroyo Gargantafría para excavar el cañón fluvial. Esta fractura es la causante también de la existencia de un manantial, llamado “Los caños del Gargantafría”, que hace que el caudal del arroyo sea constante, lo que ha sido aprovechado desde la antigüedad por los habitantes de la región, para la construcción de varios molinos, hoy en ruinas.

La morfología cerrada del cañón crea una zona de umbría, lo que genera unos hábitats más húmedos que aportan una mayor biodiversidad a la zona.

Resto de un antiguo molino en la orilla del cañón. Aspecto general del cañón.
CAÑÓN DEL ARROYO GARGANTAFRÍA

ACCESO

Se puede llegar a la población de Almadén de la Plata desde la Autovía A-66, tomando la carretera A-8175; desde Castilblanco de los Arroyos, por la carretera SE-5405; y desde El Real de la Jara y Cazalla de la Sierra, por la carretera A-5301.

El mejor acceso al cañón desde el núcleo urbano de Almadén de la Plata es por la antigua carretera entre esta población y Cazalla de la Sierra. En el tramo de esta carretera, que circula en paralelo al arroyo Gargantafría, salen varios caminos que permiten acceder al cauce.

Otra ruta de acceso es por el Camino Viejo de Almadén a Cazalla, que se inicia en las inmediaciones del campo deportivo de Almadén de la Plata y llega hasta el cañón, en la zona del Riscal de San Felipe.

VALORACIÓN

De interés educativo y turístico.

RIESGOS

Peligro de caídas por grandes desniveles y terreno muy agreste. Difícil de transitar en la temporada de lluvias.

PUNTO DE OBSERVACIÓN

El mejor acceso al cañón desde el núcleo urbano de Almadén de la Plata es por la antigua carretera entre esta población y Cazalla de la Sierra. En el tramo de esta carretera, que circula en paralelo al arroyo Gargantafría, salen varios caminos que permiten acceder al cauce.

Otra ruta de acceso es por el Camino Viejo de Almadén a Cazalla, que se inicia en las inmediaciones del campo deportivo de Almadén de la Plata y llega hasta el cañón, en la zona del Riscal de San Felipe.
Es el manantial más caudaloso de toda la provincia de Sevilla, siendo la principal zona de descarga natural de las aguas del acuífero subterráneo “Guadalcanal - San Nicolás”. Este acuífero se localiza en el extremo norte de la provincia de Sevilla, en los términos municipales de Guadalcanal, Alanís y San Nicolás del Puerto, y está formado por calizas masivas del techo de la Formación Capas de Campoallá, de edad Cámbrico inferior, con espesores comprendidos entre 100 y 200 metros, siendo el Cerro del Hierro una de las zonas de recarga más importantes del acuífero. Las calizas se encuentran afectadas por una intensa karstificación, lo que produce una alta permeabilidad de las rocas al tener gran cantidad de huecos y grietas.

La surgencia del Rivera del Huéznar, conocida como “Borbollón”, se sitúa en el contacto tectónico, mediante varias fallas, entre las calizas que constituyen el acuífero subterráneo “Guadalcanal - San Nicolás”, y unas pizarras situadas sobre las calizas que son mucho menos permeables. Las fallas permiten la salida del agua a la superficie, surgiendo por varios puntos, aunque gran parte de la descarga se concentra en dos pozas.

El caudal total medio del manantial es de 150 litros por segundo, con caudales máximos que han llegado a superar los 500 litros por segundo. Solamente se ha secado en escasas ocasiones como consecuencia de largos periodos de sequía.
Se puede llegar a la población de San Nicolás del Puerto desde varios puntos: desde Constantina (por la carretera SE-7102), desde Las Navas de la Concepción (por la carretera SE-8101), desde Alanís (por la carretera SE-8100) y desde Cazalla de la Sierra (por la carretera SE-7101).

El Nacimiento del Huéznar está situado en el extremo oriental de la población de San Nicolás del Puerto, en una zona habilitada como área recreativa.

“Del Valle del Guadalquivir a Sierra Morena: un recorrido por la geología de la provincia de Sevilla”

Área recreativa.
Panel interpretativo.
Vía Verde de la Sierra Norte de Sevilla.
Las Cascadas del Huéznar se sitúan en un pequeño sector del río Rivera del Huéznar, en el que se localizan una serie de pequeñas cascadas y pozas, que están declaradas Monumento Natural de Andalucía.

El Rivera del Huéznar se divide en esta zona en dos brazos. En el brazo izquierdo del río se sitúan dos saltos de agua de mayor altura, denominadas Chorrera Grande y Chorrera del Moro, y en el brazo derecho hay un grupo de saltos más pequeños conocidas como Chorreritas.

El origen de las cascadas se debe a la existencia en el subsuelo de varias fallas de salto en vertical, que han producido desniveles del terreno. Las aguas del río han producido, y siguen generando en la actualidad, grandes depósitos de tobas calcáreas (también llamadas travertinos), debido a que las aguas van depositando el carbonato cálcico que llevan en disolución por la pérdida de presión en los saltos del agua alrededor de las raíces de árboles y otros restos de la abundante vegetación de ribera. Estas rocas son muy características, con multitud de agujeros y tubos, producidos cuando las raíces y ramas se pudren y desaparecen.

El agua del río Rivera del Huéznar, que surge en el Nacimiento del Huéznar, es rica en carbonatos debido a que procede fundamentalmente del acuífero kárstico de Guadalcañal - San Nicolás del Puerto, donde el agua disuelve las calizas que constituyen el acuífero e incorpora el carbonato cálcico en disolución.
Desde San Nicolás del Puerto por la carretera SE-7101, a unos 2 kilómetros de la población.

Monumento Natural de Andalucía: “Cascadas del Huesna”.

Área recreativa. Sendero de uso público señalizado. Paneles interpretativos.

Alto interés didáctico y turístico.

Posibles caídas por la existencia de varios desniveles del terreno: se recomienda no abandonar el itinerario autorizado.

Grave riesgo de deterioro por la afluencia masiva estacional.
Geositios de minería y/o arqueología del Geoparque Sierra Norte de Sevilla.

- 29 NECRÓPOLIS DE LA TRAVIESA
- 18 CANTERAS ROMANAS DE LOS COVACHOS
- 30 CANTERAS ROMANAS DE LA LOMA DE LOS CASTILLEJOS
- 23 ANTIGUAS CANTERAS DE PIEDRAS DE MOLINO
- 17 ANTIGUAS CANTERAS DE EL REAL DE LA JARA
- 04 MINA DEL CERRO DEL HIERRO
- 36 MINA HERRERÍAS
- 24 MINA HERRERÍAS DE SAN CARLOS
- 19 FUNDICIÓN DE EL PEDROSO
- 20 MINA DEL ARROYO DEL CEREZO
El aprovechamiento de los recursos geológicos del Geoparque Sierra Norte de Sevilla entronca prácticamente desde el inicio con la historia de la ocupación humana. En la zona existen evidencias de pobladores prehistóricos al menos desde el Neolítico (6.000 a 3.500 años antes de Cristo), que aprovecharon algunos recursos líticos para la fabricación de útiles y herramientas de piedra, así como arcillas para la manufactura de cerámicas.

También desde el inicio de la edad de los metales se explotaron minas de cobre en diferentes lugares del geoparque: prueba de ello son los yacimientos arqueológicos existentes en el entorno de Almadén de la Plata, donde se han localizado varias minas prehistóricas y útiles de este mismo metal.

Los romanos explotaron varios cerros de mármol para la obtención de piezas ornamentales en el término municipal de Almadén de la Plata, y existen diversas evidencias de la explotación de varios yacimientos de hierro en El Pedroso y en San Nicolás del Puerto.

Pero la explotación más intensa de los recursos geológicos tuvo lugar durante los siglos XIX y XX, coincidiendo con la revolución industrial que permitió un avance en las técnicas de extracción así como en su transporte, siendo fundamental la llegada del ferrocarril a las proximidades de las grandes explotaciones. Los ejemplos en el geoparque más destacados de este periodo los encontramos en el Cerro del Hierro, en las que se explotó hierro y barita, y en los alrededores de El Pedroso donde hubo una intensa minería de hierro para alimentar los altos hornos de la Fundición de El Pedroso.

De menor transcendencia pero de gran importancia para la zona, fue la explotación a lo largo del tiempo de varias canteras de granito, calizas, mármoles y feldespato, para la obtención de materiales de construcción y rocas ornamentales, cuyos productos podemos apreciar hoy día en castillos, casas palacio, iglesias, etc.
La necrópolis de La Traviesa, situada en el monte público del mismo nombre, al oeste de la población de Almadén de la Plata, fue descubierta en 1986 y excavada en los años 1992 y 1993. Es una de las mayores necrópolis de la Edad del Bronce (2.250 a 1.000 años antes de Cristo) conocidas en el suroeste peninsular, compuesto por un total de 29 enterramientos en cistas.

Una cista (del griego: κίστη, cofre o caja) es un monumento megalítico funerario individual, de pequeñas dimensiones, constituido por una fosa de planta cuadrangular revestida de lajas (piedras planas) colocadas verticalmente y recubierta por varias lajas que forman así una cámara dentro de la cual se depositaba un individuo en posición fetal.

La disposición topográfica de los enterramientos en La Traviesa muestra un patrón peculiar, ya que 28 de los enterramientos se disponen en un semicírculo en torno a un enterramiento de características peculiares; la cista número 5, que se encuentra situado en una cota más alta, es de dimensiones más grandes y tiene una estructura en túmulo (montículo de piedras). En esta cista se ha encontrado además una alabarda de bronce, lo que diferencia aún más este enterramiento de los restantes, en los que solo se ha encontrado cuencos de cerámica, lo que indica que este enterramiento correspondería a una persona de máximo estatus social, que se ha identificado por su ajuar funerario con el líder militar de la comunidad.
A la población de Almadén de la Plata se puede acceder desde la autovía A-66 y Castilblanco de los Arroyos (por la carretera A-8175), desde El Real de la Jara (por la carretera A-5301) y desde Santa Olalla de Cala (por la carretera SE-6405).

La necrópolis se encuentra en el Monte Público de La Traviesa, que linda con la carretera SE A-6405, a unos cuatro kilómetros al oeste del núcleo urbano de Almadén de la Plata.

Sendero señalizado.
Paneles interpretativos.

“La Traviesa. Ritual funerario y jerarquización social en una comunidad de la edad del bronce de Sierra Morena occidental”.
Editor: Leonardo García Sanjuán (1998)
SPAL Monografías (Universidad de Sevilla)

De interés científico, educativo y turístico.
Descrizione e interpretazione del sito

En la época romana la región de Almadén de la Plata fue uno de los principales centros de producción de mármol en Andalucía, y la cantera del Cerro de Los Covachos es un buen ejemplo de ello.

En esta cantera se han preservado los restos de un frente de explotación romano que estaba parcialmente sepultado por las escombreras de las explotaciones más recientes, del siglo XX. Este es el más amplio de los frentes de cantería antiguos documentados en el área, y una excavación arqueológica realizada en 2008 permitió la exposición, valoración y una protección más efectiva de este lugar.

En esta cantera se pueden observar los diversos frentes de extracción de bloques, así como las marcas dejadas por la utilización de diversas herramientas. Esta situación es excepcional, dado que durante el siglo XX se produjo una explotación intensiva del mármol en esta zona, lo que eliminó los múltiples restos de la actividad romana, que tuvo lugar entre los siglos I a III después de Cristo.

El mármol de Almadén está documentado ampliamente en las ciudades situadas en la cuenca navegable del Guadalquivir y, especialmente, en Itálica, así como en diferentes puntos de la costa atlántica de la Bética y también en el norte de África, pero no así en la costa mediterránea.
ACCESO

A la población de Almadén de la Plata se puede acceder desde la autovía A-66 y Castilblanco de los Arroyos por la carretera A-8175 y desde El Real de la Jara por la carretera A-5301.

PUNTO DE OBSERVACIÓN

El Cerro de Los Covachos se encuentra a unos 1.000 metros al norte del centro urbano, y se puede acceder al mismo desde la carretera a El Real de la Jara o por el Camino de Santiago (en el tramo de Almadén de la Plata a El Real de la Jara).

DOCUMENTACIÓN

“Las canteras romanas de mármol de Almadén de la Plata (Sevilla)”.
Beltrán Fortes, J., Rodríguez Gutiérrez, O., López Aldana, P., Ontiveros Ortega, E. y Taylor, R.

“Las canteras romanas de mármol de Almadén de la Plata (Sevilla, España): Un análisis arqueológico”

EQUIPAMIENTOS DE USO PÚBLICO

Paneles interpretativos.
Camino de Santiago.

VALORACIÓN

De alto interés científico, educativo y turístico.

RIESGOS

Riesgo de caídas por la existencia de terraplenes a distinto nivel.
Las canteras de la Loma de los Castillejos son un excelente lugar para conocer los sistemas de cantería romana, pues se han preservado casi íntegramente los huecos de explotación, escombreras, piezas no transportadas y los accesos generados durante la explotación romana.

En la época de dominación romana, la región de Almadén de la Plata fue uno de los principales centros de producción de mármol en Andalucía. La cantera del Cerro de Los Covachos es un ejemplo de los múltiples lugares de explotación que debieron existir en esa época, dada la abundancia de cerros coronados por mármoles que existen en la región. Sin embargo, se han preservado pocos lugares con cierta integridad de ese periodo de extracción, dado que durante el siglo XX se produjo una explotación intensiva del mármol en esta zona, eliminando las antiguas explotaciones.

Estas canteras se ubican en la Loma de los Castillejos, distantes unos 16 km al sureste de la población de Almadén de la Plata. La zona de la explotación antigua se ubica en la vertiente Noroeste de la elevación occidental y se extiende sobre unas 4 hectáreas. Esta zona no ha sido objeto de explotación en el siglo XX.

El yacimiento está constituido por tres farallones abiertos en la falda de la montaña semejantes a tres circos. En estos farallones se observan las huellas lineales de las cuñas de madera, que, después de humedecidas provocaban el desprendimiento de los bloques por presión mecánica, siguiendo la línea deseada. Las acumulaciones de escombros serpentean la ladera por debajo de las plataformas. Lo más interesante son las piezas a medio desbastar que jalonan los derrumbes: un total de hasta 15 bloques de medianas dimensiones (el más grande mide varios metros de largo).

Se desconoce actualmente cual era la ruta de transporte del mármol extraído hasta Itálica: si se utilizaba una vía terrestre secundaria a través del valle del río Viar que llegaba hasta Naeua (Cantillana, Sevilla), o bien se transportaba hasta Almadén de la Plata en una primera fase, para luego seguir por la vía romana hacia Castilblanco de los Arroyos y de allí a Itálica por medios terrestres.
Las canteras romanas de mármol de Almadén de la Plata (Sevilla, España): un análisis arqueológico.

De interés científico, educativo y turístico.
ANTIGUAS CANTERAS DE PIEDRAS DE MOLINO

NATURALEZA: Arqueología
LOCALIZACIÓN: Arroyo Calzadilla y barrancos adyacentes
MUNICIPIO: Almadén de la Plata

DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

En el cauce del Arroyo Calzadilla y en un barranco adyacente, se encuentran varios frentes de extracción de piedras de molinos de mano, de edad tardo-romana.

Un primer grupo de canteras se encuentra en una vaguada de un afluente del Arroyo Calzadilla, con al menos 20 extracciones de 50 centímetros de diámetro cada una. El segundo grupo se localiza aguas abajo, lo constituyen unas pocas huellas de extracción. Otras canteras se encuentran en el cercano lecho fluvial del Calzadilla, donde además de las huellas de molinos de mano, quedan marcas de la extracción de piedras de molinos de agua, de 80 centímetros de diámetro. Las zonas de extracción están restringidas a ciertas áreas donde existe una arenisca gruesa, o micro-conglomerado, con cantos redondeados menores de 1 centímetro de tamaño.

La desaparición de la mayoría de las marcas hace que sea difícil definir el método de extracción. Aparentemente, primero se cortó una zanja circular alrededor del futuro cilindro, por medio de percusión directa con pico o por percusión indirecta con martillo y cincel, y luego para separar el cilindro se perforaron muchos pequeños orificios radiales a intervalos regulares; no se sabe si estos agujeros eran suficientes para dividir el bloque o si estaban destinados a introducir pequeñas cuñas de hierro o madera.

La fecha de estas explotaciones es poco clara, aunque el valle del Viar era una importante arteria comercial desde épocas muy tempranas. Los cilindros más pequeños son más grandes y más planos que el típico molino de mano romano. También son más estrechos y más ligeros que el moderno molinillo de mano para forraje de animales (siglos XIX-XX). Se piensa que datan de la época romana tardía o de la Edad Media, posiblemente durante la dominación islámica.
Antiguas canteras de piedras de molino

Acceso
Al valle del arroyo de la Calzadilla se accede por la vía pecuaria del Cordel de El Pedroso, desde la población de Almadén de la Plata, o desde Cantillana y/o El Pedroso por la carretera A-432. También se puede acceder al Cordel de El Pedroso desde Cazalla de la Sierra, por la carretera A-450 y luego bajar por el camino que cruza el Monte Público Dehesa de UPA.

Punto de observación
Los mejores frentes de extracción se encuentran en el sector norte de la Cuenca del Viar, a unos 6 kilómetros de la población de Almadén de la Plata, en la zona donde el Cordel de El Pedroso discurre paralelo al Arroyo de la Calzadilla.

Documentación
Vargas Durán, M. A.; Anderson, T. J.; Gil Toja, A; and Pérez de Guzmán Puya, R. (2011) “Millstone and Quern Quarries in the Viar Basin, Province of Seville, Spain”. Seen through a millstone (Bergen, Norway).

Valoración
De interés científico, educativo y turístico.

Amenasas
En peligro de destrucción por la erosión fluvial. Posibles daños por la actividad forestal y agropecuaria.
GEO SITIOS ANTIGUAS CANTERAS DE MÁRMOL DE EL REAL DE LA JARA

NATURALEZA: Minería - Arqueología
LOCALIZACIÓN: Al lado del Polígono Industrial de la Encina
MUNICIPIO: El Real de la Jara

DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

En las inmediaciones del núcleo urbano de El Real de la Jara se localizan unas canteras de calizas marmóreas, que se utilizaron para la extracción de los bloques de piedra que se emplearon en la construcción del Castillo de El Real de la Jara.

Justo al sur de la población de El Real de la Jara se encuentra una pequeña sierra constituida por una alineación de calizas marmóreas, muy semejante en sus características petrológicas a las calizas de edad Cámbrico inferior existentes en otras zonas de la Sierra Norte. Estas calizas se encuentran dentro de la aureola de contacto del plutón de Santa Olalla de Cala, por lo que fueron afectados por un cierto grado de metamorfismo; están recristalizadas y parcialmente reemplazadas por minerales silicatados, sobre todo anfíboles.

Estas canteras de calizas se utilizaron en la Edad Media para la extracción de piedras de construcción.

ELEMENTOS DE INTERÉS

La explotación de estas canteras fue muy superficial, de hecho la pendiente natural de la ladera está modificada únicamente por varios escalones irregulares de poca altura. En los rellanos generados se ven los frentes de donde se extrajeron los bloques de roca.
A la población de El Real de la Jara se puede acceder desde la autovía A-66 por la carretera A-5301, desde Almadén de la Plata por la carretera A-5301, y desde Cazalla de la Sierra por la carretera SE-179.

Las canteras se sitúan en el Polígono Industrial La Encina, que se encuentra a la entrada de la población por la carretera A-5301 desde la autovía A-66.

De interés educativo y turístico.

Riesgo de caídas por la existencia de terraplenes a distinto nivel.
El Cerro del Hierro fue la mayor explotación de mineral de hierro en la Sierra Norte de Sevilla durante los siglos XIX y XX.

Es un excelente ejemplo de las minas de hierro relacionadas con las calizas de la Formación Capas de Campoallá, comunes en la región noreste del geoparque. Estas minas están caracterizadas por la existencia de una mineralización primaria entre las calizas, procedente del depósito de limos y arenas con alto contenido en hierro entre los carbonatos de la plataforma marina, y una posterior concentración asociada a los primeros procesos de karstificación durante el Cámbrico inferior (540 a 520 Ma). En múltiples lugares del Cerro del Hierro se observa que los huecos del paleokarst cámbrico están llenos de óxidos de hierro.

Existe la constatación de su explotación en época romana, y citas sobre el Cerro del Hierro en la Edad Media, según diversas fuentes musulmanas y cristianas, pero la máxima explotación fue realizada por la sociedad escocesa William Baird Mining and Co. Ltd., desde finales del siglo XIX (1893) hasta mediados del siglo XX (1946), que extrajo grandes cantidades de hierro masivo y oligisto.

En su última etapa y antes de cerrar a finales de los años 80 del siglo pasado, la mina estuvo bajo la titularidad de una cooperativa formada por los propios trabajadores, que explotaron los diques y venas de ba-rita existente en la zona.

ELEMENTOS DE INTERÉS

La explotación minera ha sido básicamente a cielo abierto, lo que ha modificado en gran medida el relieve del terreno.

Existen múltiples cortas mineras de varios tamaños, hasta cinco niveles de explanadas a diferentes alturas generadas durante la explotación, caminos de extracción del mineral y varios túneles que comunicaban las diversas cortas de extracción, así como restos de múltiples edificaciones.
MINA DEL CERRO DEL HIERRO

ACCESO
En la carretera SE-7102, entre Constantina y San Nicolás del Puerto, a unos 11 kilómetros de Constantina sale la carretera de acceso al antiguo poblado minero de Cerro del Hierro y desde allí hay un carril de acceso al aparcamiento del Punto de Información.

EQUIPAMIENTOS DE USO PÚBLICO
Punto de Información del Cerro del Hierro.
Varios senderos señalizados: sendero de El Rebollar; sendero de El Cerro del Hierro.
Mirador y paneles interpretativos.
Vía Verde de la Sierra Norte de Sevilla.

CONSERVACIÓN
Monumento Natural de Andalucía
Inventario Andaluz de Georrecursos (2011), código 577: “Complejo Cerro del Hierro”.

PUNTO DE OBSERVACIÓN
Desde el Punto de Información, parten varios senderos por los que acceder al mirador y a los senderos por el El Cerro del Hierro.

RIESGOS
Peligros para las personas por el gran número de huecos y desniveles: se recomienda no abandonar los itinerarios autorizados.

AMENAZAS
Grave riesgo de deterioro debido al gran número de visitas y a la recolección ilegal de minerales, rocas y fósiles.

VALORACIÓN
Alto valor científico, educativo y turístico.
MINA HERRERÍAS

NATURALEZA: Minería
LOCALIZACIÓN: Al oeste de la población de Guadalcanal
MUNICIPIO: Guadalcanal

DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

Esta mina de hierro es otro ejemplo del conjunto de mineralizaciones de hierro en calizas karstificadas del Cámbrico inferior.

La mina Herrerías se sitúa en una pequeña colina en la estribación de la Sierra del Agua, al oeste de la población de Guadalcanal, cerca del límite norte del amplio valle del río Rivera de Benalija. La mina explotó mineral de hierro que se encuentra en los huecos entre las calizas masivas de la Formación Capas de Campoallá. Las características de las calizas, los minerales presentes en el yacimiento (oligisto, hematites y limonita), y la morfología de los elementos kársticos, son muy similares a las existentes en el Cerro del Hierro, a 24 kilómetros al sureste, y en La Jayona, a 10 kilómetros al noroeste.

La mina tiene pequeñas dimensiones: unos 300 por 200 metros de extensión y estuvo en explotación en la primera mitad del siglo XX.
A la población de Guadalcanal se puede acceder desde Alanís y Fuente del Arco (Extremadura) por la carretera A-433, y desde Cazalla de la Sierra, por la carretera A-8200.

Dado el reducido tamaño de la mina existen pocos elementos mineros: una corta alargada con varios huecos de explotación y una profundidad media de unos 30 metros; algunas trincheras de extracción; varios túneles cortos que sirvieron para extraer el mineral y desalojar la roca estéril, y diversas escombreras rodeando parcialmente la colina en la zona sur.

En el túnel más inferior y en varias de las paredes de la corta se están produciendo actualmente depósitos kársticos de carbonatos (calcita y siderita) en forma de pequeños gours y coladas.

Al oeste de la población de Guadalcanal sale el camino en dirección a La Jayona (Extremadura). A una distancia de un kilómetro sale a la izquierda el camino que desciende al valle del río Rivera de Benalija. A una distancia de alrededor de un kilómetro se encuentra la Mina Herrerías.

De interés científico, educativo y turístico.
MINA HERRERÍAS DE SAN CARLOS

M I N I C I P I O : El Real de la Jara

N A T U R A L E Z A: Minería
L O C A L I Z A C I Ó N: El Andévalo

DESCRIPCIÓN E INTERPRETACIÓN DEL SITIO

En la región entre las poblaciones de Almadén de la Plata y El Real de la Jara se encuentran unas pocas minas de hierro con una tipología que las diferencia de otros tipos de minas de hierro existentes en el Geoparque.

El primer grupo lo forman las mineralizaciones de origen sedimentario entre calizas cámbicas, como las minas de Cerro del Hierro (San Nicolás del Puerto y Constantina) y Herrerías (en Guadalcanal). El segundo grupo está constituido por mineralizaciones en pliegues sobre calizas y pizarras de edad cámbica y en diques que atraviesan dichos pliegues, como son las minas de la Sierra de El Pedroso (El Pedroso). Y un tercer grupo que corresponden a masas de magnetita englobadas en depósitos volcánico-sedimentarios de edad cámbico inferior, que es el caso de las minas existentes al sur de El Pedroso.

La Mina Herrerías de San Carlos, también denominada La Nava, es una antigua mina de hierro, que explotaba un dique vertical de oligisto que atraviesa areniscas y pizarras de la formación sedimentaria “Alternancia de Cumbres”, de edad Cámbico inferior. Esta mina fue explotada por la compañía Minera del Andévalo, S.A., entre mediados de la década de 1950, cuando la empresa puso este yacimiento en explotación con labores a cielo abierto, hasta la década de 1970.

Consta de dos cortas de forma alargada en dirección noroeste-sureste escasamente separadas entre sí unos 100 metros. Este yacimiento presenta un filón con una anchura en superficie de unos 6 metros, y una longitud de 500 metros, constituido por oligisto y hematites rojas en forma compacta y terrosa, y también en forma especular. En profundidad, la hematites esta asociada a pirita y a trazas de calcopirita; apareciendo algo de magnetita.
MINA HERRERÍAS DE SAN CARLOS

ACCESO
A la zona se puede acceder desde El Real de la Jara y Almadén de la Plata por la carretera A-5301.

PUNTO DE OBSERVACIÓN
En la carretera A-5301 en dirección a El Real de La Jara, a unos 7 kilómetros de la población de Almadén de la Plata, hay un carril de tierra de unos 700 metros de longitud, por el que se accede hasta las cortas, que están en propiedad privada.

VALORACIÓN
De interés científico y educativo.

RIESGOS
Peligro de caídas por fuertes desniveles y presencia de huecos.

AMENAZAS
Vertido de residuos.
La fundición, o fábrica, de El Pedroso ha sido protagonista de una de las historias más relevantes de la revo-
lución industrial del Sur de España. La fábrica fue durante muchos años el centro neurálgico de la actividad
industrial y económica de un vasto territorio, pues en el término municipal de El Pedroso se concentraban
varias minas de hierro.

El primer intento de explotación y desarrollo de las explotaciones de hierro de la zona lo promovió la Com-
pañía de Minas y Fábricas de El Pedroso, en la primera mitad del siglo XIX. Esta compañía consiguió reunir
casi toda la propiedad minera de importancia de El Pedroso y sus proximidades, así como del Cerro del
Hierro. La compañía luego de haber reunido este importante patrimonio
minero, se lanzó a la construcción del complejo industrial Fábrica de El
Pedroso, a pocos kilómetros de esta población, en la confluencia del río
Rivera del Huéznar y del arroyo de San Pedro, agrupando en ella talleres e
instalaciones siderúrgicas

Contaba a mediados del siglo XIX con: «un salto de agua de 17 metros y 1
metro cúbico por segundo, que producían la energía motriz que servían
da las máquinas y tornos especiales de cilindros, tres trenes de cilindros
con prensas y tijeras, máquina soplante para altos hornos, trituradora de
mineral y fundentes, martillo de afinería y piedras de desbastar minas». Contó también con máquinas de vapor como complemento de la máqui-
na hidráulica soplante de los altos hornos. En 1890 se construye un ter-
cer alto horno para funcionar con carbón mineral como complemento a
los dos existentes que funcionaron con carbón vegetal. Igualmente tenía
diversas construcciones auxiliares y albergues para 500 obreros y sus fa-
milias, escuelas, y una central hidráulica, además de diversas plantas.

Los altos precios de arranque y transporte, así como la baja calidad del
carbón procedente de Villanueva del Río y Minas, impidieron la marcha
favorable del negocio viéndose obligada la empresa a ceder sus minas
más importantes. En 1895 se paraliza la fábrica debido a los altos costes
de producción.
A la Fundición se accede por la carretera A-432, situada a unos 6 kilómetros de la población de El Pedroso y a unos 9 kilómetros de la población de Cazalla de la Sierra.

"La Ferrería de El Pedroso en el Período Elorza 1831-1844".
Antonio Villalba Ramos (2011)
TRABAJO 24 • Universidad de Huelva

Proyecto Fábricas y Minas de la Sierra Norte de Sevilla: “Itinerario fabril y minero de la Rivera del Huéznar”
Documento resumen.
Santiago Zuleta
Consejería de Fomento y Vivienda, Junta de Andalucía.

Situado en una propiedad privada.
Se puede observar desde la carretera A-432 o bien desde la Sierra de El Pedroso.

De interés educativo y turístico.

Destructión de los restos debido al abandono total y la ausencia de restauración.
MINA DEL ARROYO DEL CEREZO

NATURALEZA: Minería
LOCALIZACIÓN: Nava Alta
MUNICIPIO: Alanís

Al noreste de la población de Alanís, en las estribaciones de la Sierra del Aire, se localizan varias minas de cobre que se explotaron efímeramente en los años 50 del siglo pasado. La Mina del Arroyo del Cerezo, también denominada Mina Discusión, es una de estas minas.

Las minas de cobre de la zona indicada se encuentran a lo largo de una línea de dirección noroeste-sureste y a una distancia de menos de 3 kilómetros entre sí. La mineralización de cobre, fundamentalmente malaquita, se encuentra diseminada irregularmente en lavas del grupo Malcocinado.

En esta mina puede observarse una pequeña corta donde se encuentra la mineralización y una planta de espesadores Dorr, donde se disolvía la malaquita con ácido sulfúrico, para posteriormente separar por gravedad el cobre, que posteriormente se llevaba a la planta de electrolisis de El Robledo, distante unos 2 kilómetros al norte.
MINA DEL ARROYO DEL CEREZO

ACCESO
Carretera A-447 de Alanís a Fuente Obejuna.

PUNTO DE OBSERVACIÓN
Junto al puente sobre el Arroyo del Cerezo, en el punto kilométrico 46,8 de la carretera A-447.

VALORACIÓN
De interés científico, educativo y turístico.

RIESGOS
Huecos y laderas sin vallados.
Acuífero: Sistema de rocas homogéneas o heterogéneas que permite el almacenamiento del agua en los espacios existentes entre los materiales, ya sean poros, grietas o fracturas, y que presenta la capacidad de trasmitar o hacer circular esa agua a otros lugares adyacentes.

Afloramiento (rocoso): Zonas en las cuales quedan expuestas en la superficie del terreno las rocas subyacentes.

Alabarda: Arma en astil de madera de unos dos metros de longitud y que tiene en su cabeza una punta de lanza.

Anticlinal: Pliegue en forma de cubeta invertida que tiene los estratos más antiguos en su núcleo.

Anticlinorio: Conjunto de anticlinales y sinclinales que constituyen una gran antiforma.

Antiforma: Es un pliegue con forma de anticlinal pero del que se desconoce la edad de los estratos.

Arqueociatos: Los arqueociatos (Archaeocyatha) fueron animales pequeños, de unos pocos centímetros de altura, de forma cónica o cilíndro-cónica. Exclusivos del Cámbrico inferior (541 a ~509 Ma). Junto a los estromatolitos fueron formadores de arrecifes en ambientes marinos someros.

Arqueología: Disciplina académica encargada del estudio de los vestigios dejados por las civilizaciones pasadas.

Aureola de metamorfismo: (aureola de contacto): Zona de rocas metamórficas por la cercanía o contacto con cuerpos intrusivos de rocas ígneas, produciéndose un aumento en el grado de metamorfismo a medida que se aproxima al contacto.

Batolito: Plutón granítico de grandes dimensiones formado a partir del enfriamiento de un magma en el interior de la corteza terrestre.

Berrocal: Conjunto de formas erosivas realizadas por meteorización química sobre las rocas graníticas.

Biodiversidad: Es la diversidad biológica de una comarca con sus múltiples formas de vida. La variedad de especies animales y vegetales en su medioambiente.

Biozona: Una biozona (acrónimo de «zona bioestratigráfica») es un conjunto de rocas sedimentarias que se caracteriza por la presencia de fósiles (no reelaborados) de determinado tipo. El término es sinónimo de estrato de fósiles. Se divide en Pleistoceno (Cuaternario antiguo) y Holoceno (actual).

Brestamiento: En una roca sedimentaria cristalina, se produce una deformación en la que los fragmentos de roca se desplazan y se disponen en una nueva orientación. La roca cambia de forma, pero no de tipo.

Cenozoico: También llamada Terciario o Era Terciaria (comprende desde 66 Millones de años al presente).

Charnela: Zona de mayor curvatura de un pliegue. Zona más elevada de un pliegue anticlinal, o bien, zona más baja de un pliegue sinclinal.

Competencia: Se refiere a las rocas que se comportan de diferente manera frente a los esfuerzos tectónicos. Una roca competente es dura y compacta, con gran resistencia a la deformación. Las rocas competentes se comportan rígidamente y las rocas incompetentes se comportan plásticamente.

Concreción calcárea: Depósito endurecido de carbonato de calcio que se sedimenta con otros materiales, como arena, arcilla o limo.

Cuaternario: Periodo geológico reciente con duración aproximada de unos 2 millones de años. Se divide en Pleistoceno (Cuaternario antiguo) y Holoceno (actual).

Cuencas: Zonas deprimidas de la corteza terrestre; océanos, mares y lagos.

Cuencas sedimentarias: Zonas deprimidas de la corteza terrestre donde se depositan las rocas sedimentarias.

Cortes: Fragmentos de roca y minerales pre-existentes acumulados mecánicamente.

Diaclasa: Fractura en las rocas que no va acompañada de deslizamiento de los bloques fracturados.

Distensiva (Tectónica): Estructuras que responden a los esfuerzos distensivos: cuando la corteza terrestre se amplía (distiende).

Dorsal oceánica: Las dorsales oceánicas son grandes elevaciones submarinas situadas en la parte central de los océanos de la Tierra. Tienen una altura media de 2000 a 3000 metros y
poseen un surco central, llamado rift, por donde sale magma continuamente desde el manto sublitosférico a través de las fisuras del fondo del océano, y forma nuevos volcanes y porciones de corteza oceánica.

Ecosistema: Es un sistema natural formado por un conjunto de organismos vivos y el medio físico o hábitat donde se relacionan, y donde existe una interdependencia continua de los organismos existentes.

Enfoque holístico: Es el tratamiento de un tema a través de todos sus componentes (holismo), enfatizando la importancia del todo, que es más grande que la suma de las partes y dando importancia a la interdependencia de éstas.

Electrolisis: Proceso que separa los elementos de un compuesto por medio de la electricidad: captura de electrones por los cationes en el cátodo (reducción) y liberación de electrones por los aniones en el ánodo (oxidación).

Erosión: Proceso natural de desgaste físico o químico, por parte de procesos geológicos externos que alteran el suelo y las rocas.

Erosión diferencial: Diferencias entre las formas de erosión que dependerán de la naturaleza de las rocas: la erosión será distinta según los diferentes grados de dureza y de la estructural de los estratos.

Espesor: Grosor de una capa (también se denomina potencia).

Esquistosidad: Planos paralelos de rotura o disyunción dentro de una roca esquistosa (pizarras y esquistos).

Estrato: Cada una de las capas en que se presentan divididos los sedimentos, las rocas sedimentarias, las rocas volcánicas piroclásticas y/o las rocas metamórficas cuando esas capas se deben al proceso de sedimentación.

Estromatolito: Son estructuras carbonatadas y estratiformes formadas por la acción de colonias de cianobacterias (algas azules) en aguas marinas someras.

Facies: Se denomina facies al conjunto de rocas sedimentarias o metamórficas con características determinadas, ya sean paleontológicas (fósiles) o litológicas (composición mineral, estructuras sedimentarias, geometría, etc.) que ayudan a reconocer los ambientes sedimentarios en los que se formó la roca.

Falla: Fractura en el terreno a lo largo de la cual hubo movimiento de uno de los lados respecto del otro. Pueden ser de tipo normal, inversa o de salto en dirección.

Falla de desgarar: Falla de rumbo, en dirección, direccional, a transcurrente: cuando el desplazamiento es horizontal y paralelo a la dirección de la falla. Pueden ser, según el sentido de movimiento de los bloques (según la posición de un observador situado sobre uno de los bloques), sinistral o direccional izquierda, cuando el bloque opuesto al que ocupa el observador se mueve a la izquierda, y dextral o direccional derecha, cuando el bloque se mueve a la derecha.

Falla inversa: Fractura a través de la cual se ha producido un desplazamiento en el que las rocas inferiores, más antiguas, son empujadas y situadas por encima de las más recientes.

Falla normal: Falla normal, directa o de gravedad: cuando el bloque superior de techo se desplaza hacia abajo respecto al bloque inferior o de muro.

Flancos: Son los dos laterales de un pliegue, anticlinal o sinclinal. Su inclinación o buzamiento se mide en grados respecto de la horizontal del terreno.

Flysch: Alternancia de finas capas de capa de rocas duras (cuarcitas) intercaladas con otras más blandas (pizarras).

Foliación: Se denomina foliación a la disposición en láminas que adquiere la materia que forma ciertas rocas cuando estas se ven sometidas a grandes presiones. Este rasgo se da cuando se produce metamorfismo y una fuerte deformación.

Formación sedimentaria: Una unidad formal que define cuerpos de rocas caracterizados por unas propiedades comunes (composición y estructura) que las diferencian de las adyacentes. Es la principal unidad de división litoestratigráfica.

Fósil: Es el resto de un ser vivo antiguo de su actividad biológica o de su impresión en la roca, que se ha petrificado tras procesos químicos y físicos.

Fractura: Es la separación bajo presión en dos o más piezas de un cuerpo sólido. La palabra se suele aplicar tanto a los cristales o materiales cristalinos como las gemas y el metal, como a la superficie y/o el interior del terreno.

Geodiversidad: Es la diversidad geológica de una región. Se refiere al número y variedad de elementos geológicos o abióticos presentes en un lugar, testimonios de todos los procesos terrestres que han ocurrido a lo largo de su historia geológica.

Geología: Ciencia que estudia la composición y estructura interna de la Tierra, y los procesos por los cuales ha ido evolucionando a lo largo del tiempo geológico.

Geomorfología: Es la ciencia que estudia las formas del relieve terrestre y su configuración, así como los procesos que las generan y transforman.

Gondwana: Nombre que se le da a un antiguo bloque continental que resultó de la porción meridional de Pangea, cuando se extendió el mar de Tetis hacia el oeste. De Gondwana surgieron Sudamérica, África, Australia, el Indoastán, la isla de Madagascar y la Antártida, a lo largo del Cretácico.

Gour: Concreción carbonatada que tiene forma de dique desarrollado sobre una pendiente por la que circula un curso de agua activo. Dan lugar a represamientos escalonados, siendo una forma bastante frecuente en cavidades kársticas.

Granoselección positiva: Consiste en una progresiva disminución del tamaño del grano desde el muro (parte inferior) al techo (parte superior) del estrato, debida a la decantación del material en suspensión conforme disminuye la energía del agente de transporte.

Graptolites: Los graptolitoides (Graptolithina) son una clase extinta del filo hemicordados. Son fósiles de animales coloniales conocidos principalmente del Cámbrico Superior al Carbonífero Inferior.

Hidrogeología: Es la ciencia que estudia el agua superficial y subterránea, así como sus propiedades y sus interrelaciones naturales.

Isotropía: En física, la isotropía es la característica de algunos cuerpos cuyas propiedades físicas no dependen de la dirección en que son examinadas.

Karst: Formas del relieve, con esparsas, cuevas y galerías, originadas por meteorización química o disolución de determinadas rocas, como la caliza, la dolomía, el yeso o las sales.
debido a la acción de aguas ligeramente ácidas. Existen diferentes estructuras en función de si su disolución se produce en el exterior (exokársticas), o en el interior (endokársticas).

Lahar: Flujo de sedimento y agua que se moviliza desde las laderas de volcanes.

Lapiaz: Lugar en el que abundan las lanchas; lajas de piedra.

Lanchar:

Laurasia: Es el nombre dado a un antiguo bloque continental del hemisferio norte surgida hacia el final del Jurássico de la desintegración del supercontinente Pangea, separándose de Gondwana por la apertura del mar de Tetis hace entre 200 y 180 millones de años. Laurasia se dividió posteriormente en Eurasia y América del Norte.

Lineación: Una característica lineal presente repetidamente y visible en un cuerpo rocoso.

Lineación de estiramiento: Alineación de minerales producida por un fuerte estiramiento de las rocas.

Lítico: Pertenece o relativo a la piedra.

Magma: Son masas de rocas fundidas y móviles, sometidas a grandes presiones y temperaturas en el interior de la litosfera y el manto superior, compuestas de silicatos fundidos, fluidos líquidos, gases y vapores.

Mar epicontinental: Masa de agua salada con una gran extensión pero con escasa profundidad que se extiende sobre una plataforma continental.

Marmita de gigante: Concavidad casi circular en los cauces de los ríos generada por la acción de algunos fragmentos de rocas duras que al girar por el movimiento de las aguas va profundizando y redondeando.

Mesozaico: O Era Mesozóica, o Era Secundaria, es una división de la escala temporal geológica que se inició hace 252 millones de años y finalizó hace 66 millones de años. Se denomina Mesozaico porque se encuentra entre otras dos eras (del eón Paleozoico), la era Paleozoica y la era Cenozoica. El nombre procede de una palabra griega que significa “vida intermedia”. Durante estos 186 millones de años no se produjeron grandes episodios orogénicos.

Metamorfismo: Transformación de la estructura o la composición química o mineral de una roca en el interior de la corteza terrestre como resultado de las variaciones de temperatura y presión.

Meteorización: Es la acción destructiva estática de las rocas de la superficie terrestre realizada por la atmósfera.

Meteorización química: Es la acción destructiva estática de las rocas de la superficie terrestre realizada por componentes químicos de la atmósfera: agua, dióxido de carbono y oxígeno, entre otros.

Mineral: Sustancia natural, homogénea e inorgánica, y de composición química definida que posee una disposición ordenada de átomos de los elementos de que está compuesto, configurando una estructura cristalina.

Mineralización: Hecho de adquirir un ser vivo sustancias químicas minerales disueltas en un fluido e incorporarlas a su propio organismo cambiando su composición.

Minería: Es la extracción selectiva de los minerales y otros materiales de la corteza terrestre de los cuales se puede obtener un beneficio económico, así como la actividad económica primaria relacionada con ella.

Nava: Es un valle topográficamente elevado y por lo general rodeado de colinas o montañas.

Neoprotorozoico: Era o división de la escala temporal geológica, la última de las tres que componen el Protozoico; comenzó hace unos 1.000 millones de años y terminó hace 541 M a.

Ordovícico: Periodo geológico o división de la escala temporal geológica; el segundo de la era Paleozoica que comenzó hace 485 M a y terminó hace 444 M a.

Orogenia Alpina: Movimiento orogénico que originó el plegamiento y elevación de los estratos marinos depositados durante el Mesozoico, con posterior formación de los sistemas montañosos más modernos.

Orogenia Varisca o Hercínica: Movimiento orogénico que originó el plegamiento y elevación de los estratos marinos depositados durante el Paleozoico, con posterior formación de las cordilleras hercínicas.

Paísaje: Área de la superficie terrestre, que se ve desde un lugar, resultado de la acción y la interacción de factores naturales y/o humanos.

Paleoantropología: Es la ciencia, rama de la Paleontología, que se encarga del estudio de los fósiles en todos sus aspectos.

Paleozoico (O era Paleozoica, o era Primaria): Es una división de la escala temporal geológica de más de 290 millones de años de duración, que se inició hace 541 M a y acabó hace unos 299 M a. Es la primera era del Eón Paleozoico, entre el Eón Proterozoico y la Era Mesozoica.

Pangea: Pangea fue el supercontinente que existió al final de la era Paleozoica y comienzos de la Mesozoica que agrupaba la mayor parte de las tierras emergidas del planeta. Se formó por el movimiento de las placas tectónicas, que hace unos 300 millones de años unió todos los continentes anteriores en uno solo.

Patrimonio Geológico: Ciertos monumentos naturales, que destacan en términos de: Interés científico (registro de eventos y procesos geológicos que permite comprender el pasado); Singularidad (lugares y elementos geológicos únicos o poco frecuentes); Representatividad (lugares y elementos representativos de materiales, estructuras y/o procesos geológicos); Valor estético (belleza, espectacularidad, capacidad de emocionar); Valor didáctico (facilidad para explicar y comprender materiales, estructuras y/o procesos geológicos).

Pelágica: La zona pelágica es la columna de agua del océano que no está sobre la plataforma continental.

Piedra caballera: Es una forma erosiva originada por meteorización en la cual un enorme bloque rocoso se apoya o “cabalga” sobre otro de la misma naturaleza.

Placa tectónica: Una placa tectónica o placa litosférica es una fracción de la litosfera (capa sólida superficial de la Tierra, caracterizada por su rigidez) que se mueve como bloque rígido sobre la astenosfera (manto exterior o superior) de la Tierra.

Plano de falla: Es el plano de rotura que separa los dos bloques o labios fracturados de una falla.
Plataforma continental: Es la superficie de un fondo submarino próximo a la costa y con profundidades inferiores a 200 metros. Su amplitud desde la costa es variable, desde escasos metros hasta cientos de kilómetros. Es la continuación submarina de los continentes, es decir, su basamento geológico está constituido por corteza continental.

Pligne: Deformación de las rocas, en la que elementos de carácter horizontal, como los estratos, o los planos de esquistosidad (en el caso de rocas metamórficas), quedan curvados formando ondulaciones alargadas y más o menos paralelas entre sí.

Pligne en cofre: Pligne repetidamente repliegue que parece cerrado sobre sí mismo, con las capas desconectadas de la superficie original.

Porosidad: La porosidad, o fracción de huecos, es una medida de espacios vacíos en un material, y es una fracción o un porcentaje sobre el volumen total.

Porosidad primaria: O intergranular, es aquella que se origina durante el proceso de deposición de material que da origen a la roca.

Plutón: Se llaman plutones a los afloramientos de las rocas plutónicas, como por ejemplo los batolitos, los lacolitos, los sills y los diques.

Potencia: Es el espesor de una capa o estrato sedimentario.

Precámbrico: Etapa más larga y antigua de la historia de la Tierra. Duró aproximadamente 4.000 M. a., y dio paso hace 541 M. a. al período Cámbrico de la era Paleozoica.

Prehistoria: Período de tiempo transcurrido desde la aparición de los primeros homínidos, antecesores del Homo sapiens, hasta la existencia de documentos escritos (aproximadamente hacia el 3.300 antes de Cristo).

Prisma de acreción: Sedimentos deformados que se acumulan en forma de cuña en un borde convergente de placas tectónicas.

Recurso geológico: Mineral, roca u otro elemento (agua subterránea, gas; etc.) generado por procesos geológicos de la Tierra y de utilidad para el ser humano.

Relieve: Es la forma que presenta la superficie terrestre producida por la acción simultánea de los agentes geológicos internos y externos.

Rifting: Es el proceso de formación de grietas en la litosfera terrestre como consecuencia de un proceso de distensión. Esta distensión produce una serie de fallas en la corteza terrestres que generan depresiones topográficas y cuencas separadas entre sí.

Ripples: Rizaduras de corrientes (“ripple marks”). Suaves ondulaciones que corresponden a las formas fosilizadas que el movimiento del agua dejó en las playas y fondos marinos someros.

Roca: Es una asociación natural, heterogénea, e inorgánica, de uno o varios minerales, y de composición química variable, sin forma geométrica determinada, relacionadas entre sí genéticamente, espacial y/o temporalmente. Material sólido natural compuesto por numerosos minerales que han tenido el mismo origen geológico.

Sedimentación: Proceso de acumulación por deposición de todos aquellos materiales que previamente habían sido alterados y transportados. Siempre tiene lugar cuando disminuye o cambian las condiciones de energía de los agentes de transporte.

Serie estratigráfica: Sucesión de estratos con continuidad en el tiempo y separada de otras series por una discontinuidad.

Silicificación: Proceso por el cual la madera, los huesos, las conchas y otros materiales fosilizan y petrifican, mientras conservan su estructura original, por acción de silicatos como el cuarzo criptocrstalino.

Silúrico: Periodo geológico de la era Paleozoica que comenzó hace 444 millones de años y terminó hace 416 millones de años.

Sinclinal: Pligne en el cual los estratos se curvan en forma de cubeta. Los estratos más antiguos envuelven a los más modernos situados en el núcleo o parte central.

Sinclinorio: Conjunto de anticlinales y sinclinales que forman un gran sinclinal limitado por sendos anticlinales.

Subducción: Es el proceso de hundimiento de una placa litosférica bajo otra en un límite convergente, según la teoría de tectónica de placas. La subducción es causada por dos fuerzas tectónicas, una que proviene del empuje desde la dorsal oceánica y otra que deriva del hundimiento del sector de corteza oceánica de la placa litosférica, por su mayor peso.

Suelo: Es la capa superior de la corteza terrestre, situada entre el lecho rocoso y la superficie, que proviene de su alteración física y química, y está compuesto por partículas minerales, materia orgánica, agua, aire y organismos vivos. Constituye la interfaz entre la tierra, el aire y el agua.

Sutura geológica: Es la zona de unión tectónica de dos regiones geológicamente muy distintas, por ejemplo dos placas litosféricas.

Taxón: En biología, un taxón es un grupo de organismos emparentados, que en una clasificación dada han sido agrupados, asignándole al grupo un nombre en latín, una descripción si es una especie, y un tipo.

Tectónica: Rama de la Geología que se encarga del estudio de las deformaciones de los materiales terrestres.

Terrígenos: = “sedimentos formados por tierra”. Materiales derivados por erosión de un área situada fuera de la cuenca de sedimentación, a la que llega en estado sólido mediante transporte mecánico.

Tetis (o mar de Tetis): Era un océano de la era Mesozoica que existió entre los continentes de Gondwana y Laurasia, previamente a la aparición del océano Índico.

Trilobites: Clase de artrópodos extintos, los fósiles más característicos de la era Paleozoica. Se han descrito unas 4.000 especies que se extinguieron a finales de esa era.

Valle: Es una forma erosiva de origen fluvial o glaciar. Los valles fluviales son diferentes según el tramo del río, la pendiente y la naturaleza de las rocas erosionadas.

Vesícula: Pequeñas cavidades de forma esférica, alargadas o irregulares halladas en lavas y tobas y causadas por el escape de gases.

Zócalo: Superficies formadas como resultado de la erosión de cordilleras surgidas en la orogénesis de la era primaria (orogenia varisca). Es la plataforma constituida por rocas cristalinas y que forma la base del relieve.
Minerales

Anfibolita: Son conjuntos de metasilicatos de calcio, magnesio y hierro. Los minerales más comunes en las rocas metamórficas y plutónicas básicas son las hornblendas y la actinolita. Son minerales fundamentales de las rocas magmáticas, y un componente esencial de la anfibolita.

Apatito: Es un mineral con cristales hexagonales y dureza 5 en la escala de Mohs. Su composición química aproximada es \(\text{Cas}(PO_{4})_{3}(F,Cl,OH) \).

Barita: Sulfato de bario \((BaSO_4)\); es el principal mena del bario.

Biotita: Filosilicato de hierro y aluminio, del grupo de las micas \([K(Mg,Fe)\text{AlSiO}_3(OH,F)_2]\).

Calcita: Principal mineral que constituye las rocas calizas, formado por CaCO_3, trigonal, cristalización en romboedros.

Circón: El circón o circon es un silicato de zirconio de fórmula química ZrSiO_4, de color variable.

Cordierita: Ciclosilicato de magnesio, hierro y aluminio, de fórmula general: \((Mg,Fe)\text{Al}(SiAlO}_3\) es una solución sólida entre cordierita, rica en magnesio y sekaninita, rica en hierro.

Cuarzo: Mineral cristalino compuesto por Silice \((SiO_2)\). Dureza 7 en la escala de Mohs. Sistema trigonal.

Cuarzo acintado: Cristales de cuarzo con morfología en cinta, que evidencian la existencia de una intensa deformación con fuerte estiramiento.

Dolomita: Mineral compuesto de carbonato de calcio y magnesio \((CaMg(CO_3)_2)\). Se produce por intercambio iónico del calcio por magnesio en la calcita.

Epidoto: Es un mineral sorosilicatado de calcio, aluminio y hierro, que responde a la fórmula \(\text{Cas}(Al,Fe)\text{SiO}_4\text{}(OH)\).

Feldespaso: Son un conjunto de minerales tecto y aluminosilicatos. La composición de los feldespatos corresponde, a un sistema ternario formado por ortoclase \((KAlSi_3O_8)\), albita \((NaAlSi_3O_8)\) y anortita \((CaAl_2Si_2O_8)\). Son un componente esencial de muchos rocas.

Goethita: Es un óxido de hierro, de fórmula FeO(OH), con un contenido del 63% en hierro.

Granate: Son un grupo de silicatos minerales que tienen propiedades físicas similares pero composición química distinta entre sí \([CaFe,Mg,Mn]_3[Al, Fe, Mn,Cr,Ti]_2(SiO_4)_3\). Las diferentes especies son: piropto, almandino, espeyartina, granularia, uvarovita y andradita.

Hematites: O hematita = Oligisto.

Hornblenda: Es el nombre informal con el que denomina a los minerales del “grup de los anfibólo” que tienen color entre negro y verde-osocho. Agrupa a minerales aluminosilicatos que forman seris de solución sólida, con minerales entre un extremo de ferrohornblenda y otro extremo de magnesiohornblenda, en lo que la sustitución gradual del hierro por magnesio va dando los distintos minerales de la serie \([Ca,Mg,Fe,Al]_3[Al,Si]_2O_5(OH)_2\).

Ilmenita: La ilmenita \((FeTiO_3)\) es un mineral débilmente magnético, de color negro o gris, que se encuentra en las rocas metamórficas y en las rocas ígneas básicas.

Limonita: Mezcla de minerales, de fórmula general es FeO(OH)-nH_2O, que designa a óxidos e hidróxidos masivos de hierro sin identificar que carecen de cristales visibles y tienen raya pardo amarrillenta.

Magnesita: Mineral de hierro constituido por óxido ferroso-díférico \((Fe_3O_4)\). Es una de las menas más importantes, al contener un 72% de hierro.

Malaquita: Carbonato de cobre, de fórmula química \(Cu_2CO_3(OH)_2\).
Basalto: Roca ígnea volcánica de color oscuro, de composición máfica; rica en silicatos de magnesio y hierro y bajo contenido en sílice.

Caliza: Rocas sedimentarias compuestas por carbonato, de origen químico, bioquímico u orgánico. Compuesta mayoritariamente por carbonato de calcio, generalmente calcita, aunque frecuentemente presenta trazas de magnesita y otros carbonatos. Es soluble en agua de lluvia, formándose en su interior conductos o cavas kárticos.

Conglomerado: Rocas sedimentarias compuestas por cantos o clastos de rocas duras unidos por un cemento o matriz. Si los cantos son redondeados el conglomerado se llama pudinga y si son angulosos es una brecha.

Cuaricitas: La cuaricitas o metacuaricitas es una roca metamórfica dura con alto contenido de cuarzo (la mayoría de las cuaricitas llegan a tener más de 90 % de cuarzo).

Cuaricitas armoricana: Roca metasedimentaria sílica del periodo Ordovícico inferior (Areniigenese) de la era Paleozoica.

Diabasa: La diabasa o dolerita, es una roca ígnea intrusiva de granulado fino a medio, con muchos cristales de color gris oscuro o negro. Su composición mineralógica es casi idéntica a la del gabro, pero se han emplazado en filones o complejos subvolcánicos.

Dolomía: Roca sedimentaria compuesta principalmente de plagioclasa cálcica y piroxeno en proporciones de volumen similares.

Dolomítica: Roca metamórfica que se compone principalmente de plagioclasa cálcica y piroxeno en proporciones de volumen similares.

Dolomía: Roca metamórfica que se compone principalmente de plagioclasa cálcica y piroxeno en proporciones de volumen similares.

Esquistos: Rocas metamórficas con alto contenido en micas, formadas a grandes presiones y temperaturas a partir de arcillas y/o lutitas.

Galena: Roca ígnea plutónica compuesta principalmente de plagioclasa cálcica y piroxeno en proporciones de volumen similares.

Gneis: Se denomina gneis (o gneis) a una roca metamórfica compuesta por los mismos minerales que el granito (cuarzo, feldespato y mica) pero con orientación definida en bandas, con capas alternantes de minerales claros y oscuros.

Leucogranito: Granitos con una mayor relación feldespato potásico/plagioclasa e índice de color generalmente más bajo (también denominados sienogranitos).

Lidita: Variedad compacta de sílice criptocristalina, de origen orgánico o inorgánico, de color negro.

Limolita: Rocas sedimentarias que tienen un tamaño de grano en el rango de limo, más fino que la arenisca y más grueso que la arcilla.

Lutita: Rocas sedimentarias sedimentarias de textura ñetética, variada; es decir, integrada por detritos clásticos constituidos por partículas de los tamaños de la arcilla y del limo.

Mármol: Roca metamórfica compacta formada a partir de rocas calizas que, sometidas a elevadas temperaturas y presiones, alcanzan un alto grado de cristalización.

Metacarbonita: Roque formada por la metamorfosis de arcillas.

Micasquisto: La micacita, esquisto micáceo o micasquisto es una roca metamórfica que se compone de mica, cuarzo y proporciones menores de otros minerales. Tiene alta esquistosidad debido a la orientación de los cristales de mica.

Migmatita: Roca metamórfica cuyos componentes están dispuestos de tal manera que se forman dos bandas claras de cuarzo y feldespato y una banda oscura de mica. Es peor en la formación de migmatitas que se forman en filas de imágenes de cuarzo y feldespato.

Monzogranito: Granitos con un porcentaje mayor de plagioclasa.

Pegmatita: Roca ígnea que tiene un tamaño de grano que ronda los 20 mm. La mayoría de las pegmatitas están compuestas por cuarzo, feldespato y mica, y otros minerales poco frecuentes en la Tierra como pueden ser aguamarina, turmalina, topacio, fluorita y apatita.

Piroclasto: Se llama piroclasto a cualquier fragmento sólido de material volcánico expulsado a través de la columna eruptiva y arrojado al aire durante una erupción volcánica. Petrológicamente, los piroclastos son fragmentos de roca volcánica solidificados.

Pizarra: Roca metamórfica homogénea de grano fino formada por metamorfismo de bajo grado de arcillas.

Pórfido: Roca eruptiva filoniana característica por su estructura porfírica (cristales grandes que flotan en una masa microcristalina / criptocristalina), color claro y pobre en minerales ferromagnésicos.

Riolina: Roca ígnea volcánica, de color gris a rojizo con una textura de granos finos o a veces también vidriado y una composición química muy parecida a la del granito.

Roca ácida: Las rocas ígneas se clasifican por su composición. Según la proporción de sílice (SiO2) que contengan las rocas pueden ser ácidas, cuando éste componente se encuentra en exceso y, tras combinarse con todos los demás, queda en cantidad suficiente para cristalizar en forma de cuarzo.

Roca básica: Las rocas ígneas son básicas cuando presentan déficit de sílice y no aparece cuarzo.

Roca carbonatada: Son rocas formadas mayoritariamente por carbonatos: cálcico (calcita / aragonita en las calizas) o cálcico-magnésico (dolomita en las dolomías).

Roca granítica: Son las rocas ígneas de origen plútonico formadas por cristales de cuarzo, feldespato y micas.

Roca ígnea: Las rocas ígneas se forman cuando el magma (roca fundida) se enfria y se solidifica.

Roca metamórfica: Son las que se forman a partir de otras rocas ígneas, sedimentarias u otras rocas metamórficas mediante un proceso llamado metamorfismo, por el aumento de la presión (alrededor de 1.500 bar), altas temperaturas (entre 150 y 200 °C) o la circulación de un fluido activo que provoca cambios en la composición de la roca, aportando nuevas sustancias a ésta.

Roca plútonica: Las rocas ígneas o rocas intrusivas son las que se forman a partir de un enfriamiento lento, a gran profundidad y en grandes masas del magma.

Roca sedimentaria: Rocas que se forman por acumulación de sedimentos; partículas de diversos tamaños que son transportadas por el agua, el hielo o el aire, y que son sometidas a procesos físicos y químicos, que dan lugar a materiales consolidados.

Roca volcánica: Las rocas volcánicas o extrusivas son aquellas rocas ígneas que se formaron por el enfriamiento de lava y/o piroclastos en la superficie terrestre o a escasa profundidad.

Rocas encajantes: Son las rocas más antiguas que rodean los filones y los batolitos graníticos.

Skarn: Roca o zona metamorfizada alrededor de una intrusion ígnea que esta constituida por rocas carbonatadas con minerales producto de metasomatismo.

Toba volcánica: Tipo de roca ígnea volcánica, ligera, de consistencia porosa, formada por la acumulación de cenizas u otros elementos volcánicos muy pequeños expulsados durante una erupción volcánica durante las erupciones piroclásticas.

Toleítico: El magmatismo toleítico es el caracterizado por presentar bajos valores en álcalis (Na2O + K2O) y titanio. Es típico de los llamados “basaltos de plataforma” (flood basalt), que constituyen enormes acumulaciones de lavas. La roca toleítica es una roca basáltica sobresaturada en sílice.

Tonalita: Roca ígnea plútonica compuesta de cuarzo y plagioclasa, hornblenda y biotita. También contiene ortoclasa en cantidades menores.

Glosario
GEO SITIOS

11 Más información

- Oficina del Geoparque Sierra Norte de Sevilla
 Delegación Territorial de la Consejería de Medio Ambiente y Ordenación del Territorio
 Edificio Administrativo Los Bermejales. Avenida de Grecia, s/n; 41071 Sevilla
 Teléfono 600 16 36 53 – Fax 955 00 44 01
 Correo electrónico: geosierranorte.cmaot@juntadeandalucia.es
 Facebook: www.facebook.com/PNSierraNorteSevilla
 Web: www.juntadeandalucia.es/medioambiente/sierranortedesevillageopark

- Ventana del Visitante de los Espacios Naturales (Junta de Andalucía):

- Centro de Visitantes El Robledo
 Crta. A-452 Constantina – El Pedroso, Km.1
 41450 Constantina (Sevilla)
 Teléfono 955 88 15 97

- Centro de Visitantes Cortijo El Berrocal
 Camino rural Almadén de la Plata – Los Melonares, Km. 5,5
 41420 Almadén de la Plata (Sevilla)
 Teléfono 955 95 20 49

- Punto de Información del Cerro del Hierro
 Poblado del Cerro del Hierro, s/n
 41389 San Nicolás del Puerto (Sevilla)
 Teléfono 610 66 32 14

- Foro Español de Geoparques
 http://www.geoparques.es

- Red Europea de Geoparques
 http://www.europeangeoparks.org/

- Red Global de Geoparques
 http://www.globalgeopark.org/

- Geoparques Globales de la UNESCO