

CÓDIGO: MT-ESP-PE-01-R00 HOJA 1 OF 143

capitalenergy	Memoria descriptiva línea aérea 220kV	im3
INSTALACIÓN:	LINEA AEREA A 220kV D/C SET BAZA 220/400kV – SET LIMITE 30/220kV EN LOS T.M. DE BAZA Y CANILES EN GRANADA	
CLIENTE:	CAPITAL ENERGY	HOJA 1 DE 103
CÓDIGO DEL DOCUMENTO.:	MT-ESP-PE-01-R00	

CONTROL DE REVISIONES

REV.	<u>FECHA</u>	<u>MOTIVO</u>

0A 03/10/19 Emisión para comentarios0B 05/12/19 Emisión para comentarios

CÓDIGO: MT-ESP-PE-01-R00

HOJA **2** OF **143**

ÍNDICE

1		Objeto	4
2	-	Antecedentes	6
3	-	Emplazamiento	7
4	-	Descripción del trazado de la línea	7
	4.1.	Listado de los apoyos de la línea	9
5	-	Descripción de la instalación	11
	5.1.	Características generales	11
	5.2.	Características de los materiales	12
6		Distancias mínimas de seguridad	29
	6.1.	Distancia de los conductores entre sí	29
	6.2.	Distancias entre conductores a partes puestas a tierra	45
	6.3.	Cálculo de la distancia a masa en apoyos tipo ángulo	45
	6.4. curs	Distancia de seguridad de los conductores al terreno, caminos, sendas y a os de agua no navegables	49
	6.5.	Distancia de seguridad de los conductores a otras líneas eléctricas	51
	6.6.	Distancia de seguridad de los conductores a carreteras	52
	6.7.	Paso por masas de arbolado	53
7	-	Relación de organismos afectados	54
8		Relación de bienes y derechos afectados	55
9	-	Cálculos	63
	9.1.	Cálculo mecánico del conductor LA-545 CARDINAL	63
	9.2.	Cálculo mecánico del cable de fibra óptica OPGW-48FO	75
	9.3.	Aislamiento	87
	9.4.	Apoyos	102
1	0.	Cálculos eléctricos	117

CÓDIGO: MT-ESP-PE-01-R00

HOJA **3** OF **143**

12.	Listado de planos	142
11.3.	MontajejError! Marcador no defin	ido.
11.2.	Obra civil	140
11.1.	Materiales	138
11.	Recuento de unidades	124
10.3.	Capacidad de corriente	117
10.2.	Cararcterísticas del conductor	117
10.1.	Características generales de la línea	117

CÓDIGO: MT-ESP-PE-01-R00

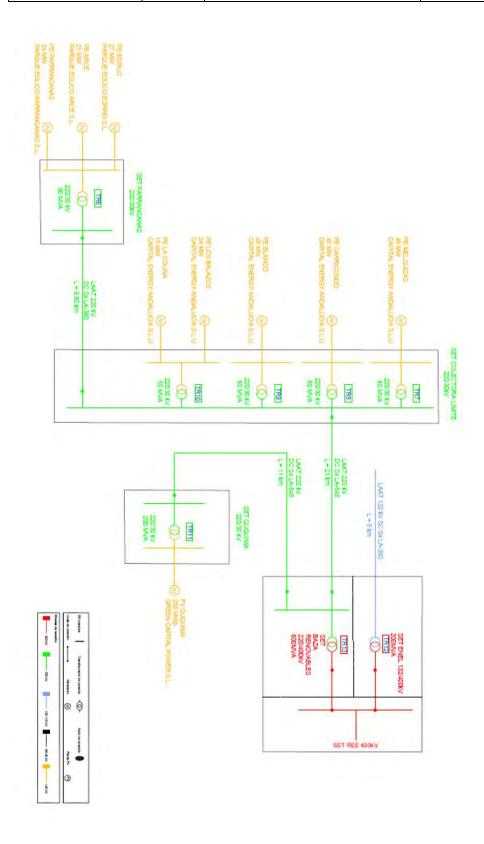
HOJA 4 OF 143

1. Objeto

El presente Proyecto de Ejecución se redacta con la finalidad de tramitar la correspondiente aprobación por parte del órgano sustantivo de la Administración en materia de energía, así como obtener las autorizaciones que concurren en la ejecución por parte de otras administraciones y organismos tutelares de diversas competencias y, en su caso, actualizar la documentación presentada con anterioridad en las mismas.

La compañía PARQUE EOLICO CARRICONDO, S.L.U. tiene entre sus objetivos la promoción, construcción y explotación de varias plantas de generación de energía eléctrica en régimen especial en la Comarca del Altiplano de Baza y el Valle del Almanzora, en concreto las que se detallan a continuación:

Instalación Generadora	P.Nom/P.Inst [mw]	MUNICIPIO	PROVINCIA
IGRE con previsión	DE CONEXIÓN EN LA P	OSICIÓN PLANIFICA	da en Baza 40
PE MELGUIZAS	48	Caniles	Granada
PE BLANCO	48	Caniles	Granada
PE CARRICONDO	48	Caniles	Granada
PE LOS BALAZOS	24	Serón	Almería
PE LA COLINA	18	Serón	Almería
PE ESPILO	27	Lúcar	Almería
PE ARCE	21	Tíjola	Almería
PE PARRANCANAS (*)	24	Tíjola	Almería
FV QUQUIMA	200 / 250	Caniles, Baza	Granada


A continuación se presenta un esquema de conexión:

CÓDIGO: MT-ESP-PE-01-R00

HOJA **5** OF **143**

CÓDIGO: MT-ESP-PE-01-R00

HOJA 6 OF 143

2. Antecedentes

La sociedad CAPITAL ENERGY ANDALUCIA, S.L.U., tiene entre sus objetivos la promoción, construcción y explotación de varias plantas de generación de energía eléctrica en régimen especial en la Comarca del Altiplano de Baza y el Valle del Almanzora, en concreto las que se detallan a continuación:

PROYECTO	UBICACIÓN	POTENCIA (MW)
P.E Las 7 Fanegas	Cúllar (Granada)	33
P.E. Melguizas	Caniles (Granada)	50
P.E. Carricondo	Caniles (Granada)	50
P.E. Blanco	Caniles (Granada)	50
P.E. Los Balazos	Serón (Almería)	42
P.E. Arce	Tíjola (Almería)	36
PE Parrancanas	Tíjola (Almería)	33
P.E. Espilo	Lucar (Almería)	36

Para la evacuación de la energía eléctrica producida por dichas instalaciones se precisa la construcción de una línea aérea eléctrica desde una futura subestación colectora denominada "Subestación Límite" hasta la futura subestación de la Red de Transporte denominada "Subestación Baza 400 kV".

Dicha línea eléctrica dispone de Autorización Ambiental Unificada, Autorización administrativa y Aprobación de Proyecto.

El proyecto original fue realizado por el Ingeniero Industrial Rafael García-Valenzuela, colegiado nº 1170 del COIIAO, con número de visado EJA1000544 y con fecha 28/12/2010.

Posteriormente se realizó un anexo de modificación al proyecto por el Ingeniero Técnico Industrial Fernando Domínguez Mora, colegiado nº 1338 del COITIH, con número de visado 2702/2017 y con fecha 19/12/2017, consistente en:

- Modificación de la traza proyectada desde SE Límite hasta el apoyo AMV6, en unos 1.645 m de longitud, manteniendo la tipología de la línea, de tal manera que se respete la distancia establecida en el apartado 5.12.4 de la ITC-LAT 07 del

CÓDIGO: MT-ESP-PE-01-R00

HOJA 7 OF 143

Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión, a los parques eólicos que Capital Energy está promoviendo en la zona. Concretamente a los aerogeneradores CAR-02 y CAR-09 del Parque Eólico Carricondo.

 Es necesario destacar que esta modificación del trazado es inferior al 10% del total de la línea, por lo que, desde el punto de vista medioambiental, se puede considerar una Modificación No Sustancial.

3. Emplazamiento

Tal como se muestra en el plano de situación la instalación está ubicada en la provincia de Granada, y discurre por los términos municipales de Caniles y Baza.

4. Descripción del trazado de la línea

La línea aérea objeto de este proyecto, tiene una longitud de 20.703 m. Su origen es la SET Límite 30/220kV y el final de la línea será la SET Baza 220/400kV.

A continuación se muestra el municipio afectado por el que discurre la línea y los cruzamientos que existen en cada municipio por alineaciones:

Provincia: Granada

Términos municipales: Caniles, Baza

Nº Alineación	Apoyo inicial	Apoyo final	Ángulo alineación (g)	Longitud (m)	Cruzamientos	Término Municipal
1	Pórtico Límite	1	89,37	29,44	-	Caniles
2	1	2	52,76	105,39	-	Caniles
3	2	4	34,08	683,27	Camino	Caniles
4	4	10	25,56	2374,10	Caminos	Caniles

CÓDIGO: MT-ESP-PE-01-R00

HOJA **8** OF **143**

Nº Alineación	Apoyo inicial	Apoyo final	Ángulo alineación (g)	Longitud (m)	Cruzamientos	Término Municipal
5	10	12	-33,82	840,98	Rambla, camino	Caniles
6	12	18	5,38	2524,84	Rambla, caminos	Caniles
7	18	23	16,53	1992,10	Caminos	Caniles
8	23	24	-16,33	443,79	Gaseoducto	Caniles
9	24	26	1,40	874,71	-	Caniles
10	26	30	-19,47	1563,24	Rambla, caminos	Caniles
11	30	31	-2,93	501,34	-	Caniles, Baza
12	31	33	-15,71	902,81	Camino	Baza
13	33	34	33,62	480,44	Gaseoducto,	Baza
14	34	38	-12,25	1673,37	Gaseoducto, Línea Media Tensión, caminos	Baza
15	38	42	35,30	1.196,79	Línea Media Tensión, caminos, Línea Telefónica, Autovía A-92N	Baza
16	42	44	-21,61	712,14	-	Baza
17	44	53	19,19	3.778,65	Caminos, Línea Media Tensión, Carretera A-4200, Línea Media Tensión,	Baza
18	53	Pórtico Baza	0,96	25,23	Camino	Baza

CÓDIGO: MT-ESP-PE-01-R00

HOJA 9 OF 143

4.1. <u>Listado de los apoyos de la línea</u>

En la siguiente tabla se muestran las coordenadas de los apoyos de la línea en proyección UTM utilizando el Datum ETRS-89 en el huso 30N. Además se muestra la cota del apoyo referida al nivel medio del mar.

Nº de estructura	X (m)	Y (m)	Z (m)
Pórtico Límite	535.668,34	4.141.717,75	1.037,72
1	535.682,16	4.141.697,84	1.038,72
2	535.586,60	4.141.629,96	1033,54
3	535.280,02	4.141.725,86	1031,20
4	534.934,49	4.141.833,96	1019,66
5	534.683,25	4.142.149,23	1.015,79
6	534.425,49	4.142.472,68	1.019,39
7	534.199,31	4.142.756,50	1.011,94
8	533.935,41	4.143.087,64	1.011,10
9	533.701,91	4.143.380,66	1.001,18
10	533.454,90	4.143.690,61	1.000,44
11	533.357,37	4.144.113,32	995,69
12	533.265,83	4.144.510,06	990,81
13	532.958,97	4.144.798,10	983,42
14	532.649,87	4.145.088,25	977,68
15	532.340,63	4.145.378,52	974,73
16	532.025,21	4.145.674,60	966,66
17	531.723,96	4.145.957,37	958,01
18	531.424,95	4.146.238,05	949,30
19	531.164,14	4.146.533,59	947,06

CÓDIGO: MT-ESP-PE-01-R00

HOJA **10** OF **143**

Nº de estructura	X (m)	Y (m)	Z (m)
20	530.895,65	4.146.837,83	937,10
21	530.625,77	4.147.143,65	927,71
22	530.371,08	4.147.432,24	915,88
23	530.106,82	4.147.731,70	906,42
24	529.919,98	4.148.134,25	901,62
25	529.631,01	4.148.464,01	897,25
26	529.343,50	4.148.792,11	881,27
27	529.094,83	4.149.090,26	872,81
28	528.847,41	4.149.386,93	870,59
29	528.593,64	4.149.691,20	857,66
30	528.342,26	4.149.992,62	847,03
31	527.911,16	4.150.248,55	833,40
32	527.511,65	4.150.458,91	822,55
33	527.112,32	4.150.669,17	816,79
34	526.642,47	4.150.769,50	816,25
35	526.322,28	4.151.097,28	803,33
36	526.053,17	4.151.372,77	792,68
37	525.734,40	4.151.699,10	799,24
38	525.473,17	4.151.966,53	781,68
39	525.275,02	4.152.097,29	742,52
40	524.970,84	4.152.298,03	755,40
41	524.714,71	4.152.467,06	758,68
42	524.474,29	4.152.625,72	769,00
43	524.361,91	4.152.914,34	768,06
44	524.215,89	4.153.289,33	758,94

CÓDIGO: MT-ESP-PE-01-R00

HOJA **11** OF **143**

Nº de estructura	X (m)	Y (m)	Z (m)
45	523.898,80	4.153.630,75	763,15
46	523.569,52	4.153.985,29	759,19
47	523.404,26	4.154.361,96	743,50
48	523.267,29	4.154.674,13	722,05
49	523.100,88	4.155.053,39	718,47
50	522.966,28	4.155.360,17	719,03
51	522.782,66	4.155.778,66	717,19
52	522.598,72	4.156.197,89	714,83
53	522.432,93	4.156.575,75	712,32
Pórtico Baza	522.425,66	4.156.599,91	713,13

5. <u>Descripción de la instalación</u>

La instalación queda definida por las siguientes características:

5.1. <u>Características generales</u>

Sistema	Corriente Alterna Trifásica
Frecuencia (Hz)	50
Tensión nominal (KV)	220
Tensión más elevada de la red (KV)	245
Categoría	Especial
Nº de circuitos	2
Nº de conductores aéreos por fase	1
Tipo de conductor aéreo	(LA-545 CARDINAL)
Tipo de cable de tierra	OPGW-48FO y AC-53
Número de cables de tierra	2
Potencia máxima de transporte en aéreo por circuito (MVA)	406 (Verano)

CÓDIGO: MT-ESP-PE-01-R00 HOJA 12 OF 143

Potencia máxima de transporte en aéreo por circuito (MVA)	499 (Invierno)
Número de apoyos	53
Longitud (m)	20.709
Zona de aplicación	B Y C
Tipo de aislamiento	Vidrio
Cimentaciones	Hormigón en masa
Puesta a tierra An	illos de puesta a tierra
Tipo de apoyo	Metálico de celosía

5.2. <u>Características de los materiales</u>

5.2.1. Conductores

Los conductores que se emplearán son de aluminio-acero, aluminio reforzado con acero, seleccionados entre los recogidos por la Norma UNE 50182.

Teniendo en cuenta los condicionantes eléctricos que debe cumplir el conductor, el conductor seleccionado será:

Denominación	(LA-545 CARDINAL)
Sección total (mm²)	545,80
Diámetro total (mm)	30,38
Nº de hilos de aluminio	54
Nº de hilos de acero	7
Carga de rotura (kg)	15.326
Resistencia eléctrica a 20°C (Ohm/km)	0,06
Peso (kg/km)	1828
Coeficiente de dilatación (°C)	17,28 · 10 ⁻⁶
Módulo de elasticidad (kg/mm²)	7.226
Densidad de corriente (A/mm²)	1.645

CÓDIGO: MT-ESP-PE-01-R00

HOJA **13** OF **143**

5.2.2. Cable de tierra

Para la protección de los conductores contra las descargas atmosféricas, se instalarán dos cables, un cable compuesto tierra-óptico del tipo OPGW, denominado OPGW-48FO y un cable de acero galvanizado denominado AC-53.

El cable compuesto tierra-óptico incorpora fibras ópticas en su interior, para así cumplir con la doble función de proteger la línea contra sobretensiones, y crear un canal de comunicaciones. Las características principales de los cables de tierra son las siguientes:

Denominación	OPGW-48FO
Sección total (mm²)	159,30
Diámetro total (mm)	17,10
Carga de rotura (kN)	120,50
Peso (kg/km)	856
Coeficiente de dilatación (°C)	14,60 · 10 ⁻⁶
Módulo de elasticidad (kN/mm²)	113,60
Corriente de Cortocircuito 0,3 s (kA)	25

Denominación	AC-53
Sección total (mm²)	53,00
Diámetro total (mm)	9,50
Carga de rotura (kN)	66,70
Peso (kg/km)	450
Coeficiente de dilatación (°C)	12,00 · 10 ⁻⁶
Módulo de elasticidad (kN/mm²)	196,20

CÓDIGO: MT-ESP-PE-01-R00

HOJA 14 OF 143

5.2.3. Aislamiento

El aislamiento de esta línea estará constituido por elementos U160BS de vidrio templado del tipo caperuza y vástago, según normas UNE-EN 60305 y UNE-EN 60383. Las cadenas de amarre estarán formadas por 16x2 aisladores tipo y las cadenas de suspensión serán simples de 15 elementos.

Se considera un nivel de contaminación medio (II). Este nivel de contaminación es equivalente a zonas con industrias que no producen humo especialmente contaminante y/o con densidad media de viviendas equipadas con calefacción, o a zonas con elevada densidad de viviendas y/o industrias pero sujetas a vientos frecuentes y/o lluvia, o bien, a zonas expuestas a vientos desde el mar, pero alejadas bastantes kilómetros de la costa.

5.2.4. Herrajes

Se consideran bajo esta denominación todos los elementos necesarios para la fijación de los aisladores al apoyo y a los conductores, los de fijación del cable de tierra al apoyo, los elementos de protección eléctrica de los aisladores y los accesorios del conductor o cable de tierra (separadores, amortiguadores, salvapájaros y conexiones para bajada de fibra óptica). Estos herrajes cumplirán lo indicado en la norma UNE 21 006.

Se tendrá en cuenta en su utilización su comportamiento frente al efecto corona y serán fundamentalmente de hierro forjado, protegidos mediante galvanizado a fuego.

Los diferentes herrajes utilizados, tanto en conductores como en cables de tierra, estarán fabricados por estampación en caliente de aceros de alta resistencia, recibiendo posteriormente un tratamiento de eliminación de tensiones internas al objeto de obtener una estructura perfectamente homogénea. Su acabado es galvanizado por inmersión en caliente. Los herrajes fabrican según la norma: UNE-EN 61284.

5.2.5. <u>Apoyos</u>

Los apoyos serán metálicos de celosía, con cabeza prismática, de tronco piramidal de sección cuadrada y crucetas simétricas, formados por perfiles angulares normalizados con acero S275 para las diagonales y S355 para los montantes, según norma UNE-EN 10025. Los perfiles angulares se unen mediante tornillería y el fuste se ancla al terreno con cimentación independiente en cada pata.

Los materiales utilizados en la fabricación de los apoyos deberán cumplir con los requisitos de los eurocódigos estructurales ENV 1992-1-1 y ENV 1993-1-1. También deben considerarse las normas UNE-EN 10149 y UNE-ENV 1090.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 15 OF 143

Los tornillos empleados serán de calidad 5.6, según las normas UNE-EN ISO 898-1 y UNE-EN 20.898-2. La composición de la materia prima, la designación y las propiedades mecánicas cumplen la norma DIN-267, hoja 3; las dimensiones de los tornillos y las longitudes de apriete se ajustan a las indicadas en la norma DIN-7990, con la correspondiente arandela de 8 mm, según norma DIN-7989 y tuercas hexagonales. Las tuercas hexagonales se ajustarán a la norma DIN-555.

Para determinar el número y diámetro de los tornillos a emplear en cada unión se usarán las fórmulas adecuadas a la solicitación a que estén sometidas las barras.

Todos los apoyos tendrán protección de superficie por zincado a fuego. El galvanizado se hará de acuerdo con la norma UNE-EN-ISO 1461. Según la citada norma, la cantidad mínima de zinc será de 5 gramos por decímetro cuadrado de superficie galvanizada. La superficie presentará una galvanización lisa adherente, uniforme, sin discontinuidad y sin manchas.

5.2.6. <u>Cimentaciones</u>

Las cimentaciones de los apoyos serán de hormigón en masa calidad H200 y deberá cumplir lo especificado en la instrucción de Hormigón Estructural EHE (R.D. 2661/98 del 11 de Diciembre).

Cada uno de estos bloques deberá asumir los esfuerzos de tracción, compresión y cortadura que revive del apoyo. La resistencia del bloque frente a la compresión está confiada a las reacciones verticales del terreno sobre el que apoyo, mientras que la tracción sobre el bloque se contrarresta con su peso propio más el peso del cono de tierra que le rodea. El ángulo de dicho cono se denomina "ángulo de arrancamiento" y es un parámetro que depende de las características mecánicas del terreno. La resistencia frente a los esfuerzos cortantes se confía a las reacciones horizontales del terreno sobre las paredes del bloque.

5.2.7. Puesta a tierra

5.2.7.1. Normas generales

Se realizará el sistema de puesta a tierra de los apoyos según establece el apartado 7 de la ITC07 del RD 223/2008.

Todos los apoyos metálicos deberán conectarse a tierra mediante una conexión específica.

CÓDIGO: MT-ESP-PE-01-R00

HOJA **16** OF **143**

En el caso de líneas eléctricas que contengan cables de tierra a lo largo de toda su longitud, el diseño de su sistema de puesta a tierra deberá considerar el efecto de los cables de tierra.

5.2.7.2. <u>Clasificación de los apoyos según su ubicación</u>

Para poder identificar los apoyos en los que se debe garantizar los valores admisibles de las tensiones de contacto, se establece la siguiente clasificación de los apoyos según su ubicación:

- Apoyos No frecuentados: son los situados en lugares que no son de acceso público o donde el acceso de personas es poco frecuente.
 Básicamente los apoyos no frecuentados serán los situados en bosques, monte bajo, explotaciones agrícolas o ganaderas, zonas alejadas de los núcleos urbanos, etc.
- Apoyos Frecuentados: son los situados en lugares de acceso público y donde la presencia de personas ajenas a la instalación eléctrica es frecuente: donde se espere que las personas se queden durante tiempo relativamente largo, algunas horas al día durante varias semanas, o por un tiempo corto pero muchas veces al día.

Básicamente se considerarán apoyos frecuentados los situados en:

- Casco urbano y parques urbanos públicos.
- Zonas próximas a viviendas.
- Polígonos industriales.
- Áreas públicas destinadas al ocio, como parques deportivos, zoológicos, ferias y otras instalaciones análogas.
- Zonas de equipamientos comunitarios, tanto públicos como privados, tales como hipermercados, hospitales, centros de enseñanza, etc.

Desde el punto de vista de la seguridad de las personas, los apoyos frecuentados podrán considerarse exentos del cumplimiento de las tensiones de contacto en los siguientes casos:

- Cuando se aíslen los apoyos de tal forma que todas las partes metálicas del apoyo queden fuera del volumen de accesibilidad limitado por una distancia horizontal mínima de 1,25 m, utilizando para ello vallas aislantes.
- Cuando todas las partes metálicas del apoyo queden fuera del volumen de accesibilidad limitado por una distancia horizontal mínima de 1,25 m, debido a agentes externos (orografía del terreno, obstáculos naturales, etc.).

CÓDIGO: MT-ESP-PE-01-R00

HOJA 17 OF 143

 Cuando el apoyo esté recubierto por placas aislantes o protegido por obra de fábrica de ladrillo hasta una altura de 2,5 m, de forma que se impida la escalada al apoyo.

En estos casos, no obstante, habrá que garantizar que se cumplen las tensiones de paso aplicadas.

A su vez, los apoyos frecuentados se clasifican en dos subtipos:

- Apoyos frecuentados con calzado (F): se considerará como resistencias adicionales la resistencia adicional del calzado, R_{a1} , y la resistencia a tierra en el punto de contacto, Ra2. Se puede emplear como valor de la resistencia del calzado 1000 Ω .

$$R_a = R_{a1} + R_{a2} = 1000 + 1.5 \rho_S$$

Estos apoyos serán los apoyos frecuentados situados en lugares donde se puede suponer, razonadamente, que las personas estén calzadas, como pavimentos de carreteras públicas, lugares de aparcamiento, etc.

- **Apoyos frecuentados sin calzado (F.S.C.):** se considerará como resistencia adicional únicamente la resistencia a tierra en el punto de contacto, R_{a2}. La resistencia adicional del calzado, R_{a1}, será nula.

$$R_a = R_{a2} = 1.5 \rho_S$$

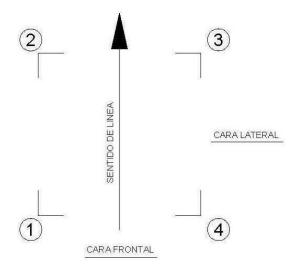
Estos apoyos serán los situados en lugares como jardines, piscinas, camping, áreas recreativas donde las personas puedan estar con los pies desnudos.

5.2.7.3. Diseño del sistema de puesta a tierra

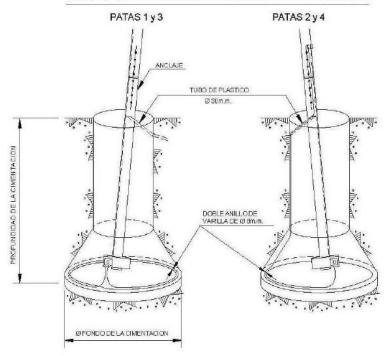
El diseño del sistema de puesta a tierra cumple los siguientes criterios básicos:

- Resistencia a los esfuerzos mecánicos y a la corrosión
- Resistencia desde un punto de vista térmico
- Garantizar la seguridad de las personas con respecto a tensiones que aparezcan durante una falta a tierra.
- Proteger de daños a propiedades y equipos y garantizar la fiabilidad de la línea.

A continuación se describe el diseño del sistema de puesta a tierra para cada tipo de apoyo según su ubicación:



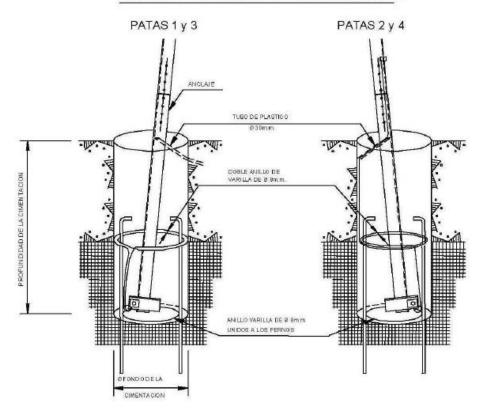
CÓDIGO: MT-ESP-PE-01-R00


HOJA 18 OF 143

• Apoyo no frecuentado (N.F.):

En este caso, se realizará para cada pata una toma de tierra de acuerdo con las siguientes figuras en función del tipo de cimentación: cimentación en tierra, mixta o en roca.

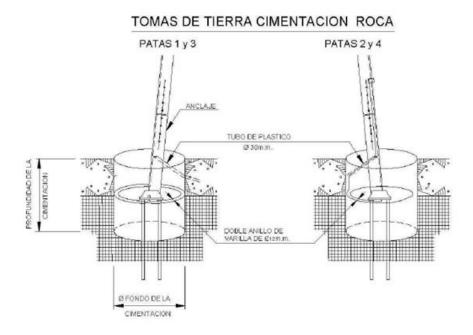
TOMAS DE TIERRA CIMENTACION PATA ELEFANTE



CÓDIGO: MT-ESP-PE-01-R00

HOJA 19 OF 143

TOMAS DE TIERRA CIMENTACION MIXTA



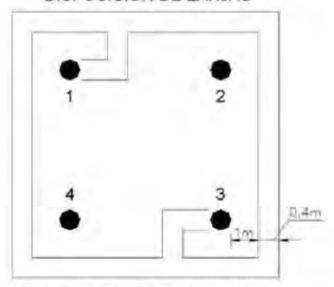
CÓDIGO: MT-ESP-PE-01-R00

HOJA 20 OF 143

La toma de tierra se completará con la realización de una zanja de 0,40 metros de ancho y 0,60 metros de profundidad constituyendo un anillo situado alrededor del apoyo a un metro de los montantes.

En el caso de terreno de roca la profundidad será de 0,40 metros y en zona agrícola la profundidad será de 0,80 metros.

El anillo de puesta a tierra estará constituido por varillas de acero descarburado de 50 mm² de sección, utilizándose varilla doble separada 0,40 metros entre sí como se indica en las figuras siguientes.



CÓDIGO: MT-ESP-PE-01-R00

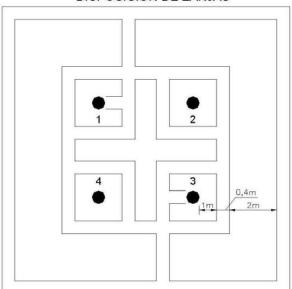
HOJA **21** OF **143**

NO FRECUENTADO DISPOSICION DE ZANJAS

ZANJA DE 0,40 m PROFUNDIDAD EN ROCA ZANJA DE 0,60 m PROFUNDIDAD EN TIERRA ZANJA DE 0,80 m PROFUNDIDAD EN ZONA AGRICOLA

NO FRECUENTADO DISPOSICION DE LA VARILLA DE12mmØ

CÓDIGO: MT-ESP-PE-01-R00

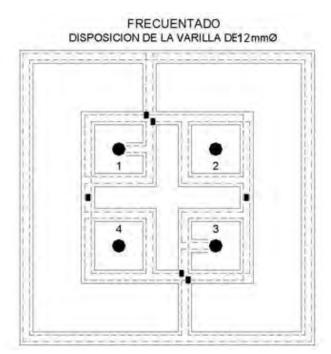

HOJA 22 OF 143

• Apoyo frecuentado (F):

En este caso, se realizará para cada pata una toma de tierra igual que para el caso de los apoyos no frecuentados y se completará con la realización de un primer anillo.

El sistema de puesta a tierra se completará con la instalación de 2 anillos constituidos por varillas de acero descarburado de 113 mm2 de sección, utilizándose varilla doble separada 0,40 metros entre sí según se indican en las siguientes figuras:

FRECUENTADO DISPOSICION DE ZANJAS


ZANJA DE 0,60 m PROFUNDIDAD EN ROCA ZANJA DE 0,80 m PROFUNDIDAD EN TIERRA

CÓDIGO: MT-ESP-PE-01-R00

HOJA 23 OF 143

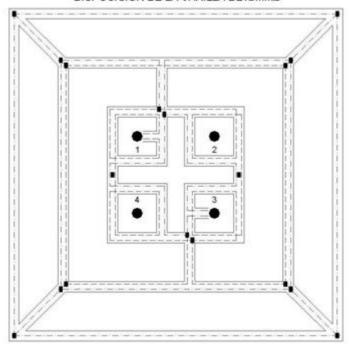
En caso de ser necesario, tras la verificación del sistema de puesta a tierra se instalaría un tercer anillo según se indica en las siguientes figuras:

CÓDIGO: MT-ESP-PE-01-R00

HOJA **24** OF **143**

FRECUENTADO 3º ANILLO DISPOSICION DE ZANJAS

ZANJA DE 1,0 m PROFUNDIDAD EN ROCA ZANJA DE 1,20 m PROFUNDIDAD EN TIERRA



CÓDIGO: MT-ESP-PE-01-R00

HOJA 25 OF 143

FRECUENTADO 3º ANILLO DISPOSICION DE LA VARILLA DE12mmØ

5.2.7.4. <u>Verificación del diseño de puesta a tierra</u>

La verificación del diseño del sistema de puesta a tierra se realizará según establece el Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión en el apartado 7.3.4.3 de la ICT-LAT 07.

Cuando se produce una falta a tierra, partes de la instalación se pueden poner en tensión, y en el caso de que una persona o animal estuviese tocándolas, podría circular a través de él una corriente peligrosa.

Los valores admisibles de la tensión de contacto aplicada, U_{ca}, según establece el Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión en el apartado 7.3.4.1 de la ICT-LAT 07 a la que puede estar sometido el cuerpo humano entre la mano y los pies desnudos, en función de la duración de la corriente de falta, se muestra en la siguiente tabla:

CÓDIGO: MT-ESP-PE-01-R00

HOJA 26 OF 143

Duración de la corriente de falta, tf (s)	Tensión de contacto aplicada admisible, Uca (V)					
0.05	735					
0.10	633					
0.20	528					
0.30	420					
0.40	310					
0.50	204					
1.00	107					
2.00	90					
5.00	81					
10.00	80					
> 10.00	50					

A efectos prácticos del proyecto, la verificación del sistema de puesta a tierra se realizará de la siguiente forma:

- Apoyos no frecuentados: El tiempo de desconexión automática en las líneas de categoría especial es inferior a 1s por lo que según establece el Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión en el apartado 7.3.4.3 de la ICT-LAT 07, en el diseño del sistema de puesta a tierra de estos apoyos no será obligatorio garantizar, a un metro de distancia del apoyo, valores de tensión de contacto inferiores a los valores admisibles. En definitiva, el diseño del sistema de puesta a tierra se considerará satisfactorio desde el punto de vista de la seguridad de las personas, sin embargo, el valor de la resistencia de puesta a tierra será lo suficientemente bajo para garantizar la actuación de las protecciones en caso de defecto a tierra. REE realizará la medida de la resistencia de puesta a tierra de todos sus apoyos.
- Apoyos frecuentados: El diseño del sistema de puesta a tierra se podrá
 considerar correcto si la elevación del potencial de tierra, U_E, es menor
 que dos veces el valor admisible de la tensión de contacto Uc,
 considerando, en cada caso concreto, las resistencias adicionales que

CÓDIGO: MT-ESP-PE-01-R00

HOJA 27 OF 143

intervengan en el circuito de contacto. Si no fuese así se deberá comprobar mediante el empleo de un procedimiento de cálculo sancionado por la práctica que los valores de las tensiones de contacto aplicada, U'ca, que se calcula, a un metro de distancia de la estructura, para la instalación proyectada en función de la geometría de la misma, de la corriente de puesta a tierra que considere y de la resistividad correspondiente al terreno, no superen, en las condiciones más desfavorables, los valores admisibles.

En la línea objeto del presento proyecto todos los apoyos son no frecuentados no siendo obligatorio garantizar los valores de tensión de contacto admisibles.

5.2.8. Accesorios

5.2.8.1. Contrapesos para puentes

En aquellos casos en los que sea necesario limitar el desplazamiento del puente flojo en apoyos de amarre, se instalarán contrapesos de hierro fundido, galvanizados.

5.2.8.2. Numeración y aviso de peligro

En cada apoyo se marca el número de orden que le corresponda, de acuerdo con el criterio de origen de la línea que se haya establecido.

Todos los apoyos llevan una placa de señalización de riesgo eléctrico, situada a una altura visible y legible desde el suelo a una distancia mínima de 2 m.

5.2.8.3. Antivibradores

Se colocarán antivibradores del tipo Stockbridge en la línea. Estos antivibradores están formados por un cuerpo central de aleación de aluminio, un cable portador de 19 alambres de acero galvanizado y dos contrapesos de acero forjado galvanizado.

El número de antivibradores a utilizar dependerá de la longitud del vano y será en general dos a cada lado del apoyo.

5.2.8.4. Dispositivos Salvapájaros

Se tomarán las medidas de protección de la avifauna establecida en el Real Decreto 1432/2008, de 29 de Agosto, así como en el Decreto 178/2006, de 10 de Octubre, de la Junta de Andalucía.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 28 OF 143

Se instalarán salvapájaros o señalizadores visuales en los cables de tierra si lo determina el órgano competente de la comunidad autónoma. Los salvapájaros o señalizadores serán de materiales opacos y estarán dispuestos alternadamente, cada 10 metros.

Los salvapájaros serán de color rojo y del tamaño mínimo siguiente:

Espirales: con 30 cm de diámetro x 1 metro de longitud.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 29 OF 143

6. <u>Distancias mínimas de seguridad</u>

Las normas generales sobre afecciones en líneas eléctricas están recogidas en el punto 5 de la ITC-LAT-07 del Reglamento.

Se consideran tres tipos de distancias eléctricas:

- D_{el} = Distancia de aislamiento en el aire mínima especificada para prevenir una descarga disruptiva entre conductores de fase y objetos a potencial de tierra en sobretensiones de frente lento o rápido. Previene descargas eléctricas entre las partes en tensión y objetos a potencial de tierra, en condiciones de explotación normal de la red. Las condiciones normales incluyen operaciones de enganche, aparición de rayos y sobretensiones resultantes de faltas en la red.
- D_{pp} = Distancia de aislamiento en el aire mínima especificada, para prevenir una descarga disruptiva entre conductores de fase durante sobretensiones de frente lento o rápido. Esta distancia previene las descargas eléctricas entre fases durante maniobras y sobretensiones de rayos
- a_{som} = Valor mínimo de la distancia de descarga de la cadena de aisladores, definida como la distancia más corta en línea recta entre las partes en tensión y las partes puestas a tierra. La probabilidad de descarga a través de la mínima distancia interna asom debe ser siempre mayor que la descarga a través de algún objeto externo o persona. Por este motivo, las distancias externas mínimas de seguridad (D_{add} + D_{el}) deben ser siempre superiores a 1,1 a_{som}.

Los valores para la tensión nominal de 220kV son los siguientes:

Tensión más elevada U _s (kV)	D _{el} (m)	D _{pp} (m)	
245	1,70	2,00	

6.1. Distancia de los conductores entre sí

De acuerdo con lo establecido en el punto 5.4.1 de la ITC 07 del Reglamento de líneas eléctricas de alta tensión, teniendo presente los efectos de las oscilaciones de los conductores debidas al viento y al desprendimiento de nieve acumulada sobre ellos, la distancia de los conductores vendrá dada por la siguiente expresión:

CÓDIGO: MT-ESP-PE-01-R00

HOJA 30 OF 143

siendo:

D Distancia mínima entre conductores en m

f_{máx} Flecha máxima en m

D_{pp} Distancia mínima aérea especificada definida anteriormente

Longitud de la cadena en m

K Coeficiente que depende de la oscilación de los conductores con el

viento

K' Coeficiente en función de la categoría de la línea

El ángulo de oscilación de los conductores se determinará mediante la siguiente expresión:

$$\mu = \text{arctg} \frac{\textbf{p}_{\text{v}}}{\textbf{p}_{\text{c}}}$$

Calculando la presión de viento para una velocidad de 120km/h. Para el citado ángulo de oscilación, el Reglamento de Líneas de Alta Tensión da un valor de:

Categoría: Especial µ = 40,34°

K = 0.65

K' = 0.85

Distancia entre conductores a Flecha máxima en la hipótesis de temperatura a 85°C:

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	К	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
Pórtico Limite- 1	0,53	40,34	0,65	0,85	0,00	2	2,173	3,044
1-2	2,94	40,34	0,65	0,85	0,00	2	2,815	5,436
2-3	13,55	40,34	0,65	0,85	2,89	2	4,336	5,425
3-4	17,40	40,34	0,65	0,85	2,89	2	4,628	5,379
4-5	20,94	40,34	0,65	0,85	2,89	2	4,873	5,373
5-6	22,41	40,34	0,65	0,85	2,89	2	4,969	5,373
6-7	17,24	40,34	0,65	0,85	2,89	2	4,616	5,390
7-8	23,49	40,34	0,65	0,85	2,89	2	5,038	5,367
8-9	18,38	40,34	0,65	0,85	2,89	2	4,698	5,376

CÓDIGO: MT-ESP-PE-01-R00

HOJA **31** OF **143**

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	к	K′	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
9-10	20,20	40,34	0,65	0,85	2,89	2	4,823	5,369
10-11	24,03	40,34	0,65	0,85	2,89	2	5,072	5,342
11-12	21,16	40,34	0,65	0,85	2,89	2	4,888	5,381
12-13	22,64	40,34	0,65	0,85	2,89	2	4,984	5,336
13-14	23,32	40,34	0,65	0,85	2,89	2	5,028	5,372
14-15	23,34	40,34	0,65	0,85	2,89	2	5,029	5,363
15-16	24,29	40,34	0,65	0,85	2,89	2	5,089	5,360
16-17	22,15	40,34	0,65	0,85	2,89	2	4,953	5,362
17-18	21,35	40,34	0,65	0,85	2,89	2	4,900	5,354
18-19	16,19	40,34	0,65	0,85	2,89	2	4,539	5,421
19-20	17,55	40,34	0,65	0,85	2,89	2	4,639	5,396
20-21	17,73	40,34	0,65	0,85	2,89	2	4,652	5,412
21-22	15,79	40,34	0,65	0,85	2,89	2	4,509	5,398
22-23	16,66	40,34	0,65	0,85	2,89	2	4,574	5,415
23-24	19,43	40,34	0,65	0,85	0,00	2	4,565	5,411
24-25	19,56	40,34	0,65	0,85	2,89	2	4,780	5,406
25-26	19,31	40,34	0,65	0,85	2,89	2	4,763	5,382
26-27	15,16	40,34	0,65	0,85	0,00	2	4,231	4,773
27-28	15,24	40,34	0,65	0,85	2,89	2	4,468	4,797
28-29	16,83	40,34	0,65	0,85	2,89	2	4,586	5,406
29-30	16,20	40,34	0,65	0,85	2,89	2	4,540	5,428
30-31	24,28	40,34	0,65	0,85	0,00	2	4,903	5,363
31-32	20,54	40,34	0,65	0,85	2,89	2	4,846	5,371
32-33	20,57	40,34	0,65	0,85	2,89	2	4,848	5,405

CÓDIGO: MT-ESP-PE-01-R00

HOJA **32** OF **143**

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	К	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
33-34	22,40	40,34	0,65	0,85	0,00	2	4,776	5,396
34-35	21,72	40,34	0,65	0,85	2,89	2	4,925	5,339
35-36	15,55	40,34	0,65	0,85	2,89	2	4,491	5,427
36-37	21,84	40,34	0,65	0,85	2,89	2	4,932	5,380
37-38	14,33	40,34	0,65	0,85	2,89	2	4,397	5,370
38-39	7,01	40,34	0,65	0,85	0,00	2	3,421	5,264
39-40	14,89	40,34	0,65	0,85	2,89	2	4,441	5,415
40-41	10,82	40,34	0,65	0,85	2,89	2	4,107	5,446
41-42	9,32	40,34	0,65	0,85	2,89	2	3,971	5,410
42-43	10,29	40,34	0,65	0,85	2,89	2	4,060	5,453
43-44	17,43	40,34	0,65	0,85	2,89	2	4,630	5,419
44-45	21,56	40,34	0,65	0,85	2,89	2	4,914	5,409
45-46	23,26	40,34	0,65	0,85	2,89	2	5,024	5,402
46-47	17,11	40,34	0,65	0,85	0,00	2	4,389	5,390
47-48	12,47	40,34	0,65	0,85	0,00	2	3,995	5,366
48-49	18,19	40,34	0,65	0,85	2,89	2	4,684	5,387
49-50	11,83	40,34	0,65	0,85	2,89	2	4,194	5,423
50-51	20,47	40,34	0,65	0,85	0,00	2	4,641	5,401
51-52	20,53	40,34	0,65	0,85	0,00	2	4,645	5,411
52-53	21,70	40,34	0,65	0,85	0,00	2	4,728	5,352
53-Pórtico Baza	0,73	40,34	0,65	0,85	0,00	2	2,255	2,804

CÓDIGO: MT-ESP-PE-01-R00

HOJA **33** OF **143**

Distancia entre conductores y cable de tierra a Flecha máxima en la hipótesis de temperatura:

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	К	K′	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
Pórtico Limite-1	0,55	52,33	0,65	0,85	0,00	2	2,182	3,745
1-2	2,94	40,34	0,65	0,85	0,00	2	2,815	5,355
2-3	13,55	40,34	0,65	0,85	2,89	2	4,336	5,805
3-4	17,39	40,34	0,65	0,85	2,89	2	4,627	5,854
4-5	20,93	40,34	0,65	0,85	2,89	2	4,872	5,823
5-6	22,40	40,34	0,65	0,85	2,89	2	4,969	8,349
6-7	17,23	40,34	0,65	0,85	2,89	2	4,616	8,363
7-8	23,49	40,34	0,65	0,85	2,89	2	5,038	8,342
8-9	18,37	40,34	0,65	0,85	2,89	2	4,697	8,347
9-10	20,19	40,34	0,65	0,85	2,89	2	4,823	5,806
10-11	24,02	40,34	0,65	0,85	2,89	2	5,072	5,793
11-12	20,89	40,34	0,65	0,85	2,89	2	4,870	5,700
12-13	22,35	40,34	0,65	0,85	2,89	2	4,966	5,655
13-14	23,32	40,34	0,65	0,85	2,89	2	5,028	8,344
14-15	23,34	40,34	0,65	0,85	2,89	2	5,029	8,333
15-16	24,29	40,34	0,65	0,85	2,89	2	5,089	8,331
16-17	22,14	40,34	0,65	0,85	2,89	2	4,952	8,330
17-18	21,35	40,34	0,65	0,85	2,89	2	4,900	5,796
18-19	16,18	40,34	0,65	0,85	2,89	2	4,538	5,850
19-20	17,54	40,34	0,65	0,85	2,89	2	4,638	8,389
20-21	17,72	40,34	0,65	0,85	2,89	2	4,651	8,408

CÓDIGO: MT-ESP-PE-01-R00

HOJA **34** OF **143**

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	к	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
21-22	15,78	40,34	0,65	0,85	2,89	2	4,509	8,388
22-23	16,66	40,34	0,65	0,85	2,89	2	4,574	5,878
23-24	19,43	40,34	0,65	0,85	0,00	2	4,565	5,788
24-25	19,45	40,34	0,65	0,85	2,89	2	4,772	5,812
25-26	19,31	40,34	0,65	0,85	2,89	2	4,763	5,869
26-27	15,16	40,34	0,65	0,85	0,00	2	4,231	5,768
27-28	15,24	40,34	0,65	0,85	2,89	2	4,468	5,992
28-29	16,83	40,34	0,65	0,85	2,89	2	4,586	8,386
29-30	16,07	40,34	0,65	0,85	2,89	2	4,530	5,829
30-31	24,13	40,34	0,65	0,85	0,00	2	4,893	5,736
31-32	20,53	40,34	0,65	0,85	2,89	2	4,846	5,802
32-33	20,46	40,34	0,65	0,85	2,89	2	4,841	5,813
33-34	22,39	40,34	0,65	0,85	0,00	2	4,776	5,777
34-35	21,72	40,34	0,65	0,85	2,89	2	4,925	5,856
35-36	15,55	40,34	0,65	0,85	2,89	2	4,491	8,419
36-37	21,84	40,34	0,65	0,85	2,89	2	4,932	8,375
37-38	14,25	40,34	0,65	0,85	2,89	2	4,391	5,860
38-39	6,97	40,34	0,65	0,85	0,00	2	3,416	5,615
39-40	14,88	40,34	0,65	0,85	2,89	2	4,440	5,883
40-41	10,81	40,34	0,65	0,85	2,89	2	4,106	8,439
41-42	9,31	40,34	0,65	0,85	2,89	2	3,970	5,844
42-43	10,28	40,34	0,65	0,85	2,89	2	4,059	5,863
43-44	17,28	40,34	0,65	0,85	2,89	2	4,619	5,832
44-45	21,40	40,34	0,65	0,85	2,89	2	4,904	5,802

CÓDIGO: MT-ESP-PE-01-R00

HOJA **35** OF **143**

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	К	K′	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
45-46	23,25	40,34	0,65	0,85	2,89	2	5,023	5,865
46-47	17,10	40,34	0,65	0,85	0,00	2	4,388	5,820
47-48	12,47	40,34	0,65	0,85	0,00	2	3,995	5,752
48-49	18,19	40,34	0,65	0,85	2,89	2	4,684	5,834
49-50	11,83	40,34	0,65	0,85	2,89	2	4,194	5,821
50-51	20,47	40,34	0,65	0,85	0,00	2	4,641	5,797
51-52	20,53	40,34	0,65	0,85	0,00	2	4,645	5,803
52-53	21,70	40,34	0,65	0,85	0,00	2	4,728	5,748
53-Pórtico Baza	1,00	45,67	0,65	0,85	0,00	2	2,350	3,694

Distancia entre conductores a Flecha máxima en la hipótesis de Viento a 15°C + Viento de 120km/h:

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	к	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
Pórtico Limite- 1	0,54	40,34	0,65	0,85	0,00	2	2,178	2,990
1-2	2,32	40,34	0,65	0,85	0,00	2	2,690	5,469
2-3	12,09	40,34	0,65	0,85	2,89	2	4,216	5,465
3-4	15,54	40,34	0,65	0,85	2,89	2	4,490	5,436
4-5	19,14	40,34	0,65	0,85	2,89	2	4,751	5,433
5-6	20,48	40,34	0,65	0,85	2,89	2	4,842	5,434
6-7	15,76	40,34	0,65	0,85	2,89	2	4,507	5,441
7-8	21,46	40,34	0,65	0,85	2,89	2	4,907	5,430

CÓDIGO: MT-ESP-PE-01-R00

HOJA **36** OF **143**

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	К	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
8-9	16,80	40,34	0,65	0,85	2,89	2	4,584	5,432
9-10	18,46	40,34	0,65	0,85	2,89	2	4,703	5,430
10-11	22,15	40,34	0,65	0,85	2,89	2	4,953	5,412
11-12	19,50	40,34	0,65	0,85	2,89	2	4,776	5,438
12-13	20,86	40,34	0,65	0,85	2,89	2	4,868	5,420
13-14	21,49	40,34	0,65	0,85	2,89	2	4,909	5,433
14-15	21,51	40,34	0,65	0,85	2,89	2	4,911	5,426
15-16	22,39	40,34	0,65	0,85	2,89	2	4,968	5,425
16-17	20,42	40,34	0,65	0,85	2,89	2	4,838	5,423
17-18	19,69	40,34	0,65	0,85	2,89	2	4,789	5,416
18-19	14,20	40,34	0,65	0,85	2,89	2	4,387	5,463
19-20	15,40	40,34	0,65	0,85	2,89	2	4,480	5,446
20-21	15,55	40,34	0,65	0,85	2,89	2	4,491	5,457
21-22	13,85	40,34	0,65	0,85	2,89	2	4,359	5,445
22-23	14,61	40,34	0,65	0,85	2,89	2	4,419	5,457
23-24	17,36	40,34	0,65	0,85	0,00	2	4,408	5,456
24-25	17,45	40,34	0,65	0,85	2,89	2	4,631	5,462
25-26	17,23	40,34	0,65	0,85	2,89	2	4,616	5,434
26-27	13,21	40,34	0,65	0,85	0,00	2	4,062	5,161
27-28	13,31	40,34	0,65	0,85	2,89	2	4,316	5,189
28-29	14,73	40,34	0,65	0,85	2,89	2	4,428	5,447
29-30	14,17	40,34	0,65	0,85	2,89	2	4,385	5,467
30-31	22,15	40,34	0,65	0,85	0,00	2	4,759	5,434
31-32	18,44	40,34	0,65	0,85	2,89	2	4,702	5,430

CÓDIGO: MT-ESP-PE-01-R00

HOJA **37** OF **143**

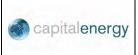
VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	к	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
32-33	18,45	40,34	0,65	0,85	2,89	2	4,703	5,462
33-34	20,28	40,34	0,65	0,85	0,00	2	4,627	5,446
34-35	19,30	40,34	0,65	0,85	2,89	2	4,762	5,406
35-36	13,81	40,34	0,65	0,85	2,89	2	4,356	5,465
36-37	19,39	40,34	0,65	0,85	2,89	2	4,768	5,438
37-38	12,75	40,34	0,65	0,85	2,89	2	4,271	5,418
38-39	5,59	40,34	0,65	0,85	0,00	2	3,237	5,338
39-40	12,51	40,34	0,65	0,85	2,89	2	4,251	5,461
40-41	9,09	40,34	0,65	0,85	2,89	2	3,950	5,478
41-42	7,83	40,34	0,65	0,85	2,89	2	3,828	5,451
42-43	8,86	40,34	0,65	0,85	2,89	2	3,928	5,480
43-44	15,01	40,34	0,65	0,85	2,89	2	4,450	5,467
44-45	19,48	40,34	0,65	0,85	2,89	2	4,774	5,456
45-46	21,02	40,34	0,65	0,85	2,89	2	4,878	5,452
46-47	15,10	40,34	0,65	0,85	0,00	2	4,226	5,440
47-48	10,63	40,34	0,65	0,85	0,00	2	3,819	5,419
48-49	15,82	40,34	0,65	0,85	2,89	2	4,512	5,442
49-50	10,29	40,34	0,65	0,85	2,89	2	4,060	5,461
50-51	18,39	40,34	0,65	0,85	0,00	2	4,487	5,449
51-52	18,44	40,34	0,65	0,85	0,00	2	4,491	5,456
52-53	20,01	40,34	0,65	0,85	0,00	2	4,608	5,416
53-Pórtico Baza	0,74	40,34	0,65	0,85	0,00	2	2,259	2,751

CÓDIGO: MT-ESP-PE-01-R00

HOJA **38** OF **143**

Distancia entre conductores y cable de tierra a Flecha máxima en la hipótesis de Viento a 15°C + Viento de 120km/h:

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	К	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
Pórtico Limite- 1	0,60	52,33	0,65	0,85	0,00	2	2,203	3,846
1-2	2,51	45,67	0,65	0,85	0,00	2	2,730	5,548
2-3	12,09	40,34	0,65	0,85	2,89	2	4,216	5,773
3-4	15,53	40,34	0,65	0,85	2,89	2	4,490	5,793
4-5	19,13	40,34	0,65	0,85	2,89	2	4,750	5,795
5-6	20,47	40,34	0,65	0,85	2,89	2	4,842	7,682
6-7	15,75	40,34	0,65	0,85	2,89	2	4,506	7,704
7-8	21,46	40,34	0,65	0,85	2,89	2	4,907	7,661
8-9	16,80	40,34	0,65	0,85	2,89	2	4,584	7,618
9-10	18,45	40,34	0,65	0,85	2,89	2	4,703	5,787
10-11	22,14	40,34	0,65	0,85	2,89	2	4,952	5,792
11-12	19,26	40,34	0,65	0,85	2,89	2	4,759	5,735
12-13	20,60	40,34	0,65	0,85	2,89	2	4,850	5,709
13-14	21,49	40,34	0,65	0,85	2,89	2	4,909	7,643
14-15	21,51	40,34	0,65	0,85	2,89	2	4,911	7,702
15-16	22,38	40,34	0,65	0,85	2,89	2	4,968	7,677
16-17	20,41	40,34	0,65	0,85	2,89	2	4,838	7,702
17-18	19,68	40,34	0,65	0,85	2,89	2	4,788	5,789
18-19	14,19	40,34	0,65	0,85	2,89	2	4,386	5,784
19-20	15,39	40,34	0,65	0,85	2,89	2	4,479	7,697
20-21	15,55	40,34	0,65	0,85	2,89	2	4,491	7,667



CÓDIGO: MT-ESP-PE-01-R00

HOJA **39** OF **143**

VANO ENTRE APOYOS FLECHA MÁXIMA (m) ÁNGULO OSCILACIÓN K K' L (m) Dpp Dist.Mín. (m) Dist.Real (m) 21-22 13,85 40,34 0,65 0,85 2,89 2 4,359 7,679 22-23 14,61 40,34 0,65 0,85 0,89 2 4,419 5,793 23-24 17,36 40,34 0,65 0,85 2,89 2 4,408 5,756 24-25 17,35 40,34 0,65 0,85 2,89 2 4,616 5,800 26-27 13,21 40,34 0,65 0,85 2,89 2 4,616 5,800 26-27 13,21 40,34 0,65 0,85 2,89 2 4,316 5,928 28-29 14,70 40,34 0,65 0,85 2,89 2 4,316 5,768 30-31 22,00 40,34 0,65 0,85 2,89 2 4,749 5,766 32									
22-23 14,61 40,34 0,65 0,85 2,89 2 4,419 5,793 23-24 17,36 40,34 0,65 0,85 0,00 2 4,408 5,756 24-25 17,35 40,34 0,65 0,85 2,89 2 4,616 5,800 25-26 17,23 40,34 0,65 0,85 2,89 2 4,616 5,800 26-27 13,21 40,34 0,65 0,85 0,00 2 4,062 5,727 27-28 13,31 40,34 0,65 0,85 2,89 2 4,316 5,928 28-29 14,70 40,34 0,65 0,85 2,89 2 4,374 5,768 30-31 22,00 40,34 0,65 0,85 2,89 2 4,749 5,736 31-32 18,43 40,34 0,65 0,85 2,89 2 4,696 5,771 33-34 20,27 40,34<	ENTRE	MÁXIMA	_	К	K′	L (m)	Dpp		
23-24 17,36 40,34 0,65 0,85 0,00 2 4,408 5,756 24-25 17,35 40,34 0,65 0,85 2,89 2 4,624 5,771 25-26 17,23 40,34 0,65 0,85 2,89 2 4,616 5,800 26-27 13,21 40,34 0,65 0,85 2,89 2 4,616 5,800 27-28 13,31 40,34 0,65 0,85 2,89 2 4,316 5,928 28-29 14,70 40,34 0,65 0,85 2,89 2 4,316 5,928 28-29 14,03 40,34 0,65 0,85 2,89 2 4,426 7,677 29-30 14,03 40,34 0,65 0,85 2,89 2 4,474 5,768 30-31 22,00 40,34 0,65 0,85 2,89 2 4,701 5,765 32-33 18,35 40,34<	21-22	13,85	40,34	0,65	0,85	2,89	2	4,359	7,679
24-25 17,35 40,34 0,65 0,85 2,89 2 4,624 5,771 25-26 17,23 40,34 0,65 0,85 2,89 2 4,616 5,800 26-27 13,21 40,34 0,65 0,85 0,00 2 4,062 5,727 27-28 13,31 40,34 0,65 0,85 2,89 2 4,316 5,928 28-29 14,70 40,34 0,65 0,85 2,89 2 4,426 7,677 29-30 14,03 40,34 0,65 0,85 2,89 2 4,749 5,736 30-31 22,00 40,34 0,65 0,85 0,00 2 4,749 5,736 31-32 18,43 40,34 0,65 0,85 2,89 2 4,701 5,765 32-33 18,35 40,34 0,65 0,85 2,89 2 4,626 5,758 34-35 19,29 40,34<	22-23	14,61	40,34	0,65	0,85	2,89	2	4,419	5,793
25-26 17,23 40,34 0,65 0,85 2,89 2 4,616 5,800 26-27 13,21 40,34 0,65 0,85 0,00 2 4,062 5,727 27-28 13,31 40,34 0,65 0,85 2,89 2 4,316 5,928 28-29 14,70 40,34 0,65 0,85 2,89 2 4,374 5,768 30-31 22,00 40,34 0,65 0,85 2,89 2 4,749 5,736 31-32 18,43 40,34 0,65 0,85 2,89 2 4,749 5,736 32-33 18,35 40,34 0,65 0,85 2,89 2 4,696 5,771 33-34 20,27 40,34 0,65 0,85 2,89 2 4,626 5,758 34-35 19,29 40,34 0,65 0,85 2,89 2 4,761 5,800 35-36 13,80 40,34<	23-24	17,36	40,34	0,65	0,85	0,00	2	4,408	5,756
26-27 13,21 40,34 0,65 0,85 0,00 2 4,062 5,727 27-28 13,31 40,34 0,65 0,85 2,89 2 4,316 5,928 28-29 14,70 40,34 0,65 0,85 2,89 2 4,426 7,677 29-30 14,03 40,34 0,65 0,85 2,89 2 4,374 5,768 30-31 22,00 40,34 0,65 0,85 0,00 2 4,749 5,736 31-32 18,43 40,34 0,65 0,85 2,89 2 4,701 5,765 32-33 18,35 40,34 0,65 0,85 2,89 2 4,696 5,771 33-34 20,27 40,34 0,65 0,85 2,89 2 4,626 5,758 34-35 19,29 40,34 0,65 0,85 2,89 2 4,761 5,800 35-36 13,80 40,34<	24-25	17,35	40,34	0,65	0,85	2,89	2	4,624	5,771
27-28 13,31 40,34 0,65 0,85 2,89 2 4,316 5,928 28-29 14,70 40,34 0,65 0,85 2,89 2 4,426 7,677 29-30 14,03 40,34 0,65 0,85 2,89 2 4,374 5,768 30-31 22,00 40,34 0,65 0,85 0,00 2 4,749 5,736 31-32 18,43 40,34 0,65 0,85 2,89 2 4,701 5,765 32-33 18,35 40,34 0,65 0,85 2,89 2 4,696 5,771 33-34 20,27 40,34 0,65 0,85 0,00 2 4,626 5,758 34-35 19,29 40,34 0,65 0,85 2,89 2 4,761 5,800 35-36 13,80 40,34 0,65 0,85 2,89 2 4,768 7,600 37-38 12,68 40,34<	25-26	17,23	40,34	0,65	0,85	2,89	2	4,616	5,800
28-29 14,70 40,34 0,65 0,85 2,89 2 4,426 7,677 29-30 14,03 40,34 0,65 0,85 2,89 2 4,374 5,768 30-31 22,00 40,34 0,65 0,85 0,00 2 4,749 5,736 31-32 18,43 40,34 0,65 0,85 2,89 2 4,701 5,765 32-33 18,35 40,34 0,65 0,85 2,89 2 4,696 5,771 33-34 20,27 40,34 0,65 0,85 0,00 2 4,626 5,758 34-35 19,29 40,34 0,65 0,85 2,89 2 4,761 5,800 35-36 13,80 40,34 0,65 0,85 2,89 2 4,761 5,800 37-38 12,68 40,34 0,65 0,85 2,89 2 4,768 7,600 38-39 5,55 40,34 0,65 0,85 2,89 2 4,265 5,778 40-41<	26-27	13,21	40,34	0,65	0,85	0,00	2	4,062	5,727
29-30 14,03 40,34 0,65 0,85 2,89 2 4,374 5,768 30-31 22,00 40,34 0,65 0,85 0,00 2 4,749 5,736 31-32 18,43 40,34 0,65 0,85 2,89 2 4,701 5,765 32-33 18,35 40,34 0,65 0,85 2,89 2 4,696 5,771 33-34 20,27 40,34 0,65 0,85 2,89 2 4,696 5,771 33-35 19,29 40,34 0,65 0,85 2,89 2 4,761 5,800 35-36 13,80 40,34 0,65 0,85 2,89 2 4,761 5,800 36-37 19,39 40,34 0,65 0,85 2,89 2 4,768 7,600 37-38 12,68 40,34 0,65 0,85 2,89 2 4,265 5,790 38-39 5,55 40,34 0,65 0,85 2,89 2 4,250 5,786 40-41<	27-28	13,31	40,34	0,65	0,85	2,89	2	4,316	5,928
30-31 22,00 40,34 0,65 0,85 0,00 2 4,749 5,736 31-32 18,43 40,34 0,65 0,85 2,89 2 4,701 5,765 32-33 18,35 40,34 0,65 0,85 2,89 2 4,696 5,771 33-34 20,27 40,34 0,65 0,85 0,00 2 4,626 5,758 34-35 19,29 40,34 0,65 0,85 2,89 2 4,761 5,800 35-36 13,80 40,34 0,65 0,85 2,89 2 4,761 5,800 37-38 12,68 40,34 0,65 0,85 2,89 2 4,768 7,600 38-39 5,55 40,34 0,65 0,85 2,89 2 4,265 5,770 39-40 12,50 40,34 0,65 0,85 2,89 2 4,250 5,786 40-41 9,08 40,34 0,65 0,85 2,89 2 3,949 7,580 41-42 </td <td>28-29</td> <td>14,70</td> <td>40,34</td> <td>0,65</td> <td>0,85</td> <td>2,89</td> <td>2</td> <td>4,426</td> <td>7,677</td>	28-29	14,70	40,34	0,65	0,85	2,89	2	4,426	7,677
31-32 18,43 40,34 0,65 0,85 2,89 2 4,701 5,765 32-33 18,35 40,34 0,65 0,85 2,89 2 4,696 5,771 33-34 20,27 40,34 0,65 0,85 0,00 2 4,626 5,758 34-35 19,29 40,34 0,65 0,85 2,89 2 4,761 5,800 35-36 13,80 40,34 0,65 0,85 2,89 2 4,355 7,600 36-37 19,39 40,34 0,65 0,85 2,89 2 4,768 7,600 37-38 12,68 40,34 0,65 0,85 2,89 2 4,265 5,790 38-39 5,55 40,34 0,65 0,85 0,00 2 3,231 5,577 39-40 12,50 40,34 0,65 0,85 2,89 2 4,250 5,786 40-41 9,08 40,34 0,65 0,85 2,89 2 3,949 7,580 41-42 </td <td>29-30</td> <td>14,03</td> <td>40,34</td> <td>0,65</td> <td>0,85</td> <td>2,89</td> <td>2</td> <td>4,374</td> <td>5,768</td>	29-30	14,03	40,34	0,65	0,85	2,89	2	4,374	5,768
32-33 18,35 40,34 0,65 0,85 2,89 2 4,696 5,771 33-34 20,27 40,34 0,65 0,85 0,00 2 4,626 5,758 34-35 19,29 40,34 0,65 0,85 2,89 2 4,761 5,800 35-36 13,80 40,34 0,65 0,85 2,89 2 4,355 7,600 36-37 19,39 40,34 0,65 0,85 2,89 2 4,768 7,600 37-38 12,68 40,34 0,65 0,85 2,89 2 4,265 5,790 38-39 5,55 40,34 0,65 0,85 0,00 2 3,231 5,577 39-40 12,50 40,34 0,65 0,85 2,89 2 4,250 5,786 40-41 9,08 40,34 0,65 0,85 2,89 2 3,949 7,580 41-42 7,83 40,34 0,65 0,85 2,89 2 3,928 5,772 43-44 <td>30-31</td> <td>22,00</td> <td>40,34</td> <td>0,65</td> <td>0,85</td> <td>0,00</td> <td>2</td> <td>4,749</td> <td>5,736</td>	30-31	22,00	40,34	0,65	0,85	0,00	2	4,749	5,736
33-34 20,27 40,34 0,65 0,85 0,00 2 4,626 5,758 34-35 19,29 40,34 0,65 0,85 2,89 2 4,761 5,800 35-36 13,80 40,34 0,65 0,85 2,89 2 4,355 7,600 36-37 19,39 40,34 0,65 0,85 2,89 2 4,768 7,600 37-38 12,68 40,34 0,65 0,85 2,89 2 4,265 5,790 38-39 5,55 40,34 0,65 0,85 0,00 2 3,231 5,577 39-40 12,50 40,34 0,65 0,85 2,89 2 4,250 5,786 40-41 9,08 40,34 0,65 0,85 2,89 2 3,949 7,580 41-42 7,83 40,34 0,65 0,85 2,89 2 3,928 5,768 42-43 8,86 40,34 0,65 0,85 2,89 2 3,928 5,772 43-44 <td>31-32</td> <td>18,43</td> <td>40,34</td> <td>0,65</td> <td>0,85</td> <td>2,89</td> <td>2</td> <td>4,701</td> <td>5,765</td>	31-32	18,43	40,34	0,65	0,85	2,89	2	4,701	5,765
34-35 19,29 40,34 0,65 0,85 2,89 2 4,761 5,800 35-36 13,80 40,34 0,65 0,85 2,89 2 4,355 7,600 36-37 19,39 40,34 0,65 0,85 2,89 2 4,768 7,600 37-38 12,68 40,34 0,65 0,85 2,89 2 4,265 5,790 38-39 5,55 40,34 0,65 0,85 0,00 2 3,231 5,577 39-40 12,50 40,34 0,65 0,85 2,89 2 4,250 5,786 40-41 9,08 40,34 0,65 0,85 2,89 2 3,949 7,580 41-42 7,83 40,34 0,65 0,85 2,89 2 3,928 5,768 42-43 8,86 40,34 0,65 0,85 2,89 2 3,928 5,772 43-44 14,88 40,34 0,65 0,85 2,89 2 4,440 5,768	32-33	18,35	40,34	0,65	0,85	2,89	2	4,696	5,771
35-36 13,80 40,34 0,65 0,85 2,89 2 4,355 7,600 36-37 19,39 40,34 0,65 0,85 2,89 2 4,768 7,600 37-38 12,68 40,34 0,65 0,85 2,89 2 4,265 5,790 38-39 5,55 40,34 0,65 0,85 0,00 2 3,231 5,577 39-40 12,50 40,34 0,65 0,85 2,89 2 4,250 5,786 40-41 9,08 40,34 0,65 0,85 2,89 2 3,949 7,580 41-42 7,83 40,34 0,65 0,85 2,89 2 3,828 5,768 42-43 8,86 40,34 0,65 0,85 2,89 2 3,928 5,772 43-44 14,88 40,34 0,65 0,85 2,89 2 4,440 5,768	33-34	20,27	40,34	0,65	0,85	0,00	2	4,626	5,758
36-37 19,39 40,34 0,65 0,85 2,89 2 4,768 7,600 37-38 12,68 40,34 0,65 0,85 2,89 2 4,265 5,790 38-39 5,55 40,34 0,65 0,85 0,00 2 3,231 5,577 39-40 12,50 40,34 0,65 0,85 2,89 2 4,250 5,786 40-41 9,08 40,34 0,65 0,85 2,89 2 3,949 7,580 41-42 7,83 40,34 0,65 0,85 2,89 2 3,928 5,768 42-43 8,86 40,34 0,65 0,85 2,89 2 3,928 5,772 43-44 14,88 40,34 0,65 0,85 2,89 2 4,440 5,768	34-35	19,29	40,34	0,65	0,85	2,89	2	4,761	5,800
37-38 12,68 40,34 0,65 0,85 2,89 2 4,265 5,790 38-39 5,55 40,34 0,65 0,85 0,00 2 3,231 5,577 39-40 12,50 40,34 0,65 0,85 2,89 2 4,250 5,786 40-41 9,08 40,34 0,65 0,85 2,89 2 3,949 7,580 41-42 7,83 40,34 0,65 0,85 2,89 2 3,928 5,768 42-43 8,86 40,34 0,65 0,85 2,89 2 3,928 5,772 43-44 14,88 40,34 0,65 0,85 2,89 2 4,440 5,768	35-36	13,80	40,34	0,65	0,85	2,89	2	4,355	7,600
38-39 5,55 40,34 0,65 0,85 0,00 2 3,231 5,577 39-40 12,50 40,34 0,65 0,85 2,89 2 4,250 5,786 40-41 9,08 40,34 0,65 0,85 2,89 2 3,949 7,580 41-42 7,83 40,34 0,65 0,85 2,89 2 3,828 5,768 42-43 8,86 40,34 0,65 0,85 2,89 2 3,928 5,772 43-44 14,88 40,34 0,65 0,85 2,89 2 4,440 5,768	36-37	19,39	40,34	0,65	0,85	2,89	2	4,768	7,600
39-40 12,50 40,34 0,65 0,85 2,89 2 4,250 5,786 40-41 9,08 40,34 0,65 0,85 2,89 2 3,949 7,580 41-42 7,83 40,34 0,65 0,85 2,89 2 3,828 5,768 42-43 8,86 40,34 0,65 0,85 2,89 2 3,928 5,772 43-44 14,88 40,34 0,65 0,85 2,89 2 4,440 5,768	37-38	12,68	40,34	0,65	0,85	2,89	2	4,265	5,790
40-41 9,08 40,34 0,65 0,85 2,89 2 3,949 7,580 41-42 7,83 40,34 0,65 0,85 2,89 2 3,828 5,768 42-43 8,86 40,34 0,65 0,85 2,89 2 3,928 5,772 43-44 14,88 40,34 0,65 0,85 2,89 2 4,440 5,768	38-39	5,55	40,34	0,65	0,85	0,00	2	3,231	5,577
41-42 7,83 40,34 0,65 0,85 2,89 2 3,828 5,768 42-43 8,86 40,34 0,65 0,85 2,89 2 3,928 5,772 43-44 14,88 40,34 0,65 0,85 2,89 2 4,440 5,768	39-40	12,50	40,34	0,65	0,85	2,89	2	4,250	5,786
42-43 8,86 40,34 0,65 0,85 2,89 2 3,928 5,772 43-44 14,88 40,34 0,65 0,85 2,89 2 4,440 5,768	40-41	9,08	40,34	0,65	0,85	2,89	2	3,949	7,580
43-44 14,88 40,34 0,65 0,85 2,89 2 4,440 5,768	41-42	7,83	40,34	0,65	0,85	2,89	2	3,828	5,768
	42-43	8,86	40,34	0,65	0,85	2,89	2	3,928	5,772
44.45	43-44	14,88	40,34	0,65	0,85	2,89	2	4,440	5,768
44-45 19,34 40,34 0,65 0,85 2,89 2 4,765 5,771	44-45	19,34	40,34	0,65	0,85	2,89	2	4,765	5,771

CÓDIGO: MT-ESP-PE-01-R00

HOJA 40 OF 143

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	К	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
45-46	21,01	40,34	0,65	0,85	2,89	2	4,878	5,806
46-47	15,10	40,34	0,65	0,85	0,00	2	4,226	5,767
47-48	10,63	40,34	0,65	0,85	0,00	2	3,819	5,708
48-49	15,82	40,34	0,65	0,85	2,89	2	4,512	5,768
49-50	10,29	40,34	0,65	0,85	2,89	2	4,060	5,754
50-51	18,39	40,34	0,65	0,85	0,00	2	4,487	5,764
51-52	18,44	40,34	0,65	0,85	0,00	2	4,491	5,767
52-53	20,01	40,34	0,65	0,85	0,00	2	4,608	5,763
53-Pórtico Baza	1,19	45,67	0,65	0,85	0,00	2	2,409	3,627

Distancia entre conductores a Flecha máxima en la hipótesis de Hielo a 0°C:

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	К	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
Pórtico Limite- 1	0,46	40,34	0,65	0,85	0,00	2	2,141	3,057
1-2	2,28	40,34	0,65	0,85	0,00	2	2,681	5,457
2-3	12,20	40,34	0,65	0,85	2,89	2	4,225	5,440
3-4	15,67	40,34	0,65	0,85	2,89	2	4,500	5,400
4-5	19,28	40,34	0,65	0,85	2,89	2	4,761	5,392
5-6	20,63	40,34	0,65	0,85	2,89	2	4,852	5,393
6-7	15,87	40,34	0,65	0,85	2,89	2	4,515	5,406
7-8	21,63	40,34	0,65	0,85	2,89	2	4,919	5,387
8-9	16,92	40,34	0,65	0,85	2,89	2	4,593	5,394

CÓDIGO: MT-ESP-PE-01-R00

HOJA **41** OF **143**

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	к	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
9-10	18,60	40,34	0,65	0,85	2,89	2	4,713	5,388
10-11	22,29	40,34	0,65	0,85	2,89	2	4,962	5,362
11-12	19,63	40,34	0,65	0,85	2,89	2	4,785	5,397
12-13	21,00	40,34	0,65	0,85	2,89	2	4,877	5,356
13-14	21,64	40,34	0,65	0,85	2,89	2	4,919	5,390
14-15	21,66	40,34	0,65	0,85	2,89	2	4,921	5,382
15-16	22,54	40,34	0,65	0,85	2,89	2	4,978	5,379
16-17	20,55	40,34	0,65	0,85	2,89	2	4,847	5,380
17-18	19,81	40,34	0,65	0,85	2,89	2	4,797	5,372
18-19	14,53	40,34	0,65	0,85	2,89	2	4,413	5,437
19-20	15,13	40,34	0,65	0,85	2,89	2	4,459	5,420
20-21	15,28	40,34	0,65	0,85	2,89	2	4,471	5,434
21-22	13,61	40,34	0,65	0,85	2,89	2	4,340	5,421
22-23	14,36	40,34	0,65	0,85	2,89	2	4,400	5,436
23-24	17,11	40,34	0,65	0,85	0,00	2	4,389	5,431
24-25	17,19	40,34	0,65	0,85	2,89	2	4,613	5,427
25-26	16,97	40,34	0,65	0,85	2,89	2	4,597	5,405
26-27	12,95	40,34	0,65	0,85	0,00	2	4,039	4,762
27-28	13,07	40,34	0,65	0,85	2,89	2	4,297	4,783
28-29	14,46	40,34	0,65	0,85	2,89	2	4,407	5,429
29-30	13,92	40,34	0,65	0,85	2,89	2	4,365	5,448
30-31	21,88	40,34	0,65	0,85	0,00	2	4,740	5,386
31-32	18,17	40,34	0,65	0,85	2,89	2	4,683	5,395
32-33	18,20	40,34	0,65	0,85	2,89	2	4,685	5,425

CÓDIGO: MT-ESP-PE-01-R00

HOJA **42** OF **143**

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	К	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
33-34	20,03	40,34	0,65	0,85	0,00	2	4,609	5,417
34-35	18,98	40,34	0,65	0,85	2,89	2	4,740	5,369
35-36	13,59	40,34	0,65	0,85	2,89	2	4,339	5,445
36-37	19,09	40,34	0,65	0,85	2,89	2	4,747	5,406
37-38	12,52	40,34	0,65	0,85	2,89	2	4,252	5,392
38-39	5,30	40,34	0,65	0,85	0,00	2	3,196	5,308
39-40	12,20	40,34	0,65	0,85	2,89	2	4,225	5,442
40-41	8,87	40,34	0,65	0,85	2,89	2	3,929	5,465
41-42	7,64	40,34	0,65	0,85	2,89	2	3,809	5,432
42-43	8,69	40,34	0,65	0,85	2,89	2	3,912	5,468
43-44	14,71	40,34	0,65	0,85	2,89	2	4,427	5,443
44-45	19,23	40,34	0,65	0,85	2,89	2	4,757	5,428
45-46	20,75	40,34	0,65	0,85	2,89	2	4,860	5,423
46-47	14,85	40,34	0,65	0,85	0,00	2	4,205	5,414
47-48	10,37	40,34	0,65	0,85	0,00	2	3,793	5,395
48-49	15,52	40,34	0,65	0,85	2,89	2	4,489	5,414
49-50	10,09	40,34	0,65	0,85	2,89	2	4,042	5,441
50-51	18,14	40,34	0,65	0,85	0,00	2	4,468	5,422
51-52	18,19	40,34	0,65	0,85	0,00	2	4,472	5,430
52-53	19,76	40,34	0,65	0,85	0,00	2	4,589	5,375
53-Pórtico Baza	0,64	40,34	0,65	0,85	0,00	2	2,220	2,801

CÓDIGO: MT-ESP-PE-01-R00

HOJA **43** OF **143**

Distancia entre conductores y cable de tierra a Flecha máxima en la hipótesis de Hielo a 0°C:

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	К	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
Pórtico Limite- 1	0,55	52,33	0,65	0,85	0,00	2	2,182	3,745
1-2	2,94	40,34	0,65	0,85	0,00	2	2,815	5,285
2-3	13,55	40,34	0,65	0,85	2,89	2	4,336	5,712
3-4	17,39	40,34	0,65	0,85	2,89	2	4,627	5,749
4-5	20,93	40,34	0,65	0,85	2,89	2	4,872	5,733
5-6	22,40	40,34	0,65	0,85	2,89	2	4,969	8,343
6-7	17,23	40,34	0,65	0,85	2,89	2	4,616	8,359
7-8	23,49	40,34	0,65	0,85	2,89	2	5,038	8,336
8-9	18,37	40,34	0,65	0,85	2,89	2	4,697	8,342
9-10	20,19	40,34	0,65	0,85	2,89	2	4,823	5,717
10-11	24,02	40,34	0,65	0,85	2,89	2	5,072	5,705
11-12	20,89	40,34	0,65	0,85	2,89	2	4,870	5,616
12-13	22,35	40,34	0,65	0,85	2,89	2	4,966	5,568
13-14	23,32	40,34	0,65	0,85	2,89	2	5,028	8,339
14-15	23,34	40,34	0,65	0,85	2,89	2	5,029	8,328
15-16	24,29	40,34	0,65	0,85	2,89	2	5,089	8,325
16-17	22,14	40,34	0,65	0,85	2,89	2	4,952	8,324
17-18	21,35	40,34	0,65	0,85	2,89	2	4,900	5,712
18-19	16,18	40,34	0,65	0,85	2,89	2	4,538	5,708
19-20	15,12	40,34	0,65	0,85	2,89	2	4,458	8,390
20-21	15,28	40,34	0,65	0,85	2,89	2	4,471	8,409
21-22	13,60	40,34	0,65	0,85	2,89	2	4,340	8,390

CÓDIGO: MT-ESP-PE-01-R00

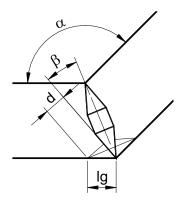
HOJA **44** OF **143**

Color									
23-24 17,11 40,34 0,65 0,85 0,00 2 4,389 5,698 24-25 17,10 40,34 0,65 0,85 2,89 2 4,606 5,721 25-26 16,97 40,34 0,65 0,85 2,89 2 4,597 5,777 26-27 12,95 40,34 0,65 0,85 0,00 2 4,039 5,668 27-28 13,07 40,34 0,65 0,85 2,89 2 4,297 5,892 28-29 14,44 40,34 0,65 0,85 2,89 2 4,406 8,385 29-30 13,79 40,34 0,65 0,85 2,89 2 4,355 5,730 30-31 21,74 40,34 0,65 0,85 0,89 2 4,682 5,714 32-33 18,16 40,34 0,65 0,85 2,89 2 4,678 5,724 33-34 20,02 40,34<	ENTRE	MÁXIMA	_	К	K′	L (m)	Dpp		Dist.Real (m)
24-25 17,10 40,34 0,65 0,85 2,89 2 4,606 5,721 25-26 16,97 40,34 0,65 0,85 2,89 2 4,597 5,777 26-27 12,95 40,34 0,65 0,85 0,00 2 4,039 5,669 27-28 13,07 40,34 0,65 0,85 2,89 2 4,297 5,892 28-29 14,44 40,34 0,65 0,85 2,89 2 4,406 8,385 29-30 13,79 40,34 0,65 0,85 2,89 2 4,355 5,730 30-31 21,74 40,34 0,65 0,85 2,89 2 4,682 5,714 32-33 18,16 40,34 0,65 0,85 2,89 2 4,678 5,724 33-34 20,02 40,34 0,65 0,85 2,89 2 4,608 5,692 34-35 18,98 40,34<	22-23	14,36	40,34	0,65	0,85	2,89	2	4,400	5,778
25-26 16,97 40,34 0,65 0,85 2,89 2 4,597 5,777 26-27 12,95 40,34 0,65 0,85 0,00 2 4,039 5,669 27-28 13,07 40,34 0,65 0,85 2,89 2 4,297 5,892 28-29 14,44 40,34 0,65 0,85 2,89 2 4,406 8,385 29-30 13,79 40,34 0,65 0,85 2,89 2 4,355 5,730 30-31 21,74 40,34 0,65 0,85 0,00 2 4,731 5,655 31-32 18,16 40,34 0,65 0,85 2,89 2 4,682 5,714 32-33 18,10 40,34 0,65 0,85 2,89 2 4,678 5,724 33-34 20,02 40,34 0,65 0,85 2,89 2 4,608 5,692 34-35 18,98 40,34<	23-24	17,11	40,34	0,65	0,85	0,00	2	4,389	5,698
26-27 12,95 40,34 0,65 0,85 0,00 2 4,039 5,669 27-28 13,07 40,34 0,65 0,85 2,89 2 4,297 5,892 28-29 14,44 40,34 0,65 0,85 2,89 2 4,406 8,385 29-30 13,79 40,34 0,65 0,85 2,89 2 4,355 5,730 30-31 21,74 40,34 0,65 0,85 0,00 2 4,731 5,655 31-32 18,16 40,34 0,65 0,85 2,89 2 4,682 5,714 32-33 18,10 40,34 0,65 0,85 2,89 2 4,678 5,724 33-34 20,02 40,34 0,65 0,85 2,89 2 4,608 5,692 34-35 18,98 40,34 0,65 0,85 2,89 2 4,740 5,685 35-36 13,59 40,34 0,65 0,85 2,89 2 4,747 8,376 36-37	24-25	17,10	40,34	0,65	0,85	2,89	2	4,606	5,721
27-28 13,07 40,34 0,65 0,85 2,89 2 4,297 5,892 28-29 14,44 40,34 0,65 0,85 2,89 2 4,406 8,385 29-30 13,79 40,34 0,65 0,85 2,89 2 4,355 5,730 30-31 21,74 40,34 0,65 0,85 0,00 2 4,731 5,655 31-32 18,16 40,34 0,65 0,85 2,89 2 4,682 5,714 32-33 18,10 40,34 0,65 0,85 2,89 2 4,678 5,724 33-34 20,02 40,34 0,65 0,85 0,00 2 4,608 5,692 34-35 18,98 40,34 0,65 0,85 2,89 2 4,740 5,685 35-36 13,59 40,34 0,65 0,85 2,89 2 4,747 8,376 36-37 19,08 40,34 0,65 0,85 2,89 2 4,747 8,376	25-26	16,97	40,34	0,65	0,85	2,89	2	4,597	5,777
28-29 14,44 40,34 0,65 0,85 2,89 2 4,406 8,385 29-30 13,79 40,34 0,65 0,85 2,89 2 4,355 5,730 30-31 21,74 40,34 0,65 0,85 0,00 2 4,731 5,655 31-32 18,16 40,34 0,65 0,85 2,89 2 4,682 5,714 32-33 18,10 40,34 0,65 0,85 2,89 2 4,678 5,724 33-34 20,02 40,34 0,65 0,85 0,00 2 4,608 5,692 34-35 18,98 40,34 0,65 0,85 2,89 2 4,740 5,685 35-36 13,59 40,34 0,65 0,85 2,89 2 4,339 8,420 36-37 19,08 40,34 0,65 0,85 2,89 2 4,747 8,376	26-27	12,95	40,34	0,65	0,85	0,00	2	4,039	5,669
29-30 13,79 40,34 0,65 0,85 2,89 2 4,355 5,730 30-31 21,74 40,34 0,65 0,85 0,00 2 4,731 5,655 31-32 18,16 40,34 0,65 0,85 2,89 2 4,682 5,714 32-33 18,10 40,34 0,65 0,85 2,89 2 4,678 5,724 33-34 20,02 40,34 0,65 0,85 0,00 2 4,608 5,692 34-35 18,98 40,34 0,65 0,85 2,89 2 4,740 5,685 35-36 13,59 40,34 0,65 0,85 2,89 2 4,747 8,376 36-37 19,08 40,34 0,65 0,85 2,89 2 4,747 8,376	27-28	13,07	40,34	0,65	0,85	2,89	2	4,297	5,892
30-31 21,74 40,34 0,65 0,85 0,00 2 4,731 5,655 31-32 18,16 40,34 0,65 0,85 2,89 2 4,682 5,714 32-33 18,10 40,34 0,65 0,85 2,89 2 4,678 5,724 33-34 20,02 40,34 0,65 0,85 0,00 2 4,608 5,692 34-35 18,98 40,34 0,65 0,85 2,89 2 4,740 5,685 35-36 13,59 40,34 0,65 0,85 2,89 2 4,339 8,420 36-37 19,08 40,34 0,65 0,85 2,89 2 4,747 8,376	28-29	14,44	40,34	0,65	0,85	2,89	2	4,406	8,385
31-32 18,16 40,34 0,65 0,85 2,89 2 4,682 5,714 32-33 18,10 40,34 0,65 0,85 2,89 2 4,678 5,724 33-34 20,02 40,34 0,65 0,85 0,00 2 4,608 5,692 34-35 18,98 40,34 0,65 0,85 2,89 2 4,740 5,685 35-36 13,59 40,34 0,65 0,85 2,89 2 4,339 8,420 36-37 19,08 40,34 0,65 0,85 2,89 2 4,747 8,376	29-30	13,79	40,34	0,65	0,85	2,89	2	4,355	5,730
32-33 18,10 40,34 0,65 0,85 2,89 2 4,678 5,724 33-34 20,02 40,34 0,65 0,85 0,00 2 4,608 5,692 34-35 18,98 40,34 0,65 0,85 2,89 2 4,740 5,685 35-36 13,59 40,34 0,65 0,85 2,89 2 4,339 8,420 36-37 19,08 40,34 0,65 0,85 2,89 2 4,747 8,376	30-31	21,74	40,34	0,65	0,85	0,00	2	4,731	5,655
33-34 20,02 40,34 0,65 0,85 0,00 2 4,608 5,692 34-35 18,98 40,34 0,65 0,85 2,89 2 4,740 5,685 35-36 13,59 40,34 0,65 0,85 2,89 2 4,339 8,420 36-37 19,08 40,34 0,65 0,85 2,89 2 4,747 8,376	31-32	18,16	40,34	0,65	0,85	2,89	2	4,682	5,714
34-35 18,98 40,34 0,65 0,85 2,89 2 4,740 5,685 35-36 13,59 40,34 0,65 0,85 2,89 2 4,339 8,420 36-37 19,08 40,34 0,65 0,85 2,89 2 4,747 8,376	32-33	18,10	40,34	0,65	0,85	2,89	2	4,678	5,724
35-36 13,59 40,34 0,65 0,85 2,89 2 4,339 8,420 36-37 19,08 40,34 0,65 0,85 2,89 2 4,747 8,376	33-34	20,02	40,34	0,65	0,85	0,00	2	4,608	5,692
36-37 19,08 40,34 0,65 0,85 2,89 2 4,747 8,376	34-35	18,98	40,34	0,65	0,85	2,89	2	4,740	5,685
	35-36	13,59	40,34	0,65	0,85	2,89	2	4,339	8,420
	36-37	19,08	40,34	0,65	0,85	2,89	2	4,747	8,376
37-38 12,46 40,34 0,65 0,85 2,89 2 4,247 5,777	37-38	12,46	40,34	0,65	0,85	2,89	2	4,247	5,777
38-39 5,27 40,34 0,65 0,85 0,00 2 3,192 5,506	38-39	5,27	40,34	0,65	0,85	0,00	2	3,192	5,506
39-40 12,20 40,34 0,65 0,85 2,89 2 4,225 5,761	39-40	12,20	40,34	0,65	0,85	2,89	2	4,225	5,761
40-41 8,87 40,34 0,65 0,85 2,89 2 3,929 8,440	40-41	8,87	40,34	0,65	0,85	2,89	2	3,929	8,440
41-42 7,63 40,34 0,65 0,85 2,89 2 3,808 5,688	41-42	7,63	40,34	0,65	0,85	2,89	2	3,808	5,688
42-43 8,68 40,34 0,65 0,85 2,89 2 3,911 5,738	42-43	8,68	40,34	0,65	0,85	2,89	2	3,911	5,738
43-44 14,59 40,34 0,65 0,85 2,89 2 4,418 5,720	43-44	14,59	40,34	0,65	0,85	2,89	2	4,418	5,720
44-45 19,09 40,34 0,65 0,85 2,89 2 4,747 5,718	44-45	19,09	40,34	0,65	0,85	2,89	2	4,747	5,718
45-46 20,75 40,34 0,65 0,85 2,89 2 4,860 5,776	45-46	20,75	40,34	0,65	0,85	2,89	2	4,860	5,776

CÓDIGO: MT-ESP-PE-01-R00

HOJA **45** OF **143**

VANO ENTRE APOYOS	FLECHA MÁXIMA (m)	ÁNGULO OSCILACIÓN	К	K'	L (m)	Dpp	Dist.Mín. (m)	Dist.Real (m)
46-47	14,85	40,34	0,65	0,85	0,00	2	4,205	5,698
47-48	10,37	40,34	0,65	0,85	0,00	2	3,793	5,649
48-49	15,52	40,34	0,65	0,85	2,89	2	4,489	5,727
49-50	10,09	40,34	0,65	0,85	2,89	2	4,042	5,734
50-51	18,14	40,34	0,65	0,85	0,00	2	4,468	5,709
51-52	18,19	40,34	0,65	0,85	0,00	2	4,472	5,715
52-53	19,75	40,34	0,65	0,85	0,00	2	4,589	5,683
53-Pórtico Baza	0,85	45,67	0,65	0,85	0,00	2	2,299	3,649


6.2. Distancias entre conductores a partes puestas a tierra

Según la ITC-07 del Reglamento de Líneas de Alta Tensión la distancia mínima de los conductores y sus partes puestas en tensión y los apoyos no será inferior a Del, con un mínimo de 0,2m.

$$D_{el} = 1,70 \text{ m}$$

6.3. <u>Cálculo de la distancia a masa en apoyos tipo ángulo</u>

En los apoyos tipo ángulo la distancia entre los conductores en tensión y el apoyo puesto a tierra se puede calcular de la siguiente forma:

CÓDIGO: MT-ESP-PE-01-R00

HOJA 46 OF 143

$$d = \lg \, sen \left(\frac{\alpha}{2} - \beta \right)$$

siendo:

lg: Longitud de la cadena de amarre en metros

α: Ángulo de la línea

β: Semiángulo de la cruceta

donde:

$$\beta = a \tan \left(\frac{\frac{f}{2}}{br - \frac{f}{2}} \right)$$

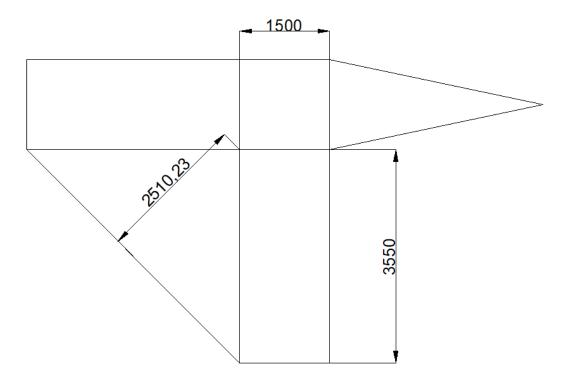
siendo:

f: Fuste del apoyo

br: Brazo más corto de la cruceta

Se ha realizado el cálculo de esta distancia para todos los apoyos tipo ángulo de la línea.

Ароуо	Mínima distancia real (m)
1	2,51
2	2,51
4	2,51
10	2,60
12	2,51
18	2,77
23	2,69
24	2,69
26	2,80
30	2,66
31	2,79
33	2,70
34	2,51
38	2,73

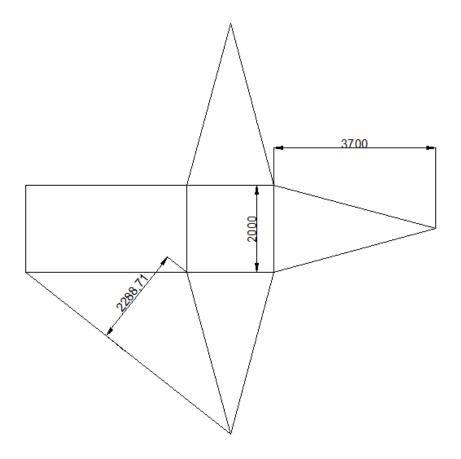


CÓDIGO: MT-ESP-PE-01-R00

HOJA **47** OF **143**

Ароуо	Mínima distancia real (m)
42	2,49
44	2,64
46	2,67
53	2,76

Los apoyos nº 1 y 2 contarán con una tercera cruceta para asegurarse de que se cumplen las distancias mínimas a masa. A continuación se muestra un esquema de la configuración del apoyo y la distancia mínima a la cabeza del apoyo medida en milímetros:


El apoyo nº 27 contará con una cuarta cruceta cuadrada para realizar un puente y asegurarse de que se cumplen las distancias mínimas a masa. A continuación se muestra un esquema de la configuración del apoyo y la distancia mínima a la cabeza del apoyo medida en milímetros:

CÓDIGO: MT-ESP-PE-01-R00

HOJA 48 OF 143

Con objeto de mantener la distancia a masa reglamentaria de los puentes flojos de los apoyos de ángulo, se instalará una suspensión contrapesada con 100kg en cada una de las fases.

En los apoyos que cuentan con crucetas cuadradas se instalarán solamente en ellas las suspensiones contrapesadas.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 49 OF 143

6.4. <u>Distancia de seguridad de los conductores al terreno,</u> caminos, sendas y a cursos de agua no navegables

Según el apartado 5.5 de la ITC-07 del Reglamento de Líneas Aéreas de Alta Tensión la altura de los apoyos será la necesaria para que los conductores, con su máxima flecha vertical, queden situados por encima de cualquier punto del terreno, caminos, sendas y cursos de agua no navegables a una altura mínima de:

$$h_{min} = D_{add} + D_{el} = 5.3 \text{ m} + D_{el} = (5.3 + 1.70) \text{ m} = 7.00 \text{ m}$$

Se tomará 8 metros para aumentar la seguridad.

No obstante, en lugares de difícil acceso esta distancia podrá ser reducida en un metro.

La distancia de los conductores al terreno en las condiciones más desfavorables se muestra en la siguiente tabla:

Vano	Apoyo anterior	Apoyo posterior	Distancia al terreno (m)
1	ST LÍMITE	1	12,83
2	1	2	13,45
3	2	3	9,30
4	3	4	9,31
5	4	5	8,58
6	5	6	8,01
7	6	7	8,04
8	7	8	10,33
9	8	9	8,01
10	9	10	8,18
11	10	11	8,51
12	11	12	9,63
13	12	13	9,28
14	13	14	8,32
15	14	15	9,21

CÓDIGO: MT-ESP-PE-01-R00

HOJA **50** OF **143**

Vano	Apoyo anterior	Apoyo posterior	Distancia al terreno (m)
16	15	16	8,53
17	16	17	8,32
18	17	18	8,67
19	18	19	9,51
20	19	20	9,58
21	20	21	8,02
22	21	22	9,46
23	22	23	8,42
24	23	24	9,96
25	24	25	9,39
26	25	26	8,52
27	26	27	8,14
28	27	28	8,98
29	28	29	8,80
30	29	30	10,31
31	30	31	9,20
32	31	32	8,90
33	32	33	11,40
34	33	34	9,67
35	34	35	8,45
36	35	36	12,90
37	36	37	9,63
38	37	38	14,60
39	38	39	21,40
40	39	40	10,00
41	40	41	13,99
42	41	42	8,32
43	42	43	14,70
44	43	44	9,75
45	44	45	9,41

CÓDIGO: MT-ESP-PE-01-R00

HOJA **51** OF **143**

Vano	Apoyo anterior	Apoyo posterior	Distancia al terreno (m)			
46	45	46	8,99			
47	46	47	16,42			
48	47	48	22,64			
49	48	49	10,22			
50	49	50	13,82			
51	50	51	8,10			
52	51	52	8,76			
53	52	53	8,31			
54	53	ST BAZA	12,42			

6.5. <u>Distancia de seguridad de los conductores a otras líneas</u> eléctricas

Distancia mínima en cruzamientos con otras líneas eléctricas aéreas o líneas aéreas de telecomunicaciones, según dispone el apartado 5.6.1 de la ITC-LAT 07 del R.D. 223/2008:

1) Distancia mínima entre los conductores de la línea inferior y las partes más próximas de los apoyos de la línea superior:

$$h_{min} = D_{add} + D_{el} = 1.5 \text{ m} + D_{el} = (1.5 + 0.70) \text{ m} = 2.20 \text{ m}$$

Con un mínimo de 3 metros.

La línea objeto del presente proyecto es la superior para todos los cruzamientos, y se ha elegido la ubicación de sus apoyos de modo que los conductores de las líneas inferiores cumplan la distancia anterior en sus posiciones de máxima oscilación.

2) La distancia mínima vertical entre los conductores de fase de ambas líneas viene dada por el Apartado 5.6.1. de la ITC-LAT 07, mediante la siguiente fórmula:

$$h_{min} = D_{add} + D_{pp} = 3.5 \text{ m} + D_{pp} = (3.5 + 2.00) \text{ m} = 5.50 \text{ m}$$

3) La distancia mínima vertical entre los conductores de fase de la línea eléctrica superior y los cables de tierra convencionales de la línea eléctrica inferior en el caso de que existan, no deberán ser inferiores a lo

CÓDIGO: MT-ESP-PE-01-R00

HOJA 52 OF 143

especificado en el Apartado 5.6.1. de la ITC-LAT 07, mediante la siguiente fórmula:

$$h_{min} = D_{add} + D_{el} = 1.5 \text{ m} + D_{el} = (1.5 + 1.70) \text{ m} = 3.20 \text{ m}$$

Las distancias se mantienen reglamentarias en los distintos cruzamientos según se recoge en la siguiente tabla:

Vano de cruce	Tipo de línea	Distancia real (m)
36-37	Línea Media Tensión	6,50
38-39	Línea Media Tensión	10,35
39-40	Línea Telefónica	9,63
47-48	Línea Media Tensión	7,81
52-53	Línea Media Tensión	9,32

6.6. Distancia de seguridad de los conductores a carreteras

Distancias mínimas a carreteras, según dispone el apartado 5.7 de la ITC-LAT 07 del R.D. 223/2008:

Distancia horizontal

Red de Carreteras del Estado: La instalación de los apoyos se realizará preferentemente detrás de la línea límite de edificación y a una distancia a la arista exterior de la calzada superior a vez y media su altura. La línea límite de edificación es la situada a 50 m en autopistas, autovías y vías rápidas y a 25 m en el resto de carreteras de la Red de Carreteras del Estado.

Red de Carreteras no pertenecientes a la Red de Carreteras del Estado: la instalación de los apoyos deberá cumplir la normativa vigente de cada comunidad autónoma aplicable a tal efecto.

Para la colocación de apoyos dentro de la zona de afección de la carretera, se solicitará la oportuna autorización a los órganos competentes de la Administración.

En circunstancias topográficas excepcionales y previa justificación técnica y aprobación del órgano competente de la Administración, podrá permitirse la colocación de apoyos a distancias menores de las fijadas.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 53 OF 143

• Distancia vertical

La distancia mínima vertical de los conductores sobre la rasante de la carretera será de:

$$h_{min} = D_{add} + D_{el} = 7.5 \text{ m} + D_{el} = (7.5 + 1.70) \text{ m} = 9.20 \text{ m}$$

Se tomará 10 metros para aumentar la seguridad.

Las distancias mínimas reglamentarias y proyectadas son las siguientes:

Nombre	Distan	cias horizontales	Distancias verticales				
vía	Apoyo	Distancia real (m)	Vano	Distancia real (m)			
Autovía	39	205,99	39-40	10.19			
A-92N	40	101,10	39-40	10,18			
Carretera	50	105,08	50-51	12.00			
A-4200	51	265,63	50-51	12,98			

6.7. Paso por masas de arbolado

Según el apartado 5.12.1 del R.L.A.T se debe establecer una zona de protección de la línea definida por la zona de servidumbre de vuelo, incrementada por la siguiente distancia de seguridad a ambos lados de la proyección:

$$D_{add} + D_{el} = 1.5 \text{ m} + D_{el} = (1.5 + 1.70) \text{ m} = 3.20 \text{ m}$$

CÓDIGO: MT-ESP-PE-01-R00

HOJA **54** OF **143**

7. Relación de organismos afectados

- 1. Excmo. Ayuntamiento de Baza.
- 2. Excmo. Ayuntamiento de Caniles.
- 3. Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas. Consejería de Medio Ambiente y Ordenación del Territorio.
- 4. Telefónica de España.
- 5. Agencia Andaluza del Agua.
- 6. Consejería de Obras Públicas y Transportes (Junta de Andalucía).
- 7. Endesa Distribución Eléctrica.
- 8. Consejería de Medio Ambiente de la Junta de Andalucía. Delegación Provincial de Granada (Vías Pecuarias).

capitalenergy

CÓDIGO: MT-ESP-PE-01-R00 HOJA 55 OF 143

8. Relación de bienes y derechos afectados

PROVINCIA DE GRANADA

TÉRMINO MUNICIPAL DE CANILES

										AFEC	CIONES			
	Finca de	Datos cat	astrales					Servidum	bre de paso			Ocupación		
	proyecto							1	· •		1	temporal	Tala de	
Termino municipal		Polígono	Parcela	Titular	Domicilio		Servidumbre	Servidumbre	Servidumbre	Nº de	Superficie apoyo	(obra y	arbolado	Naturaleza
municipal						Longitud de la traza	de vuelo	de vuelo + 3,2m	edificación 5m	ароуо	y sistema puesta a tierra	accesos)	(m2)	
							(m2)	(m2)	(m2)		(m2)	(m2)		
Caniles	1	11	9007					1	7,02	8,86		Vía de comunicación de dominio público	Caniles	1
Caniles	2	11	124	84,04	980,66	543,32	297,69	1	625,00	2210,18		Labor o Labradío secano	Caniles	2
Caniles	3	11	119	114,00	1.367,15	737,65	410,69	2	617,98	1078,64		Labor o Labradío secano	Caniles	3
Caniles	4	11	118	10,87	201,88	63,98	39,76					Labor o Labradío secano	Caniles	4
Caniles	5	11	9010	6,85	143,56	43,27	24,18					Vía de comunicación de dominio público	Caniles	5
Caniles	7	11	9002	22,07	543,90	124,96	67,49					Hidrografía natural (río,laguna,arroyo.)	Caniles	7
Caniles	8	11	117	36,27	874,53	258,41	150,66					Labor o Labradío secano	Caniles	8
Caniles	9	11	116	127,81	3.257,57	775,26	423,80					Labor o Labradío secano	Caniles	9
Caniles	10	11	115	17,72	382,93	144,81	91,52					Labor o Labradío secano	Caniles	10
Caniles	11	11	86	83,74	1.404,69	557,07	315,34	3	625,00	2803,16		Labor o Labradío secano	Caniles	11
Caniles	12	11	87	271,86	7.368,39	1.663,51	918,30					Labor o Labradío secano	Caniles	12
Caniles	13	11	97	17,17	334,42	164,88	107,01					Labor o Labradío secano	Caniles	13
Caniles	14	11	88	118,55	1.998,56	770,29	434,36	4	625,00	2002,20		Labor o Labradío secano	Caniles	14
Caniles	15	11	9001			1,93	7,34					Hidrografía natural (río,laguna,arroyo.)	Caniles	15
Caniles	16	11	89	188,51	6.033,00	1.098,55	623,68			920,17		Labor o Labradío secano	Caniles	16
Caniles	17	11	18	329,74	9.754,45	2.295,87	1.285,10	5	625,00	1953,13		Labor o Labradío secano	Caniles	17
Caniles	18	11	9008	20,16	740,56	115,75	60,37			26,88		Vía de comunicación de dominio público	Caniles	18
Caniles	19	12	55	285,85	7.605,16	1.795,32	1.011,18	6	625,00	1754,79		Labor o Labradío secano	Caniles	19
Caniles	20	12	9008	9,19	255,92	54,64	30,56		,	5,77	0,00	Hidrografía natural (río,laguna,arroyo.)	Caniles	20
Caniles	21	12	103	6,11	333,97	128,24	80,57				361,71	Almendro regadío	Caniles	21
Caniles	22	12	104	54,69	1.559,26	247,36	128,67				1443,25	Almendro regadío	Caniles	22
Caniles	23	12	106	166,64	4.829,72	1.058,36	594,23					Labor o Labradío secano	Caniles	23
Caniles	24	12	107	47,15	766,08	319,54	181,82	7	571,68	1232,56		Labor o Labradío secano	Caniles	24
Caniles	25	12	108	71,43	1.736,18	457,39	256,66	7	53,32	654,49	2666,74	Almendro regadío	Caniles	25
Caniles	26	12	109	108,95	3.999,33	692,74	389,23			,	5,72	Viñedos regadío	Caniles	26
Caniles	27	12	9006	5,78	231,33	37,00	20,81					Vía de comunicación de dominio público	Caniles	27
Caniles	28	12	110	22,48	908,60	143,47	80,67				33,11	Labor o Labradío secano	Caniles	28
Caniles	29	12	112	76,90	2.859,15	492,43	276,98				3195,65	Almendro regadío	Caniles	29
Caniles	30	12	111	19,54	787,10	124,53	70,00				96,72	Labor o Labradío secano	Caniles	30
Caniles	31	12	114	84,94	2.217,86	546,72	307,57				2763,95	Almendro regadío	Caniles	31
Caniles	32	8	9017	8,96	292,45	65,22	36,13			25,52	-,	Vía de comunicación de dominio público	Caniles	32
Caniles	33	12	116	, -	25,00	33,94	25,36	8	19,33	297,04	325,79	Labor o Labradío secano	Caniles	33

CÓDIGO: MT-ESP-PE-01-R00 HOJA 56 OF 143

		Datas sat								AFEC	CIONES			
	Finca de	Datos cat	astraies					0	L d			Ocupación		
	proyecto			1				Servidum	bre de paso			temporal	Tala de	
Termino municipal	-	Polígono	Parcela	Titular	Domicilio		Servidumbre	Servidumbre	Servidumbre	Nº de	Superficie apoyo	(obra y	arbolado	Naturaleza
municipai						Longitud de la traza	de vuelo	de vuelo + 3,2m	edificación 5m	apoyo	y sistema puesta a tierra	accesos)	(m2)	
							(m2)	(m2)	(m2)		(m2)	(m2)		
Caniles	34	8	184		82,91	55,63	37,53					Labor o Labradío secano	Caniles	34
Caniles	35	12	115	111,76	2.181,04	623,54	338,14	8	605,67	1538,86	32,14	Labor o Labradío secano	Caniles	35
Caniles	36	8	185	165,13	5.353,19	979,38	543,10					Labor o Labradío secano	Caniles	36
Caniles	37	12	117		116,03	75,25	50,73					Labor o Labradío secano	Caniles	37
Caniles	38	8	186	78,81	2.021,74	506,34	284,94					Labor o Labradío secano	Caniles	38
Caniles	39	8	187	68,37	1.158,36	440,02	247,44	9	625,00	2615,02		Labor o Labradío secano	Caniles	39
Caniles	40	8	189	48,14	1.223,70	309,03	173,83			*		Labor o Labradío secano	Caniles	40
Caniles	41	8	190	46,80	1.470,59	299,86	168,67					Labor o Labradío secano	Caniles	41
Caniles	42	8	192	72,53	2.528,28	464,23	261,13					Labor o Labradío secano	Caniles	42
Caniles	43	8	193	76,60	2.539,30	490,56	275,94					Labor o Labradío secano	Caniles	43
Caniles	44	8	201	300,89	7.573,02	1.937,24	1.090,19	10	625,00	2947,78		Labor o Labradío secano	Caniles	44
Caniles	45	8	9006	14,12	499,45	82,29	46,71		·	· · · · · · · · · · · · · · · · · · ·	385,13	Hidrografía natural (río,laguna,arroyo.)	Caniles	45
Caniles	46	8	204	41,59	1.401,67	268,12	150,39				0,00	Labor o Labradío secano	Caniles	46
Caniles	47	8	207	58,17	1.498,23	374,10	210,32				·	Labor o Labradío secano	Caniles	47
Caniles	48	8	209	47,54	1.146,17	305,92	172,08			0,04		Labor o Labradío secano	Caniles	48
Caniles	49	8	210	51,73	1.611,89	330,35	185,46			,		Labor o Labradío secano	Caniles	49
Caniles	50	8	202	72,58	2.873,68	456,90	256,13					Labor o Labradío secano	Caniles	50
Caniles	51	8	205	30,17	1.175,23	200,86	113,02				9,67	Labor o Labradío secano	Caniles	51
Caniles	52	8	212	94,72	3.389,79	604,46	340,08					Labor o Labradío secano	Caniles	52
Caniles	53	8	211	52,48	1.807,41	334,80	188,22					Labor o Labradío secano	Caniles	53
Caniles	54	8	208	59,33	982,12	387,16	218,33	11	625,00	1803,30		Labor o Labradío secano	Caniles	54
Caniles	55	8	213	88,54	2.334,87	567,68	319,09		·	·		Pastos / Labor o Labradío secano	Caniles	55
Caniles	56	8	110	27,91	432,39	177,49	99,53	12	44,85	1035,39		Labor o Labradío secano	Caniles	56
Caniles	57	8	111	231,97	6.360,14	1.494,14	840,92	12	580,16	1788,85		Labor o Labradío secano	Caniles	57
Caniles	58	8	206		,	,				1225,77		Labor o Labradío secano	Caniles	58
Caniles	59	8	104	98,82	3.463,01	582,76	324,47			536,12		Labor o Labradío secano	Caniles	59
Caniles	60	8	102	329,64		2.115,83	1.186,14	13	625,00	2086,62	12048,61	Olivos regadío	Caniles	60
Caniles	61	8	9020	16,80	604,95	95,86	56,61			-	173,38	Hidrografía natural (río,laguna,arroyo.)	Caniles	61
Caniles	62	8	100			33,06	60,09				33,01	Almendro secano	Caniles	62
Caniles	63	8	4	7,17	367,51	110,96	68,40				11,04	Labor o Labradío secano	Caniles	63
Caniles	64	8	103	58,88	2.395,33	407,06	192,49				2621,48	Olivos regadío	Caniles	64
Caniles	65	8	3	97,42	2.498,44	539,67	294,49	14	66,40	564,55	•	Labor o Labradío secano	Caniles	65
Caniles	66	6	9002	4,93	199,05	31,77	17,93		, -	,		Vía de comunicación de dominio público	Caniles	66
Caniles	67	8	2	209,13	6.081,93	1.361,02	768,49	14	558,60	1340,06		Labor o Labradío secano	Caniles	67
Caniles	68	6	136	46,82	1.905,71	288,79	150,85		,	, -		Labor o Labradío secano	Caniles	68
Caniles	69	6	135	47,93	1.499,51	154,11	86,64					Labor o Labradío secano	Caniles	69
Caniles	70	6	134	12,37	686,89	208,01	129,10					Almendro secano	Caniles	70
Caniles	71	6	9009	15,61	501,37	86,11	45,38			13,19		Vía de comunicación de dominio público	Caniles	71

CÓDIGO: MT-ESP-PE-01-R00 HOJA **57** OF **143**

		D-4	41											
	Finca de	Datos cat	astraies					Considum	bro do naco			Ocupación		
	proyecto			•				Servicum	bre de paso			temporal	Tala de	
Termino municipal		Polígono	Parcela	Titular	Domicilio		Servidumbre	Servidumbre	Servidumbre	Nº de	Superficie apoyo	(obra y	arbolado	Naturaleza
mumcipai						Longitud de la traza	de vuelo	de vuelo + 3,2m	edificación 5m	apoyo	y sistema puesta a tierra	accesos)	(m2)	
							(m2)	(m2)	(m2)		(m2)	(m2)		
Caniles	72	7	349	90,28	2.495,60	630,72	356,91	15	8,79	319,31		Labor o Labradío secano	Caniles	72
Caniles	73	7	348	500,43	15.116,58	3.219,50	1.811,71	15 / 16	1.241,21	3536,99		Labor o Labradío secano	Caniles	73
Caniles	74	7	9013	4,91	123,71	32,18	18,16					Vía de comunicación de dominio público	Caniles	74
Caniles	75	7	45	191,74	6.805,22	1.223,52	687,58					Labor o Labradío secano	Caniles	75
Caniles	76	7	44	17,28	644,41	124,96	75,13					Labor o Labradío secano	Caniles	76
Caniles	77	7	43	240,05	6.088,03	1.537,65	860,84	17	625,00	2197,98		Labor o Labradío secano	Caniles	77
Caniles	78	7	42	130,59	4.568,33	824,16	462,65					Labor o Labradío secano	Caniles	78
Caniles	79	7	41	283,87	6.633,66	1.825,97	1.027,18	18	625,00	2208,33		Labor o Labradío secano	Caniles	79
Caniles	80	5	9005	5,88	143,12	37,60	21,20			7,18		Vía de comunicación de dominio público	Caniles	80
Caniles	81	5	102	70,54	1.965,58	468,19	264,65					Labor o Labradío secano	Caniles	81
Caniles	82	5	100	190,43	4.975,99	1.202,57	675,02					Labor o Labradío secano	Caniles	82
Caniles	83	5	99	76,47	1.244,06	491,32	276,55	19	625,00	2357,03		Almendro secano	Caniles	83
Caniles	84	5	97	69,43	1.760,13	445,15	250,40					Labor o Labradío secano	Caniles	84
Caniles	85	5	96	59,69	1.849,67	382,16	214,96					Labor o Labradío secano	Caniles	85
Caniles	86	5	95	121,48	3.837,04	777,71	437,46					Labor o Labradío secano	Caniles	86
Caniles	87	5	94	45,78	1.191,43	293,43	165,05				3,03	Labor o Labradío secano	Caniles	87
Caniles	88	4	9006	5,27	138,03	33,96	19,10			15,63		Vía de comunicación de dominio público	Caniles	88
Caniles	89	5	93	144,69	2.794,86	930,45	523,73	20	625,00	2029,61	4999,91	Olivos secano	Caniles	89
Caniles	90	4	143	126,02	3.896,41	805,36	452,66			3,74	4566,95	Labor o Labradío secano	Caniles	90
Caniles	91	4	144	162,00	4.501,10	1.038,09	583,92				6,65	Labor o Labradío secano	Caniles	91
Caniles	92	4	145	157,83	3.250,20	1.012,71	569,64	21	625,00	2229,21		Labor o Labradío secano	Caniles	92
Caniles	93	4	146	171,25	5.031,74	1.053,48	591,00					Labor o Labradío secano	Caniles	93
Caniles	94	4	148	32,81	705,88	202,48	124,55					Labor o Labradío secano	Caniles	94
Caniles	95	4	149	183,26	3.900,56	1.226,38	680,76	22	625,00	1721,05		Labor o Labradío secano	Caniles	95
Caniles	96	4	150	48,90	1.448,73	313,02	176,07					Almendro secano	Caniles	96
Caniles	97	4	151	45,02	1.361,91	288,11	162,06					Labor o Labradío secano	Caniles	97
Caniles	98	4	152	140,77	3.446,35	902,20	507,49					Labor o Labradío secano	Caniles	98
Caniles	99	4	153	127,82	2.049,29	821,71	462,24	23	625,00	1935,09		Labor o Labradío secano	Caniles	99
Caniles	100	4	154	119,87	3.541,20	767,17	431,46					Labor o Labradío secano	Caniles	100
Caniles	101	4	155	131,37	3.991,02	840,51	472,71					Labor o Labradío secano	Caniles	101
Caniles	102	3	9007	6,91	174,28	44,30	24,91			4,90		Hidrografía natural (río,laguna,arroyo.)	Caniles	102
Caniles	103	3	179	51,27	1.091,18	329,04	185,05			202,75		Labor o Labradío secano	Caniles	103
Caniles	104	3	178	65,00	826,61	418,58	235,52	24	625,00	1429,60		Labor o Labradío secano	Caniles	104
Caniles	105	3	177	95,59	2.062,14	613,60	345,15			288,87		Labor o Labradío secano	Caniles	105
Caniles	106	3	183							71,47		Labor o Labradío secano	Caniles	106
Caniles	107	3	176	88,04	2.769,46	563,77	317,12			214,24		Labor o Labradío secano	Caniles	107
Caniles	108	3	175	58,27	1.963,33	372,92	209,77			160,93		Labor o Labradío secano	Caniles	108
Caniles	109	3	173	30,56	855,46	195,00	109,44			36,66	1043,50	Labor o Labradío secano	Caniles	109

CÓDIGO: MT-ESP-PE-01-R00 HOJA **58** OF **143**

		Datos cat	ootroloo							AFEC	CIONES			
	Finca de proyecto	Datos Cat	astrales				Servidumbre de paso Cupación temporal Tala d		Tala de					
Termino municipal		Polígono	Parcela	Titular	Domicilio		Servidumbre	Servidumbre	rvidumbre Servidumbre Nº de Superficie apoyo (obra y		(obra y	arbolado	Naturaleza	
Пипстраг						Longitud de la traza	de vuelo	de vuelo + 3,2m	edificación 5m	apoyo	yo y sistema puesta accesos)		(m2)	
							(m2)	(m2)	(m2)		(m2)	(m2)		
Caniles	110	3	184			0,01	12,30			345,89	0,00	Labor o Labradío secano	Caniles	110
Caniles	111	3	174	58,99	1.868,00	378,57	213,19			103,05		Labor o Labradío secano	Caniles	111
Caniles	112	3	172	72,58	1.533,33	465,93	262,08	25	1,19	453,02	0,07	Labor o Labradío secano	Caniles	112
Caniles	113	3	171	113,03	2.310,50	736,72	415,27	25	623,81	1382,97		Labor o Labradío secano	Caniles	113
Caniles	114	3	358	224,62	7.086,30	1.197,45	621,31				8235,15	Labor o Labradío secano	Caniles	114
Caniles	115	3	170	25,01	641,61	101,24	59,20				742,62	Labor o Labradío secano	Caniles	115
Caniles	116	3	357	82,07	1.454,97	487,74	242,23	26	208,28	915,10	2716,42	Labor o Labradío secano	Caniles	116
Caniles	117	3	169	178,46	3.812,02	1.144,64	643,90	26	416,72	1184,20		Labor o Labradío secano	Caniles	117
Caniles	118	3	167	81,58	2.388,17	522,10	273,77			0,65		Labor o Labradío secano	Caniles	118
Caniles	119	3	166	90,80	2.180,67	434,91	178,49			62,03		Labor o Labradío secano	Caniles	119
Caniles	120	3	185	257,90	6.045,57	1.995,26	1.277,42	27	625,00	4302,88	345,09	Labor o Labradío secano	Caniles	120
Caniles	121	3	9008	21,82	966,69	264,51	147,04				964,32	Hidrografía natural (río,laguna,arroyo.)	Caniles	121
Caniles	122	3	9009			2,59	5,56			8,87		Vía de comunicación de dominio público	Caniles	122
Caniles	123	3	331	279,70	6.387,79	1.801,44	1.011,44	28	625,00	2058,60	2153,64	Pastos / Labor o Labradío secano	Caniles	123
Caniles	124	3	160							150,00		Labor o Labradío secano	Caniles	124

apitalenergy	

CÓDIGO: MT-ESP-PE-01-R00 HOJA **59** OF **143**

PROVINCIA DE GRANADA

TÉRMINO MUNICIPAL DE BAZA

		Detec estectuales					AFECCION	ES				
	Finca de	Datos catastrales								Ocupación		
	proyecto			Servidumbre de paso							Tala de	
Termino municipal		Polígono	Parcela					Superficie apoyo	(obra y	arbolado	Naturaleza	
		-		Longitud de la	de vuelo	de vuelo + 3,2m	edificación 5m	apoyo	y sistema puesta a tierra	accesos)	(m2)	
				traza	(m2)	(m2)	(m2)		(m2)	(m2)		
Baza	125	12	211	8,04	259,61	83,28	55,07					Labor o Labradío secano
Baza	126	12	212	455,80	11738,58	2885,24	1618,29	29	625,00	2194,21		Labor o Labradío secano
Baza	127	12	9013	8,29	267,40	50,76	24,10			5,39		Vía de comunicación de dominio público
Baza	128	12	213	59,80	1704,08	386,45	217,62					Pastos
Baza	129	12	9004	9,32	244,12	59,80	33,65			13,87		Vía de comunicación de dominio público
Baza	130	12	261	16,67	689,85	223,89	135,01					Labor o Labradío secano
Baza	131	12	262	46,44	963,71	202,52	100,85					Pastos
Baza	132	12	302	617,34	17834,94	3793,48	2122,52	30	625,00	2930,22		Labor o Labradío secano
Baza	133	12	263	36,23	551,61	233,11	131,09	31	85,53	589,74		Pastos
Baza	134	12	264	88,01	1441,45	566,53	318,76	31	539,47	1432,85		Labor o Labradío secano
Baza	135	12	265	42,06	1128,39	269,78	151,75					Pastos
Baza	136	12	266	38,40	1200,09	245,99	138,36					Pastos
Baza	137	12	267	68,89	2383,09	440,74	247,89					Labor o Labradío secano
Baza	138	12	268	56,95	2017,49	370,13	208,73					Pastos
Baza	139	12	269	47,32	1545,76	296,93	166,88					Pastos
Baza	140	12	270	195,58	4324,41	1256,84	706,62	32	625,00	1877,29		Pastos
Baza	141	12	271	199,20	6607,71	1274,83	717,03			55,57		Labor o Labradío secano
Baza	142	12	272	32,74	1070,74	209,57	117,87					Labor o Labradío secano
Baza	143	12	273	87,58	2308,74	561,75	315,97					Frutales secano
Baza	144	12	274	59,50	859,87	382,84	215,35	33	419,65	1205,78		Labor o Labradío secano
Baza	145	12	275	53,45	831,01	343,79	193,38	33	205,35	777,59		Labor o Labradío secano
Baza	146	12	276	77,69	2100,88	524,59	297,04			19,46		Almendro secano
Baza	147	12	301		190,64	131,73	89,18					Labor o Labradío secano
Baza	148	12	9003	5,37	194,68	37,39	21,22					Vía de comunicación de dominio público
Baza	149	13	149	15,02	708,68	198,64	122,58					Labor o Labradío secano
Baza	150	13	148	358,22	8550,98	2180,77	1213,90	34	625,00	1889,58		Labor o Labradío secano
Baza	151	13	147	51,46	1737,10	328,21	184,50					Labor o Labradío secano
Baza	152	13	146	54,46	1959,12	346,72	194,90				104,98	Labor o Labradío secano
Baza	153	13	145	50,01	1779,43	318,45	179,00					Labor o Labradío secano
Baza	154	13	144	88,13	2718,71	562,71	316,26				3036,83	Olivos secano

CÓDIGO: MT-ESP-PE-01-R00 HOJA **60** OF **143**

Baza	155	13	143	126,45	2414,25	821,37	462,95	35	625,00	2148,01	45,06	Labor o Labradío secano	
Baza	156	13	9007	15,68	482,85	96,26	54,11			7,99		Vía de comunicación de dominio público	
Baza	157	13	104		113,19	62,77	41,36					Pastos	
Baza	158	13	142	92,83	2386,57	538,09	296,29					Labor o Labradío secano	
Baza	159	12	9002	5,49	172,36	40,00	23,67						
Baza	160	12	292		33,69	52,45	40,10					Olivos secano	
Baza	161	13	141		104,81	70,53	47,60					Labor o Labradío secano	
Baza	162	12	291	58,46	1630,01	311,70	162,28					Pastos	
Baza	163	13	105	73,75	2110,77	378,62	202,06					Labor o Labradío secano	
Baza	164	13	101	3,55	163,57	75,95	49,06					Labor o Labradío secano	
Baza	165	12	290		7,01	15,00	12,11					Pastos	
Baza	166	12	9001	5,09	119,50	25,78	14,31			3,55		Vía de comunicación de dominio público	
Baza	168	13	100	203,30	4461,43	1256,86	700,23	36	625,00	1754,45		Labor o Labradío secano / Pastos	
Baza	169	13	41	107,92	3723,88	639,18	361,91			656,36		Espartizal o atochar	
Baza	170	13	45		237,88	90,35	51,07					Espartizal o atochar	
Baza	171	13	46		11,87	39,45	34,26					Espartizal o atochar	
Baza	172	13	42		94,12	159,36	121,15			309,14		Labor o Labradío secano	
Baza	173	13	44	182,51	5542,55	961,51	508,92	37	47,39	757,81		Labor o Labradío secano	
Baza	174	13	43	166,05	3297,34	1044,96	574,60	37	577,61	1252,04	1195,89	Labor o Labradío secano / Espartizal o atochar	
Baza	175	13	49							42,36		Olivos regadío	
Baza	176	13	263							342,13		Labor o labradío regadío	
Baza	177	13	23							29,80		Labor o labradío regadío	
Baza	178	13	59	145,22	3761,34	883,25	492,64			102,25	3650,39	Pastos	
Baza	179	13	30	79,24	1553,45	553,89	315,63			583,27	26,89	Pastos	
Baza	180	13	21							181,50		Arboles de ribera	
Baza	181	13	29	138,86	1929,22	898,85	507,89	38	625,00	1933,38	4,62	Espartizal o atochar	
Baza	182	13	26		7,18	29,67	27,64					Olivos regadío	
Baza	183	13	27	19,29	299,62	48,08	5,66					Olivos regadío	
Baza	184	13	28		15,53	35,33	28,40					Labor o labradío regadío	
Baza	185	13	22	185,65	2777,84	1192,56	670,57	39	625,00	3131,59	1145,48	Arboles de ribera	
Baza	186	22	581	98,94	2612,86	634,94	357,54				530,94	Arboles de ribera	
Baza	187	13	9001	18,38	417,54	115,64	64,60				488,47	Hidrografía natural (río,laguna,arroyo.)	
Baza	188	900	9101	71,28	1875,58	455,89	256,39				627,30	Vía de comunicación de dominio público	
Baza	189	21	870		2,29	10,26	9,37				13,39	Olivos regadío	
Baza	190	14	98	91,76	1712,64	574,43	321,44	40	216,75	533,44	2907,47	Labor o labradío regadío / Pastos	
Baza	191	900	9601	94,88	1796,21	599,82	333,73	40	408,25	700,83	2319,44	Vía de comunicación de dominio público	
Baza	192	14	139	71,15	1736,84	468,10	265,10				850,81	Labor o labradío regadío / Olivos regadío	
Baza	193	14	99	71,07	1662,19	454,95	255,90			48,50	1727,68	Almendro regadío / Olivos regadío	
Baza	194	14	102	205,41	3791,54	1315,93	740,22	41	625,00	2054,83	1629,24	Labor o labradío regadío / Olivos regadío	
Baza	195	14	9005	6,26	133,46	40,02	22,51			11,84		Vía de comunicación de dominio público	

CÓDIGO: MT-ESP-PE-01-R00 HOJA **61** OF **143**

Baza	196	14	141	4,74	101,64	30,39	17,09	1 1		I	1	Viñedos regadío	
Baza	197	14	122	870,25	17963,22	5578,74	3138,15	42 / 43 / 44	1873,33	7517,17		Labor o Labradío secano	
Baza	198	14	123	284,40	8579,65	1814,45	1019,27		1,67	889,28		Labor o Labradío secano	
Baza	199	14	71	77,56	2424,37	465,02	256,32				73,78	Labor o labradío regadío	
Baza	200	14	70	9,00	282,43	95,14	59,53				59,42	Labor o Labradío secano	
Baza	201	14	9004	5,31	145,03	36,49	20,42			3,85	35,76	Vía de comunicación de dominio público	
Baza	202	15	89	253,25	6400,05	1620,19	911,29	45	625,00	1733,35		Pastos / Labor o Labradío secano / Labor o labradío regadío	
Baza	203	15	9005	4,77	185,88	32,68	18,28					Vía de comunicación de dominio público	
Baza	204	15	88	454,01	12238,46	2913,91	1639,56	46	625,00	3252,42		Pastos / Labor o labradío regadío / Olivos regadío / Labor o Labradío secano	
Baza	205	15	86	272,56	6311,43	1751,06	975,02	47	543,05	505,78		Labor o labradío regadío / Pastos	
Baza	206	15	9004	6,99	106,56	46,28	26,91			81,70		Vía de comunicación de dominio público	
Baza	207	15	87				0,09					Labor o labradío regadío / Pastos	
Baza	208	15	18	19,27	253,65	119,25	74,66		81,95	852,16		Pastos / Labor o labradío regadío	
Baza	209	15	84	160,25	3416,16	975,34	541,07				643,45	Prados o praderas / Labor o labradío regadío / Pastos	
Baza	210	900	9204	32,73	551,64	209,58	117,79			90,77	107,54	Hidrografía construida (embalse,canal) / Vía de comunicación de dominio público / Pinar maderable / Pastos	
Baza	211	15	85	67,40	1470,63	478,54	277,79					Labor o Labradío secano	
Baza	212	15	21	57,96	697,00	384,12	217,99	48	600,00	1710,26		Labor o labradío regadío	
Baza	213	15	22	133,12	3837,35	879,47	501,88		121,07	169,64		Prados o praderas	
Baza	214	15	23	158,66	3901,46	1008,25	565,62		25,00	260,18		Pastos	
Baza	215	15	25	43,88	1286,87	276,82	154,64			11,39		Labor o labradío regadío	
Baza	216	15	26	279,85	6057,94	1811,94	1020,26	49	625,00	3486,51		Labor o labradío regadío	
Baza	217	15	27	135,84	2364,62	872,40	491,01	50	503,82	1645,47		Labor o labradío regadío	
Baza	218	15	9001	13,27	381,44	85,46	48,09					Vía de comunicación de dominio público	
Baza	219	15	28	93,91	2002,25	563,31	309,45		1,70	6,00		Prados o praderas	
Baza	220	16	105		2,39	18,11	17,97					Prados o praderas	
Baza	221	16	125		96,04	59,99	40,10				49,07	Labor o labradío regadío	
Baza	222	15	33							426,79		Labor o labradío regadío	
Baza	223	16	316		87,21	87,85	62,63				166,89	Labor o labradío regadío / Olivos regadío / Improductivo	
Baza	224	16	106	178,43	5717,57	1059,04	581,25				135,52	Olivos regadío	
Baza	225	16	90	65,09	769,36	319,04	175,71	51	587,87	978,47	1647,64	Labor o labradío regadío	
Baza	226	16	91	133,68	3005,16	797,67	438,09		31,94	351,10	1483,55	Labor o labradío regadío / Olivos regadío	
Baza	227	16	283	71,78	1832,58	534,43	300,94			349,78	2366,12	Labor o labradío regadío / Edificaciones agrarias	
Baza	228	16	9005	3,58	121,33	23,80	13,62				127,75	Vía de comunicación de dominio público	
Baza	229	16	281				0,83		5,19	105,96	107,18	Labor o labradío regadío	
Baza	230	16	304	22,57	812,29	200,45	122,31					Labor o labradío regadío	
Baza	231	16	32		2,37	19,35	19,42				5,16	Labor o labradío regadío / Olivos regadío	

CÓDIGO: MT-ESP-PE-01-R00 HOJA **62** OF **143**

Baza	232	16	89	82,72	2623,33	528,70	297,16				388,29	Labor o labradío regadío	
Baza	233	16	322	209,85	4424,29	1329,14	739,18	52	625,00	1980,82	3544,76	Labor o labradío regadío / Olivos regadío	
Baza	234	16	305	61,32	1999,12	336,19	179,53				1,40	Labor o labradío regadío	
Baza	235	16	31	161,43	4948,87	1034,42	581,85				36,21	Pastos / Labor o labradío regadío	
Baza	236	16	306							154,18		Labor o labradío regadío	
Baza	237	16	290	117,43	3911,88	751,73	422,80				4164,51	Labor o labradío regadío	
Baza	238	16	13							260,89		Labor o labradío regadío	
Baza	239	16	323							35,26		Labor o labradío regadío	
Baza	240	16	86							154,19		Labor o labradío regadío / Labor o labradío regadío	
Baza	241	16	330	72,63	1527,55	466,81	262,49			230,12	1987,38	Almendro regadío	
Baza	242	16	298	42,03	592,85	256,79	140,97	53	625,00	1945,72		Labor o labradío regadío	
Baza	243	16	11		17,02	16,78	12,27	Pórtico Baza				Labor o labradío regadío	

CÓDIGO: MT-

MT-ESP-PE-01-R00

HOJA **63** OF **143**

9. Cálculos

9.1. Cálculo mecánico del conductor LA-545 CARDINAL

9.1.1. <u>Características de la línea</u>

Tensión nominal (kV)	220
Categoría	Especial
Zona de aplicación	B Y C
Longitud tramo aéreo (km)	20,709
Velocidad del viento (km/h)	140
Longitud cadena suspensión con herrajes (m)	2,893
Longitud cadena amarre con herrajes (m)	4,654
Peso de la cadena de aisladores suspensión (daN)	106,85

9.1.2. Características del conductor LA-545 CARDINAL

El conductor aéreo a emplear en la línea es un LA-545 cuyas características son las siguientes:

Son cables de aluminio con alma de acero de conductores cableados concéntricos, compuestos de un alma de acero del tipo ST1A y una o más capas de hilos de aluminio del tipo AL1.

Tipo	LA –545
Material	Aluminio – Acero
Composición (mm)	54+7
Diámetro cable completo (mm)	
Sección total (mm2)	545,8
Peso (daN/m)	
Carga de rotura (daN)	15.035
Módulo de elasticidad (daN/mm2)	7.089
Coeficiente de dilatación lineal (°C ⁻¹)	17,3·10 ⁻⁶

CÓDIGO: MT-ESP-PE-01-R00

HOJA 64 OF 143

9.1.3. Acciones consideradas

9.1.3.1. Cargas permanentes

Según la ITC-07 en su punto 3.1.1 del Reglamento de Líneas de Alta Tensión, se considera la carga vertical debida al peso propio del conductor.

Peso del conductor (daN/m) pc = 1,794

Acción del viento 9.1.3.2.

Según la ITC-07 del Reglamento de Líneas de Alta Tensión, se considerará la presión del viento sobre el conductor en función del diámetro del mismo. Se ha considerado una velocidad máxima de viento de 140km/h.

Acción del viento horizontal (daN /m)pv = 2,708

9.1.3.3. Sobrecarga de hielo

Según el Reglamento de Líneas de Alta Tensión, se considerará la sobrecarga de un manguito de hielo sobre el conductor.

Sobrecarga de hielo en Zona B (daN/m)p _h	= 0,973
Sobrecarga de hielo en Zona C	(daN/m)p _h	= 1,946

También se ha considerado una acción de viento de 60km/h actuando sobre el conductor en la hipótesis de hielo. Esta velocidad hace una presión sobre los conductores de 12,50daN/m2.

El espesor del manguito de hielo, calculado con densidad de hielo 750daN/m³ para las condiciones de hielo reglamentarias hace que el diámetro expuesto al viento sea de 50,73mm en zona B y 64,99mm en zona C.

Por tanto, en zona B, la sobrecarga horizontal será:

Sobrecarga horizontal de hielo (daN/m)	$h_h = 0,622$
La sobrecarga vertical será la de hielo actuando sobre el conductor:	
Sobrecarga vertical de hielo incluyendo peso (daN/m)	$h_v = 2,769$
La sobrecarga total será la composición de ambas:	
Sobrecarga de hielo más viento (daN/m)	$h_t = 2,837$

Por tanto, en zona C, la sobrecarga horizontal será:

٤	30	brecarga	horizonta	al de	hielo	(daN/m)h	h =	0.7	797	,

CÓDIGO: MT-ESP-PE-01-R00

HOJA 65 OF 143

La sobrecarga vertical será la de hielo actuando sobre el conductor:

Sobrecarga vertical de hielo incluyendo peso (daN/m)h_v = 3,742 La sobrecarga total será la composición de ambas:

9.1.4. Hipótesis de partida

9.1.4.1. Límite estático

La tensión máxima de los conductores es la indicada en la siguiente tabla:

CONDUCTOR	TRAMO	CARGA DE ROTURA (daN)	COEF.SEG. Cs	TENSIÓN MÁXIMA(daN)
LA -545 (Zona C)	SET Límite – Ap.1	15.035	42,96	350
LA -545 (Zona C)	Ap.1 – Ap.18	15.035	3,50	4300
LA -545 (Zona B)	Ap.18 – Ap.53	15.035	3,50	4300
LA -545 (Zona B)	Ap.53 – SET BAZA	15.035	39,57	380

9.1.4.2. Límite dinámico

Los fenómenos vibratorios se tendrán presente en las siguientes hipótesis de carga:

9.1.4.3. <u>Hipótesis EDS (Every Day Stress)</u>

La hipótesis de carga EDS tiene en cuenta el fenómeno de vibración eólica del cable en condiciones de temperatura normales (15°C para todas zonas) sin sobrecarga, de modo que la tensión del cable nunca supere un % de la carga de rotura.

El valor de tense EDS mostrado en la siguiente tabla muestra un valor EDS inferior al 22%, que sería el límite establecido.

CONDUCTOR	TRAMO	CARGA DE ROTURA (daN)	TENSE EDS (daN)	% ROTURA
LA -545 (Zona C)	Ap.1 – Ap.2	15.035	1.203	8,00
LA -545 (Zona C)	Ap.2– Ap.18	15.035	2.709	18,00
LA -545 (Zona B)	Ap.18 – Ap.52	15.035	2.859	19,00
LA -545 (Zona B)	Ap.52 – Ap.53	15.035	1.957	13,00

CÓDIGO: MT-ESP-PE-01-R00

HOJA 66 OF 143

9.1.5. Hipótesis de cálculo

9.1.5.1. Tracción máxima admisible

Según la tabla 4 de la Instrucción Técnica Complementaria 07 del actual Reglamento de Líneas de Alta Tensión los conductores deberán resistir las sobrecargas siguientes:

ZONA B: Peso propio, sobrecarga de hielo y viento de 60km/h a -15 °C

$$p_{H} = \sqrt{(p_{c} + p_{h})^{2} + p_{v}^{2}}$$

 $p_h = 2,838 \text{ daN/m}$

$$\theta_h = -15 \, ^{\circ}\text{C}$$

<u>Hipótesis adicional</u>: Peso propio y sobrecarga de viento de 140km/h a −10 °C

$$p_{C} = \sqrt{p_{c}^{2} + p_{v140}^{2}}$$

 $p_v = 2,709 \text{ daN/m}$

$$\theta_v = -10 \, {}^{\circ}\text{C}$$

ZONA C: Peso propio, sobrecarga de hielo y viento de 60km/h a -20 °C

$$p_{H} = \sqrt{(p_{c} + p_{h})^{2} + p_{v}^{2}}$$

 $p_h = 3.825 \text{ daN/m}$

$$\theta_h = -20 \, {}^{\circ}\text{C}$$

Hipótesis adicional: Peso propio y sobrecarga de viento de 140km/h a −15 °C

$$p_{\text{C}} = \sqrt{p_{\text{c}}^2 + p_{\text{v140}}^2}$$

 $p_v = 2.709 \text{ daN/m}$

$$\theta_v = -15$$
 °C

9.1.5.2. Hipótesis de flecha máxima

Según la ITC-07 del actual Reglamento de Líneas de Alta Tensión (Apartado 3.2.3), se determinará la flecha máxima de los conductores o cables de tierra en las hipótesis siguientes:

• Hipótesis de viento: Acción del peso propio y una sobrecarga de viento a 120km/h a la temperatura de 15 °C.

$$p_{2v} = \sqrt{p_c^2 + p_v^2}$$

 $p_{2v} = 2,333 \text{ daN/m}$

$$\Theta_{2v} = 15 \, {}^{\circ}\text{C}$$

CÓDIGO: MT-ESP-PE-01-R00

HOJA 67 OF 143

• Hipótesis de temperatura: Acción del peso propio a la temperatura de 85 °C, debido a las condiciones especiales de temperatura en la línea.

$$p_{2t} = p_c$$
 $p_{2t} = 1,794 \text{ daN/m}$

$$\Theta_{2t} = 85 \, {}^{\circ}\text{C}$$

 \bullet Hipótesis de hielo: Acción del peso propio y una sobrecarga de hielo a la temperatura de 0 $^{\circ}\text{C}.$

Zona B:

$$p_{2h} = p_c + p_h$$

$$p_{2h} = 2,768 \text{ daN/m}$$

$$\Theta_{2h} = 0$$
 °C

Zona C:

$$p_{2h} = p_c + p_h$$

$$p_{2h} = 3,741 \text{ daN/m}$$

$$\Theta_{2h} = 0$$
 °C

9.1.5.3. Hipótesis de flecha mínima

La hipótesis de flecha mínima es:

ZONA B: Peso propio sin sobrecarga a -15 °C

$$p_{2B} = p_c$$
 $p_{2B} = 1,794 \text{ daN/m}$

$$\theta_{2B} = -15 \, {}^{\circ}\text{C}$$

ZONA C: Peso propio sin sobrecarga a -20 °C

$$p_{2B} = p_c$$
 $p_{2B} = 1,794 \text{ daN/m}$

$$\theta_{2B}$$
 = -20 °C

9.1.6. Vano ideal de regulación

El comportamiento de la componente horizontal de la tensión del cable en un cantón de la línea se puede asemejar al comportamiento del mismo cable en un único vano llamado vano ideal de regulación.

Siendo:

CÓDIGO: MT-ESP-PE-01-R00

HOJA 68 OF 143

$$k = \frac{\sum_{i=1}^{n} \frac{a_i'^3}{a_i^2}}{\sum_{i=1}^{n} \frac{a_i'^2}{a_i}}$$

$$a'_i = \sqrt{a_i^2 + b_i^2} \qquad (m)$$

donde:

a_i : Longitud del vano i medido en la dirección longitudinal (m).

b_i: Desnivel del vano i medido en la dirección vertical (m).

El vano ideal de regulación se determinará mediante la siguiente expresión:

$$a_{r} = k \sqrt{\frac{\sum a_{i}^{3}}{\frac{a_{i}^{2}}{a_{i}}}} \quad (m)$$

Operando de esta forma se obtienen las tablas siguientes:

CÓDIGO: MT-ESP-PE-01-R00 HOJA **69** OF **143**

VANOS IDEALES DE REGULACIÓN CONDUCTOR LA-545

Cantón Nº	Apoyo Inicial	Apoyo Final	Longitud Cantón (m)	Vano de Regulación (m)	Tense de flecha máxima (daN)	Tense Flecha mínima (daN)	Parámetro flecha máxima (m)	Parámetro flecha mínima (m)
1	Pórtico Limite	1	24,24	19,18	145	164	74	84
2	1	2	117,22	113,71	855	1607	473	894
3	2	4	683,27	342,63	1773	2185	967	1200
4	4	10	2374,10	396,92	1820	2134	991	1169
5	10	12	840,98	421,14	1838	2115	997	1155
6	12	18	2524,84	421,11	1838	2116	997	1155
7	18	23	1992,10	398,39	2289	2925	1253	1611
8	23	24	443,79	443,78	2349	2884	1288	1540
9	24	26	874,71	437,49	2345	2887	1280	1585
10	26	27	388,24	387,75	2266	2944	1238	1618
11	27	30	1175,00	391,94	2275	2936	1247	1620
12	30	31	501,34	502,01	2415	2841	1315	1556
13	31	33	902,81	451,54	2363	2874	1287	1575

CÓDIGO: MT-ESP-PE-01-R00 HOJA **70** OF **143**

Cantón Nº	Apoyo Inicial	Apoyo Final	Longitud Cantón (m)	Vano de Regulación (m)	Tense de flecha máxima (daN)	Tense Flecha mínima (daN)	Parámetro flecha máxima (m)	Parámetro flecha mínima (m)
14	33	34	480,44	479,77	2391	2857	1310	1574
15	34	38	1673,37	423,04	2330	2896	1266	1585
16	38	39	237,41	234,23	1911	3258	1022	1764
17	39	42	959,38	324,37	2153	3036	1182	1678
18	42	44	712,14	365,17	2231	2971	1227	1644
19	44	46	949,82	475,16	2385	2860	1307	1675
20	46	47	411,33	410,40	2316	2907	1267	1600
21	47	48	340,90	339,80	2179	3011	1185	1651
22	48	50	749,18	380,54	2261	2946	1234	1620
23	50	51	456,99	456,92	2355	2877	1290	1584
24	51	52	457,81	457,79	2366	2872	1295	1581
25	52	53	412,64	412,21	1431	1539	767	829
26	53	Pórtico Baza	25,23	23,42	183	249	58	83

CÓDIGO: MT-ESP-PE-01-R00

HOJA 71 OF 143

9.1.7. Comparación de hipótesis

9.1.7.1. Tensión mecánica

Partiendo de la tensión, temperatura y carga total correspondientes al valor de la tensión máxima adoptado, se calcula con la ayuda de la ecuación de cambio de condiciones, las tensiones respectivas a las hipótesis citadas en el apartado anterior.

Dicha ecuación es:

$$T_{2}^{2} \cdot \left[T_{2} \cdot \frac{A \cdot a^{2} \cdot p_{1}^{2}}{T_{1}^{2}} + B \cdot (\theta_{2} - \theta_{1}) - T_{1} \right] = A \cdot a^{2} \cdot p_{2}^{2}$$

siendo:

T₁ Tensión del cable en condiciones iniciales en daN

q₁ Temperatura del cable en condiciones iniciales en °C

p₁ Carga del cable en condiciones iniciales, en daN/m

T₂, q₂, p₂ Los mismos conceptos anteriores en condiciones finales

a Vano de cálculo en m

A
$$\frac{S_a \cdot E}{24}$$

B
$$S \cdot E \cdot \alpha \quad daN \cdot {}^{\circ}C^{-1}$$

9.1.7.2. Flecha

El cálculo de flechas se obtiene mediante la expresión:

$$f = \frac{T_0}{p_a} \cdot \left(cosh \left(\frac{a \cdot p_a}{2 \cdot T_0} \right) - 1 \right)$$

siendo:

p_a Peso aparente del cable (daN/m).

T₀ Componente horizontal de la tensión del cable correspondiente al vano de regulación (daN).

Longitud del vano (m).

Con los valores de p_a y T de cada vano de regulación obtenido en las siguientes hipótesis:

CÓDIGO: MT-ESP-PE-01-R00

HOJA **72** OF **143**

<u>Flecha máxima</u>: aquella que resulte mayor de la comparación de las condiciones siguientes:

Temperatura θ_2 = 85 °C sin sobrecarga Temperatura θ_2 = 15 °C y sobrecarga de viento

Flecha mínima:

Zona B: Temperatura θ_2 = -15 °C sin sobrecarga Zona C: Temperatura θ_2 = -20 °C sin sobrecarga

Se obtienen los parámetros de la catenaria de las curvas de replanteo correspondientes a la flecha máxima y mínima respectivamente.

CÓDIGO: MT-ESP-PE-01-R00 HOJA **73** OF **143**

CALCULO MECÁNICO DEL CONDUCTOR LA-545 ZONA C

Nº Cantón	Vano	-20)°C	85	°C	-15°0 (140k	C + V (m/h)		; + V (m/h)	-15°C	+ V/2	-20°C	+ H + /	0°C	0°C + H		EDS a 15°C		náxima
Canton	reg. (m)	Т	F	T	F	T	F	T	F	T	F	T	F	Т	F	T	%	Т	C.S.
1	19,18	165	0,85	127	1,13	249	0,88	181	0,99	236	0,92	349	0,62	316	0,94	143	0,95	349	43,08
2	113,71	1607	1,80	855	3,43	2099	2,12	1517	2,52	1628	1,94	2781	2,26	2434	2,52	1202	7,99	2781	5,41
3	342,63	2185	12,44	1773	15,42	3152	13,15	2587	13,78	2326	12,69	4300	13,64	4070	14,10	2017	13,42	4300	3,50
4	396,92	2134	16,88	1820	19,93	3127	17,59	2594	18,24	2284	17,13	4300	18,09	4098	18,57	2012	13,38	4300	3,50
5	421,14	2115	19,25	1838	22,31	3114	19,96	2595	20,61	2268	19,50	4300	20,46	4110	20,95	2010	13,37	4300	3,50
6	421,11	2115	19,25	1838	22,31	3114	19,96	2595	20,61	2268	19,50	4300	20,46	4110	20,95	2010	13,37	4300	3,50

CÓDIGO: MT-ESP-PE-01-R00 HOJA **74** OF **143**

CALCULO MECÁNICO DEL CONDUCTOR LA-545 ZONA B

Nº Contér	Vano	-15	5°C	85	°C	-10°0 (140k	C + V (m/h)		5°C + V 20km/h) -10°C + V/2 -15°C + H + V		0°C	+ H	EDS a	a 15ºC	Ten. máxima				
Cantón	reg. (m)	Т	F	T	F	Т	F	Т	F	Т	F	T	F	Т	F	Т	%	Т	C.S.
7	398,39	2925	11,52	2289	16,47	4095	14,09	3396	14,61	3089	13,29	4300	12,51	4065	14,34	2688	17,88	4300	3,50
8	443,78	3063	15,85	2348	19,14	4104	16,64	3422	17,15	2970	16,36	4300	16,58	4085	17,03	2691	17,90	4300	3,50
9	437,49	2887	15,12	2345	18,74	4097	16,25	3416	16,76	3063	15,47	4300	16,20	4085	16,64	2690	17,89	4300	3,50
10	387,75	2935	11,70	2272	15,22	4089	12,81	3388	13,30	3095	12,05	4300	12,75	4060	13,18	2644	17,59	4300	3,50
11	391,94	3097	12,50	2277	15,75	4097	13,28	3394	13,78	2977	13,01	4300	13,22	4063	13,66	2688	17,88	4300	3,50
12	391,94	2841	20,29	2415	24,03	4100	21,45	3441	21,98	3031	20,65	4300	21,40	4107	21,85	2692	17,90	4300	3,50
13	451,54	2874	16,21	2363	19,86	4095	17,35	3421	17,87	3054	16,57	4300	17,30	4091	17,74	2691	17,90	4300	3,50
14	479,77	2857	18,42	2390	22,14	4106	19,59	3437	20,11	3044	18,78	4300	19,53	4098	19,99	2691	17,90	4300	3,50
15	423,04	2896	14,18	2330	17,77	4092	15,30	3408	15,81	3069	14,53	4300	15,24	4080	15,68	2689	17,88	4300	3,50
16	234,23	3258	3,90	1911	6,72	4033	4,75	3214	5,14	3296	4,17	4300	4,71	3934	5,03	2666	17,73	4300	3,50
17	324,37	3035	7,91	2153	11,22	4092	8,95	3346	9,41	3164	8,24	4300	8,90	4019	9,29	2684	17,85	4300	3,50
18	365,17	2971	10,15	2231	13,61	4101	11,25	3380	11,73	3123	10,50	4300	11,19	4046	11,61	2688	17,88	4300	3,50
19	475,16	2860	17,95	2385	21,66	4106	19,11	3436	19,63	3046	18,31	4300	19,06	4097	19,51	2692	17,90	4300	3,50
20	410,40	2912	13,17	2306	16,74	4096	14,29	3403	14,79	3081	13,52	4300	14,24	4071	14,67	2689	17,88	4300	3,50
21	339,80	3000	8,87	2190	12,26	4079	9,90	3351	10,41	3138	9,21	4300	9,88	4033	10,28	2684	17,85	4300	3,50
22	380,54	2944	13,27	2263	17,41	4092	14,57	3386	15,15	3103	13,68	4300	14,51	4057	15,00	2687	17,87	4300	3,50
23	456,92	2873	16,54	2366	20,22	4103	17,69	3427	18,21	3055	16,90	4300	17,64	4092	18,08	2691	17,90	4300	3,50
24	457,79	2872	16,58	2366	20,26	4104	17,73	3428	18,25	3055	16,94	4300	17,68	4091	18,12	2691	17,90	4300	3,50
25	412,21	2040	19,17	1790	22,01	3008	19,84	2524	20,34	2189	19,41	3158	19,76	3024	20,14	1955	13,00	3158	4,76
26	25,23	246	0,38	191	0,55	287	0,40	237	0,46	243	0,40	379	0,39	354	0,43	217	1,44	379	39,67

CÓDIGO: MT-ESP-PE-01-R00

HOJA **75** OF **143**

9.2. Cálculo mecánico del cable de fibra óptica OPGW-48FO

9.2.1. <u>Características de la línea</u>
Tensión nominal (kV)
CategoríaEspecial
Zona de aplicaciónB Y C
Longitud tramo aéreo (km)
Velocidad del viento (km/h)
Longitud cadena suspensión con herrajes (m)
Longitud cadena amarre con herrajes (m)
Peso de la cadena de aisladores suspensión (daN)
9.2.2. <u>Características del CABLE DE FIBRA ÓPTICA OPGW-48FO</u>
Las características mecánicas del cable de fibra óptica a instalar son:
TipoOPGW-48FO
Tipo
·
Sección total (mm2)
Sección total (mm2)
Sección total (mm2)
Sección total (mm2) 159,3 Diámetro total (mm) 17,10 Peso (daN/m) 0,840 Carga de rotura (daN) 12.050
Sección total (mm2) 159,3 Diámetro total (mm) 17,10 Peso (daN/m) 0,840 Carga de rotura (daN) 12.050 Módulo de elasticidad (daN/mm2) 11.360
Sección total (mm2) 159,3 Diámetro total (mm) 17,10 Peso (daN/m) 0,840 Carga de rotura (daN) 12.050 Módulo de elasticidad (daN/mm2) 11.360
Sección total (mm2) 159,3 Diámetro total (mm) 17,10 Peso (daN/m) 0,840 Carga de rotura (daN) 12.050 Módulo de elasticidad (daN/mm2) 11.360 Coeficiente de dilatación lineal (°C-1) 14,6 10-6

Peso del cable de fibra óptica (daN/m) p_c = 0,840

CÓDIGO: MT-ESP-PE-01-R00

HOJA 76 OF 143

9.2.3.2. Acción del viento

Según la ITC-07 del Reglamento de Líneas de Alta Tensión, se considerará la presión del viento sobre el cable de fibra óptica en función del diámetro del mismo. Se ha considerado una velocidad máxima de viento de 140km/h.

Acción del viento horizontal (daN/m)......p_v = 1,418

9.2.3.1. Sobrecarga de hielo

Según el Reglamento de Líneas de Alta Tensión, se considerará la sobrecarga de un manguito de hielo sobre el cable de fibra óptica.

Sobrecarga de hielo en Zona B (daN/m)p _h = 0,73	30
Sobrecarga de hielo en Zona C (daN/m)p _h = 1.40	61

También se ha considerado una acción de viento de 60km/h actuando sobre el cable de fibra óptica en la hipótesis de hielo. Esta velocidad hace una presión sobre los cables de fibra óptica de 12,5daN/m².

El espesor del manguito de hielo, calculado con densidad de hielo 750daN/m³ para las condiciones de hielo reglamentarias hace que el diámetro expuesto al viento sea de 39,13mm en zona B y 52,62mm en zona C. Por tanto la sobrecarga horizontal:

Por tanto, en zona B, la sobrecarga horizontal será:

Sobrecarga horizontal de hielo (daN/m)	$h_h = 0,477$
La sobrecarga vertical será la de hielo actuando sobre el conductor:	
Sobrecarga vertical de hielo incluyendo peso (daN/m)	. h _v = 1,570
La sobrecarga total será la composición de ambas:	
Sobrecarga de hielo más viento (daN/m)	h _t = 1,641

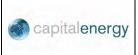
CÓDIGO: MT-ESP-PE-01-R00 HOJA **77** OF **143**

Sobrecarga de hielo más viento (daN/m)......h_t = 2,389

9.2.4. Hipótesis de partida

9.2.4.1. <u>Límite estático</u>

La tensión máxima del cable de fibra óptica OPGW-48FO es la indicada en la siguiente tabla:


CONDUCTOR	TRAMO	CARGA DE ROTURA (daN)	COEF.SEGURIDAD Cs	TENSIÓN MÁXIMA(daN)
OPGW-48FO (Zona C)	SET Límite – Ap.1	12.050	40,17	300
OPGW-48FO (Zona C)	Ap.1 – Ap.18	12.050	4,16	2900
OPGW-48FO (Zona B)	Ap.18 – Ap.53	12.050	4,16	2900
OPGW-48FO (Zona B)	Ap.53 – SET BAZA	12.050	37,66	320

9.2.4.2. Límite dinámico

Los fenómenos vibratorios se tendrán presente en las siguientes hipótesis de carga:

9.2.4.2.1. Hipótesis EDS (Every Day Stress)

La hipótesis de carga EDS tiene en cuenta el fenómeno de vibración eólica del cable en condiciones de temperatura normales (15 °C para todas zonas) sin sobrecarga, de modo que la tensión del cable nunca supere un % de la carga de rotura.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 78 OF 143

El valor de tense EDS mostrado en la siguiente tabla muestra un valor EDS inferior al 22%, que sería el límite establecido.

CONDUCTOR	TRAMO	CARGA DE ROTURA (daN)	TENSE EDS (daN)	% ROTURA
OPGW-48FO (Zona C)	Ap.1 – Ap.2	12.050	663	5,50
OPGW-48FO (Zona C)	Ap.2– Ap.18	12.050	1.446	12,00
OPGW-48FO (Zona B)	Ap.18 – Ap.52	12.050	1.567	13,00
OPGW-48FO (Zona B)	Ap.52 – Ap.53	12.050	844	7,00

9.2.5. Hipótesis de cálculo

9.2.5.1. Tracción máxima admisible

Según la tabla 4 de la Instrucción Técnica Complementaria 07 del actual Reglamento de Líneas de Alta Tensión los cables de fibra óptica deberán resistir las sobrecargas siguientes:

ZONA B: Peso propio, sobrecarga de hielo y viento de 60km/h a -15 °C

$$p_{H} = \sqrt{(p_{c} + p_{h})^{2} + p_{v}^{2}}$$

 $p_{H} = 1,641 \text{ daN/m}$

$$\theta_h = -15 \, {}^{\circ}\text{C}$$

<u>Hipótesis adicional</u>: Peso propio y sobrecarga de viento de 140km/h a −10 °C

$$p_{c} = \sqrt{p_{c}^{2} + p_{v140}^{2}}$$

 $p_v = 1,418 \text{ daN/m}$

$$\theta_v = -10 \text{ °C}$$

CÓDIGO: MT-ESP-PE-01-R00

HOJA 79 OF 143

ZONA C: Peso propio, sobrecarga de hielo y viento de 60km/h a -20 °C

$$p_{H} = \sqrt{(p_{c} + p_{h})^{2} + p_{v}^{2}}$$

$$p_h = 2,389 \text{ daN/m}$$

$$\theta_h$$
 = -20 °C

<u>Hipótesis adicional</u>: Peso propio y sobrecarga de viento de 140km/h a −15 °C

$$p_{c} = \sqrt{p_{c}^{2} + p_{v140}^{2}}$$

$$p_v = 1,418 \text{ daN/m}$$

$$\theta_v = -15$$
 °C

9.2.5.2. Hipótesis de flecha máxima

Según la ITC-07 del actual Reglamento de Líneas de Alta Tensión (Apartado 3.2.3), se determinará la flecha máxima de los conductores o cables de tierra en las hipótesis siguientes:

• <u>Hipótesis de viento</u>: Acción del peso propio y una sobrecarga de viento a 120km/h a la temperatura de 15 °C.

$$p_{2v} = \sqrt{p_c^2 + p_v^2}$$

$$p_{2v} = 1,19 \text{ daN/m}$$

$$\theta_{2v} = 15 \, {}^{\circ}\text{C}$$

Hipótesis de temperatura: Acción del peso propio a la temperatura de 50
 °C

$$p_{2t} = p_c$$

$$p_{2t} = 0.840 \text{ daN/m}$$

$$\theta_{2t} = 50 \, {}^{\circ}\text{C}$$

 Hipótesis de hielo: Acción del peso propio, una sobrecarga de hielo a la temperatura de 0 °C.

Zona B:

$$p_{2h} = p_c + p_h$$

$$p_{2h} = 1,57 \text{ daN/m}$$

$$\theta_{2h} = 0$$
 °C

Zona C:

$$p_{2h} = p_c + p_h$$

$$p_{2h} = 2,30 \text{ daN/m}$$

$$\theta_{2h} = 0$$
 °C

CÓDIGO: MT-ESP-PE-01-R00

HOJA 80 OF 143

9.2.5.3. <u>Hipótesis de flecha mínima</u>

La hipótesis de flecha mínima es:

$$p_{2B} = p_c$$
 $p_{2B} = 0.84 \text{ daN/m}$

$$\theta_{2B} = -15 \, {}^{\circ}\text{C}$$

ZONA C: Peso propio sin sobrecarga a –20 °C

$$p_{2B} = p_c$$
 $p_{2B} = 0.84 \text{ daN/m}$

$$\theta_{2B} = -20 \, {}^{\circ}\text{C}$$

9.2.6. Vano ideal de regulación

El comportamiento de la componente horizontal de la tensión del cable en un cantón de la línea se puede asemejar al comportamiento del mismo cable en un único vano llamado vano ideal de regulación.

Siendo:

$$a'_{i} = \sqrt{a_{i}^{2} + b_{i}^{2}}$$
 (m)

donde:

a_i: Longitud del vano i medido en la dirección longitudinal (m).

b_i: Desnivel del vano i medido en la dirección vertical (m).

El vano ideal de regulación se determinará mediante la siguiente expresión:

$$a_{r} = k \sqrt{\frac{\sum a_{i}^{3}}{\frac{a_{i}^{2}}{a_{i}^{2}}}} \quad (m)$$

Operando de esta forma se obtienen las tablas siguientes:

 CÓDIGO:
 MT-ESP-PE-01-R00
 HOJA 81 OF 143

VANOS IDEALES DE REGULACIÓN CABLE OPGW-48FO

Cantón Nº	Apoyo Inicial	Apoyo Final	Longitud Cantón (m)	Vano de Regulación (m)	Tense de flecha máxima (daN)	Tense Flecha mínima (daN)	Parámetro flecha máxima (m)	Parámetro flecha mínima (m)
1	Pórtico Limite	1	24,24	19,18	91	107	89	106
2	1	2	117,22	113,71	549	864	650	1027
3	2	4	683,27	342,63	1009	1173	1181	1379
4	4	10	2374,10	396,92	1008	1127	1181	1323
5	10	12	840,98	421,14	1008	1110	1178	1302
6	12	18	2524,84	421,11	1008	1110	1174	1297
7	18	23	1992,10	398,39	1420	1728	1671	2040
8	23	24	443,79	443,78	1433	1687	1690	1994
9	24	26	874,71	437,49	1433	1690	1681	1990
10	26	27	388,24	387,75	1414	1735	1662	2045
11	27	30	1175,00	391,94	1415	1734	1668	2050
12	30	31	501,34	502,01	1440	1636	1689	1924
13	31	33	902,81	451,54	1435	1677	1684	1974

CÓDIGO: MT-ESP-PE-01-R00 HOJA 82 OF 143

Cantón Nº	Apoyo Inicial	Apoyo Final	Longitud Cantón (m)	Vano de Regulación (m)	Tense de flecha máxima (daN)	Tense Flecha mínima (daN)	Parámetro flecha máxima (m)	Parámetro flecha mínima (m)
14	33	34	480,44	479,77	1439	1654	1695	1955
15	34	38	1673,37	423,04	1431	1704	1673	2000
16	38	39	237,41	234,23	1280	1931	1475	2241
17	39	42	959,38	324,37	1370	1795	1615	2124
18	42	44	712,14	365,17	1398	1756	1652	2080
19	44	46	949,82	475,16	1437	1657	1692	1957
20	46	47	411,33	410,40	1426	1718	1679	2029
21	47	48	340,90	339,80	1383	1776	1619	2087
22	48	50	749,18	380,54	1409	1741	1659	2055
23	50	51	456,99	456,92	1435	1673	1689	1975
24	51	52	457,81	457,79	1435	1673	1692	1977
25	52	53	412,64	412,21	1031	1137	1204	1332
26	53	Pórtico Baza	25,23	23,42	121	173	102	151

CÓDIGO: MT-ESP-PE-01-R00

HOJA 83 OF 143

9.2.7. Comparación de hipótesis

9.2.7.1. Tensión mecánica

Partiendo de la tensión, temperatura y carga total correspondientes al valor de la tensión máxima adoptado, se calcula con la ayuda de la ecuación de cambio de condiciones, las tensiones respectivas a las hipótesis citadas en el apartado anterior.

Dicha ecuación es:

$$T_2^2 \cdot \left\lceil T_2 \cdot \frac{A \cdot a^2 \cdot p_1^2}{T_1^2} + B \cdot (\theta_2 - \theta_1) - T_1 \right\rceil = A \cdot a^2 \cdot p_2^2$$

siendo:

 $\begin{array}{lll} T_1 & & \text{Tensi\'on del cable en condiciones iniciales en daN} \\ q_1 & & \text{Temperatura del cable en condiciones iniciales en °C} \\ p_1 & & \text{Carga del cable en condiciones iniciales, en daN/m} \\ T_2, \, q_2, \, p_2 & & \text{Los mismos conceptos anteriores en condiciones finales} \\ a & & \text{Vano de c\'alculo en m} \end{array}$

 $\frac{\mathsf{S}_{\mathsf{a}} \cdot \mathsf{E}}{\mathsf{24}}$

B $S \cdot E \cdot \alpha$ daN · $^{\circ}C^{-1}$

9.2.7.2. Flecha

El cálculo de flechas se obtiene mediante la expresión:

$$f = \frac{T_0}{p_a} \cdot \left(cosh \left(\frac{a \cdot p_a}{2 \cdot T_0} \right) - 1 \right)$$

siendo:

p_a Peso aparente del cable (daN/m).

T₀ Componente horizontal de la tensión del cable correspondiente al vano de regulación (daN).

a Longitud del vano (m).

Con los valores de p_a y T de cada vano de regulación obtenido en las siguientes hipótesis:

CÓDIGO: MT-ESP-PE-01-R00

HOJA **84** OF **143**

<u>Flecha máxima</u>: aquella que resulte mayor de la comparación de las condiciones siguientes:

Temperatura θ_2 = 50 °C sin sobrecarga Temperatura θ_2 = 15 °C y sobrecarga de viento

Flecha mínima:

Zona B: Temperatura θ_2 = -15 °C sin sobrecarga Zona C: Temperatura θ_2 = -20 °C sin sobrecarga

Se obtienen los parámetros de la catenaria de las curvas de replanteo correspondientes a la flecha máxima y mínima respectivamente.

 CÓDIGO:
 MT-ESP-PE-01-R00
 HOJA 85 OF 143

CALCULO MECANICO DEL OPGW-48FO ZONA C

N° Cantón	Vano reg.	-2	0°C	50	°C	-15°0 (140k	C + V (m/h)	15°C (120k	; + V (m/h)	-15°C	+ V/2	-20°C \	+ H + /	0°C	0°C + H		EDS a 15°C		náxima
Canton	(m)	Т	F	T	F	T	F	T	F	T	H	T	F	T	F	T	%	Т	C.S.
1	19,18	107	1,07	91	1,28	132	1,09	129	1,18	115	1,09	300	1,09	277	1,15	98	0,81	300	40,17
2	113,71	864	1,74	548	2,75	1217	2,12	900	2,42	899	1,88	1801	2,41	1604	2,61	663	5,50	1801	6,69
3	341,87	1173	10,79	1009	12,58	1850	11,68	1489	12,13	1283	11,06	2900	12,61	2720	12,95	1082	8,98	2900	4,16
4	396,02	1127	14,9	1008	16,7	1819	15,78	1477	16,25	1242	15,17	2900	16,74	2734	17,09	1063	8,82	2900	4,16
5	421,14	1110	17,07	1008	18,88	1807	17,94	1472	18,41	1227	17,34	2900	18,91	2739	19,27	1055	8,76	2900	4,16
6	421,11	1110	17,07	1008	18,88	1807	17,94	1472	18,41	1227	17,34	2900	18,91	2739	19,27	1055	8,76	2900	4,16

CÓDIGO: MT-ESP-PE-01-R00 HOJA **86** OF **143**

CALCULO MECANICO DEL OPGW-48FO ZONA B

Nº Contón	Vano reg.	-1	5°C	50	°C	-10°0 (140k	-	15°C (120)	; + V km/h)	-10°C	+ V/2	-15°C	+ H + /	0°C	+ H	EDS a	a 15°C	Te máx	
Cantón	(m)	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	%	Т	C.S.
7	398,39	1727	10,11	1420	11,10	2556	11,68	2085	12,09	1856	9,50	2900	12,01	2693	11,04	1566	13,00	2900	4,16
8	443,78	1687	12,35	1433	14,58	2561	13,92	2097	14,21	1828	12,79	2900	14,23	2713	14,52	1557	12,92	2900	4,16
9	437,49	1690	12,03	1432	14,25	2557	13,59	2094	13,88	1830	12,48	2900	13,89	2714	14,18	1558	12,93	2900	4,16
10	387,75	1735	9,23	1414	11,37	2550	10,73	2079	11,00	1855	9,69	2880	11,01	2685	11,29	1566	13,00	2900	4,16
11	391,94	1734	9,59	1415	11,78	2553	11,13	2082	11,41	1860	10,03	2881	11,42	2686	11,71	1566	13,00	2900	4,16
12	391,94	1636	16,39	1440	18,67	2547	17,99	2094	18,29	1787	16,84	2900	18,30	2724	18,61	1537	12,76	2900	4,16
13	451,54	1677	12,93	1434	15,16	2555	14,50	2094	14,79	1819	13,37	2900	14,80	2716	15,10	1552	12,88	2900	4,16
14	479,77	1654	14,82	1438	17,09	2556	16,42	2097	16,71	1803	15,27	2900	16,73	2720	17,04	1544	12,81	2900	4,16
15	423,04	1704	11,23	1431	13,42	2554	12,77	2090	13,05	1839	11,67	2900	13,07	2712	13,35	1563	12,97	2900	4,16
16	234,23	1931	3,06	1280	4,65	2434	4,10	1940	4,32	1965	3,36	2735	4,28	2500	4,48	1566	13,00	2735	4,41
17	324,37	1795	6,24	1370	8,21	2519	7,60	2038	7,86	1894	6,64	2826	7,85	2615	8,11	1566	13,00	2826	4,26
18	365,17	1756	8,02	1398	10,10	2543	9,48	2068	9,74	1873	8,44	2861	9,75	2659	10,02	1566	13,00	2861	4,21
19	475,16	1657	14,44	1437	16,71	2555	16,04	2097	16,33	1805	14,89	2900	16,35	2720	16,65	1545	12,82	2900	4,16
20	410,40	1710	10,52	1421	12,70	2553	12,05	2085	12,33	1842	10,96	2900	12,33	2697	12,62	1559	12,94	2900	4,16
21	339,80	1776	7,01	1383	9,04	2520	8,41	2046	8,68	1881	7,42	2843	8,66	2638	8,93	1565	12,99	2900	4,16
22	380,54	1740	10,45	1404	13,00	2548	12,24	2075	12,52	1864	10,95	2875	12,53	2670	12,90	1565	12,99	2875	4,19
23	456,92	1681	12,69	1434	14,92	2559	14,26	2096	14,55	1823	13,13	2900	14,57	2715	14,87	1554	12,90	2900	4,16
24	457,79	1673	13,24	1435	15,49	2557	14,83	2096	15,11	1816	13,69	2900	15,13	2716	15,43	1551	12,87	2900	4,16
25	412,21	1140	15,99	1034	17,70	1839	16,94	1507	17,28	12,58	16,27	2113	17,08	1991	17,32	1084	9,00	2113	5,70
26	25,23	180	0,22	121	0,34	190	0,23	145	0,28	164	0,23	320	0,22	292	0,26	143	1,19	320	37,66

CÓDIGO: MT-ESP-PE-01-R00

HOJA **87** OF **143**

9.3. Cálculo mecánico del cable de tierra AC-53

9.3.1. <u>Características de la línea</u>	
Tensión nominal (kV)	
Categoría	Especial
Zona de aplicación	ВҮС
Longitud tramo aéreo (km)	20,709
Velocidad del viento (km/h)	140
Longitud cadena suspensión con herrajes (m)	2,893
Longitud cadena amarre con herrajes (m)	4,654
Peso de la cadena de aisladores suspensión (daN)	106,85
9.3.2. <u>Características del CABLE DE TIERRA AC-53</u>	
Las características mecánicas del cable de fibra óptica a instalar son:	
Las características mecánicas del cable de fibra óptica a instalar son: Tipo	AC-53
Tipo	53
Tipo	53 9,50
Tipo Sección total (mm2) Diámetro total (mm)	53 9,50 0,441
Tipo Sección total (mm2) Diámetro total (mm) Peso (daN/m)	
Tipo Sección total (mm2) Diámetro total (mm) Peso (daN/m) Carga de rotura (daN)	
Tipo Sección total (mm2) Diámetro total (mm) Peso (daN/m) Carga de rotura (daN) Módulo de elasticidad (daN/mm2)	
Tipo Sección total (mm2) Diámetro total (mm) Peso (daN/m) Carga de rotura (daN) Módulo de elasticidad (daN/mm2)	
Tipo Sección total (mm2) Diámetro total (mm) Peso (daN/m) Carga de rotura (daN) Módulo de elasticidad (daN/mm2) Coeficiente de dilatación lineal (°C-1)	

Según la ITC-07 en su punto 3.1.1 del Reglamento de Líneas de Alta Tensión, se

Peso del cable de tierra (daN/m) $p_c = 0,441$

considera la carga vertical debida al peso propio del cable de tierra.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 88 OF 143

9.3.3.2. Acción del viento

Según la ITC-07 del Reglamento de Líneas de Alta Tensión, se considerará la presión del viento sobre el cable de tierra en función del diámetro del mismo. Se ha considerado una velocidad máxima de viento de 140km/h.

Acción del viento horizontal (daN/m)......p_v = 0,880

9.3.3.3. Sobrecarga de hielo

Según el Reglamento de Líneas de Alta Tensión, se considerará la sobrecarga de un manguito de hielo sobre el cable de tierra.

Sobrecarga de hielo en Zona B (daN/m)p _h = 0,544	ļ
Sobrecarga de hielo en Zona C (daN/m)p _h = 1,089)

También se ha considerado una acción de viento de 60km/h actuando sobre el cable de tierra en la hipótesis de hielo. Esta velocidad hace una presión sobre los cables de tierra de 15daN/m².

El espesor del manguito de hielo, calculado con densidad de hielo 750daN/m³ para las condiciones de hielo reglamentarias hace que el diámetro expuesto al viento sea de 31,83mm en zona B y 44,00mm en zona C. Por tanto la sobrecarga horizontal:

Por tanto, en zona B, la sobrecarga horizontal será:

Sobrecarga horizontal de hielo (daN/m)
La sobrecarga vertical será la de hielo actuando sobre el conductor:
Sobrecarga vertical de hielo incluyendo peso (daN/m) h_v = 0,986
La sobrecarga total será la composición de ambas:
Sobrecarga de hielo más viento (daN/m)h _t = 1,091

CÓDIGO: MT-ESP-PE-01-R00

HOJA 89 OF 143

9.3.4. Hipótesis de partida

9.3.4.1. <u>Límite estático</u>

La tensión máxima del cable de tierra AC-53 es la indicada en la siguiente tabla:

CONDUCTOR	TRAMO	CARGA DE ROTURA (daN)	COEF.SEGURIDAD Cs	TENSIÓN MÁXIMA(daN)
AC-53 (Zona C)	SET Límite – Ap.1	6.670	23,82	280
AC-53 (Zona C)	Ap.1 – Ap.18	6.670	2,67	2500
AC-53 (Zona B)	Ap.18 – Ap.53	6.670	2,67	2500
AC-53 (Zona B)	Ap.53 – SET BAZA	6.670	20,84	320

9.3.4.2. Límite dinámico

Los fenómenos vibratorios se tendrán presente en las siguientes hipótesis de carga:

9.3.4.2.1. Hipótesis EDS (Every Day Stress)

La hipótesis de carga EDS tiene en cuenta el fenómeno de vibración eólica del cable en condiciones de temperatura normales (15 °C para todas zonas) sin sobrecarga, de modo que la tensión del cable nunca supere un % de la carga de rotura.

El valor de tense EDS mostrado en la siguiente tabla muestra un valor EDS

CÓDIGO: MT-ESP-PE-01-R00

HOJA **90** OF **143**

inferior al 22%, que sería el límite establecido.

CONDUCTOR	TRAMO	CARGA DE ROTURA (daN)	TENSE EDS (daN)	% ROTURA
OPGW-48FO (Zona C)	Ap.1 – Ap.2	6.670	334	5,00
OPGW-48FO (Zona C)	Ap.2– Ap.18	6.670	884	13,00
OPGW-48FO (Zona B)	Ap.18 – Ap.52	6.670	952	14,00
OPGW-48FO (Zona B)	Ap.52 – Ap.53	6.670	667	10,00

9.3.5. Hipótesis de cálculo

9.3.5.1. <u>Tracción máxima admisible</u>

Según la tabla 4 de la Instrucción Técnica Complementaria 07 del actual Reglamento de Líneas de Alta Tensión los cables de fibra óptica deberán resistir las sobrecargas siguientes:

ZONA B: Peso propio, sobrecarga de hielo y viento de 60km/h a -15 °C

$$p_{H} = \sqrt{(p_{c} + p_{h})^{2} + p_{v}^{2}}$$

$$p_{H} = 1,091 \text{ daN/m}$$

$$\theta_h = -15 \, {}^{\circ}\text{C}$$

<u>Hipótesis adicional</u>: Peso propio y sobrecarga de viento de 140km/h a −10 °C

$$p_{c} = \sqrt{p_{c}^{2} + p_{v140}^{2}}$$

 $p_v = 0.880 \text{ daN/m}$

$$\theta_v = -10 \, {}^{\circ}\text{C}$$

CÓDIGO: MT-ESP-PE-01-R00

HOJA 91 OF 143

ZONA C: Peso propio, sobrecarga de hielo y viento de 60km/h a -20 °C

$$p_{H} = \sqrt{(p_{c} + p_{h})^{2} + p_{v}^{2}}$$

$$p_h = 1,662 \text{ daN/m}$$

$$\theta_h$$
 = -20 °C

<u>Hipótesis adicional</u>: Peso propio y sobrecarga de viento de 140km/h a −15 °C

$$p_{c} = \sqrt{p_{c}^{2} + p_{v140}^{2}}$$

$$p_v = 0.880 \text{ daN/m}$$

$$\theta_v = -15$$
 °C

9.3.5.2. Hipótesis de flecha máxima

Según la ITC-07 del actual Reglamento de Líneas de Alta Tensión (Apartado 3.2.3), se determinará la flecha máxima de los conductores o cables de tierra en las hipótesis siguientes:

• <u>Hipótesis de viento</u>: Acción del peso propio y una sobrecarga de viento a 120km/h a la temperatura de 15 °C.

$$p_{2v} = \sqrt{p_c^2 + p_v^2}$$

$$p_{2v} = 0.712 \text{ daN/m}$$

$$\theta_{2v} = 15 \, {}^{\circ}\text{C}$$

Hipótesis de temperatura: Acción del peso propio a la temperatura de 50
 °C.

$$p_{2t} = p_c$$

$$p_{2t} = 0.441 \text{ daN/m}$$

$$\theta_{2t} = 50 \, {}^{\circ}\text{C}$$

 Hipótesis de hielo: Acción del peso propio, una sobrecarga de hielo a la temperatura de 0 °C.

Zona B:

$$p_{2h} = p_c + p_h$$

$$p_{2h} = 0.986 \text{ daN/m}$$

$$\theta_{2h} = 0$$
 °C

Zona C:

$$p_{2h} = p_c + p_h$$

$$p_{2h} = 1,530 \text{ daN/m}$$

$$\theta_{2h} = 0 \, {}^{\circ}C$$

CÓDIGO: MT-ESP-PE-01-R00

HOJA 92 OF 143

9.3.5.3. <u>Hipótesis de flecha mínima</u>

La hipótesis de flecha mínima es:

$$p_{2B} = p_c$$
 $p_{2B} = 0,441 \text{ daN/m}$

$$\theta_{2B}$$
 = -15 °C

ZONA C: Peso propio sin sobrecarga a –20 °C

$$p_{2B} = p_c$$
 $p_{2B} = 0.441 \text{ daN/m}$

$$\theta_{2B} = -20 \, {}^{\circ}\text{C}$$

9.3.6. Vano ideal de regulación

El comportamiento de la componente horizontal de la tensión del cable en un cantón de la línea se puede asemejar al comportamiento del mismo cable en un único vano llamado vano ideal de regulación.

Siendo:

$$k = \frac{\sum_{i=1}^{n} \frac{a_i'^3}{a_i^2}}{\sum_{i=1}^{n} \frac{a_i'^2}{a_i}}$$

$$a_i' = \sqrt{a_i^2 + b_i^2} \qquad \qquad (m)$$

donde:

a_i: Longitud del vano i medido en la dirección longitudinal (m).

b_i: Desnivel del vano i medido en la dirección vertical (m).

El vano ideal de regulación se determinará mediante la siguiente expresión:

$$a_{r} = k \sqrt{\frac{\sum a_{i}^{3}}{\frac{a_{i}^{2}}{a_{i}^{2}}}} \quad (m)$$

Operando de esta forma se obtienen las tablas siguientes:

CÓDIGO: MT-ESP-PE-01-R00 HOJA 93 OF 143

VANOS IDEALES DE REGULACIÓN CABLE AC-53

Cantón Nº	Apoyo Inicial	Apoyo Final	Longitud Cantón (m)	Vano de Regulación (m)	Tense de flecha máxima (daN)	Tense Flecha mínima (daN)	Parámetro flecha máxima (m)	Parámetro flecha mínima (m)
1	Pórtico Limite	1	24,24	19,18	58	90	102	163
2	1	2	117,22	113,71	285	409	644	924
3	2	4	683,27	342,63	778	982	1749	2213
4	4	10	2374,10	396,92	795	958	1787	2158
5	10	12	840,98	421,14	800	949	1800	2138
6	12	18	2524,84	421,11	800	949	1795	2132
7	18	23	1992,10	398,39	849	1024	1906	2305
8	23	24	443,79	443,78	861	1010	1938	2279
9	24	26	874,71	437,49	860	1011	1925	2270
10	26	27	388,24	387,75	845	1027	1897	2309
11	27	30	1175,00	391,94	847	1027	1904	2314
12	30	31	501,34	502,01	873	995	1957	2234
13	31	33	902,81	451,54	863	1007	1934	2262

CÓDIGO: MT-ESP-PE-01-R00 HOJA 94 OF 143

Cantón Nº	Apoyo Inicial	Apoyo Final	Longitud Cantón (m)	Vano de Regulación (m)	Tense de flecha máxima (daN)	Tense Flecha mínima (daN)	Parámetro flecha máxima (m)	Parámetro flecha mínima (m)
14	33	34	480,44	479,77	869	1001	1955	2256
15	34	38	1673,37	423,04	857	1015	1912	2272
16	38	39	237,41	234,23	779	1109	1714	2452
17	39	42	959,38	324,37	823	1056	1851	2381
18	42	44	712,14	365,17	838	1037	1888	2341
19	44	46	949,82	475,16	868	1002	1950	2256
20	46	47	411,33	410,40	852	1020	1914	2295
21	47	48	340,90	339,80	830	1047	1854	2346
22	48	50	749,18	380,54	843	1030	1894	2320
23	50	51	456,99	456,92	864	1006	1941	2265
24	51	52	457,81	457,79	864	1006	1943	2267
25	52	53	412,64	412,21	632	702	1411	1573
26	53	Pórtico Baza	25,23	23,42	82	197	131	324

CÓDIGO: MT-ESP-PE-01-R00

HOJA 95 OF 143

9.3.7. Comparación de hipótesis

9.3.7.1. Tensión mecánica

Partiendo de la tensión, temperatura y carga total correspondientes al valor de la tensión máxima adoptado, se calcula con la ayuda de la ecuación de cambio de condiciones, las tensiones respectivas a las hipótesis citadas en el apartado anterior.

Dicha ecuación es:

$$T_2^2 \cdot \left\lceil T_2 \cdot \frac{A \cdot a^2 \cdot p_1^2}{T_1^2} + B \cdot (\theta_2 - \theta_1) - T_1 \right\rceil = A \cdot a^2 \cdot p_2^2$$

siendo:

 $\begin{array}{lll} T_1 & & \text{Tensi\'on del cable en condiciones iniciales en daN} \\ q_1 & & \text{Temperatura del cable en condiciones iniciales en °C} \\ p_1 & & \text{Carga del cable en condiciones iniciales, en daN/m} \\ T_2, \, q_2, \, p_2 & & \text{Los mismos conceptos anteriores en condiciones finales} \\ a & & \text{Vano de c\'alculo en m} \end{array}$

 $\underline{\mathsf{S}_\mathsf{a}}\cdot\mathsf{E}$

A 24

B $S \cdot E \cdot \alpha \quad daN \cdot {}^{\circ}C^{-1}$

9.3.7.2. Flecha

El cálculo de flechas se obtiene mediante la expresión:

$$f = \frac{T_0}{p_a} \cdot \left(cosh \left(\frac{a \cdot p_a}{2 \cdot T_0} \right) - 1 \right)$$

siendo:

p_a Peso aparente del cable (daN/m).

T₀ Componente horizontal de la tensión del cable correspondiente al vano de regulación (daN).

a Longitud del vano (m).

Con los valores de p_a y T de cada vano de regulación obtenido en las siguientes hipótesis:

CÓDIGO: MT-ESP-PE-01-R00

HOJA **96** OF **143**

<u>Flecha máxima</u>: aquella que resulte mayor de la comparación de las condiciones siguientes:

Temperatura θ_2 = 50 °C sin sobrecarga Temperatura θ_2 = 15 °C y sobrecarga de viento

Flecha mínima:

Zona B: Temperatura θ_2 = -15 °C sin sobrecarga Zona C: Temperatura θ_2 = -20 °C sin sobrecarga

Se obtienen los parámetros de la catenaria de las curvas de replanteo correspondientes a la flecha máxima y mínima respectivamente.

CÓDIGO: MT-ESP-PE-01-R00 HOJA 97 OF 143

CALCULO MECANICO DEL AC-53 ZONA C

Nº Cantón	Vano reg.	-2	0°C	50	°C	-15°0 (140k	C + V (m/h)	15°C (120k	; + V (m/h)	-15°C	+ V/2	-20°C \	+ H + /	0°C	+ H	EDS a	a 15°C	Ten. m	náxima
Canton	(m)	T	F	T	F	Т	F	T	F	T	H	T	F	T	F	T	%	Т	C.S.
1	19,18	90	0,43	57	0,70	138	0,49	95	0,59	94	0,46	280	0,52	161	0,55	68	1,02	280	23,82
2	113,71	409	1,78	285	2,56	660	2,24	496	2,41	450	2,07	1055	2,65	937	2,74	334	5,01	1055	6,32
3	342,63	982	7,38	778	9,33	1528	9,61	1230	9,64	1079	8,00	2343	11,92	2153	11,92	867	13,00	2343	2,85
4	396,92	957	10,39	794	11,98	1563	12,31	1260	12,93	1070	11,08	2450	14,92	2256	15,62	867	13,00	2450	2,72
5	421,14	949	10,98	800	13,05	1577	13,40	1272	13,42	1067	11,63	2500	16,08	1667	14,17	867	13,00	2500	2,67
6	421,11	949	10,98	800	13,05	1577	13,40	1272	13,42	1067	11,63	2500	16,08	1667	14,17	867	13,00	2500	2,67

CÓDIGO: MT-ESP-PE-01-R00 HOJA 98 OF 143

CALCULO MECANICO DEL AC-53 ZONA B

Nº Contón	Vano reg.	-1	5°C	50	o°C	-10°0 (140k	C + V km/h)		; + V km/h)	-10°C	+ V/2		+ H + /	0°C	+ H	EDS a	a 15°C	Te máx	
Cantón	(m)	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	%	Т	C.S.
7	398,39	1024	8,94	849	10,81	1631	11,37	1333	11,24	1135	9,60	1908	12,08	1730	12,00	934	14,00	1908	3,50
8	443,78	1009	10,82	860	12,72	1662	13,33	1358	13,18	1132	11,49	1951	14,09	1769	14,00	934	14,00	1951	3,42
9	437,49	1010	10,50	859	12,38	1656	12,97	1354	12,82	1132	11,16	1949	13,71	1768	13,62	933	13,99	1949	3,42
10	387,75	1027	8,17	846	9,95	1623	10,47	1327	10,35	1136	8,80	1897	11,15	1721	11,07	934	14,00	1897	3,52
11	391,94	1027	8,49	847	10,32	1627	10,86	1330	10,73	1137	9,13	1900	11,55	1722	11,47	934	14,00	1900	3,51
12	502,01	995	14,11	873	16,12	1694	16,80	1383	16,62	1128	14,82	2006	17,64	1818	17,52	934	14,00	2006	3,33
13	451,54	1007	11,29	863	13,21	1666	13,82	1361	13,66	1131	11,96	1962	14,59	1780	14,49	934	14,00	1962	3,40
14	479,77	1001	12,78	869	14,75	1684	15,41	1375	15,24	1130	13,48	1985	16,23	1799	16,11	934	14,00	1985	3,36
15	423,04	1012	11,53	854	13,70	1646	14,36	1345	14,20	1131	12,29	1934	15,21	1754	15,11	934	14,00	1934	3,45
16	234,23	1109	2,93	779	4,19	1466	4,42	1198	4,39	1152	3,34	1689	4,84	1532	4,82	934	14,00	1689	3,95
17	324,37	1056	6,98	823	8,98	1572	9,50	1285	9,39	1143	7,67	1817	10,22	1647	10,15	934	14,00	1817	3,67
18	365,17	1037	8,68	838	10,76	1608	11,35	1314	11,22	1140	9,41	1868	12,13	1693	12,05	934	14,00	1868	3,57
19	475,16	1002	12,96	868	14,99	1682	15,66	1373	15,49	1131	13,68	1982	16,50	1796	16,38	934	14,00	1982	3,37
20	410,40	1020	9,20	852	11,04	1640	11,59	1340	11,46	1134	9,85	1921	12,30	1741	12,22	934	14,00	1921	3,47
21	339,80	1047	6,21	830	7,87	1583	8,30	1295	8,20	1140	6,79	1842	8,90	1671	8,84	934	14,00	1842	3,62
22	380,54	1030	9,25	843	11,34	1619	11,94	1324	11,80	1137	9,98	1889	12,72	1712	12,63	934	14,00	1889	3,53
23	456,92	1006	11,54	864	13,47	1670	14,09	1364	13,93	1131	12,22	1965	14,87	1782	14,77	934	14,00	1965	3,39
24	457,79	1006	11,57	864	13,50	1671	14,12	1364	13,97	1131	12,25	1965	14,95	1781	14,81	934	14,00	1965	3,39
25	412,21	702	13,55	631	15,11	1270	15,17	1024	15,20	810	13,99	1529	15,66	1376	15,67	666	9,99	1529	4,36
26	25,23	197	0,30	82	0,75	217	0,44	140	0,57	176	0,36	320	0,44	266	0,51	113	1,69	320	20,84

CÓDIGO: MT-ESP-PE-01-R00

HOJA **99** OF **143**

9.4. Aislamiento

Se utilizarán aisladores que superen las tensiones reglamentarias de ensayo tanto a onda de choque tipo rayo como a frecuencia industrial, fijadas en el artículo 4.4 de la ITC07 del RD 223/2008.

El aislador elegido, y sus características, es:

CARACTERÍSTICAS ELÉCTRICAS DE L	A CADENA DE AISLADORES
TIPO DE AISLADOR	U160BS
Nivel de contaminación	Medio
Tensión nominal (kV)	220
Tensión más elevada (kV)	245
Tensión soportada a 50 Hz en seco (kV)	715
Tensión soportada a 50 Hz bajo lluvia (kV)	540
Tensión soportada a impulso tipo rayo (kV)	1.160
Línea de fuga de la cadena de aisladores (mm)	6.080
Línea de fuga específica (mm/kV)	24,82

Por tanto se cumple lo indicado en la ITC-LAT 07, Apartado 4.4 en el que se recomienda 20mm/kV de longitud de fuga nominal mínima para un nivel de contaminación Medio (II).

De acuerdo con el Apartado 3.4 de la ITC-LAT 07, el coeficiente de seguridad respecto a la carga de rotura mínima garantizada es de 2,5.

Para el aislador U160BS, la carga de rotura es de 16.309kgf y la tracción máxima es para (-20° H+V con 4.300 daN):

Amarre

La carga máxima que soporta el aislamiento en un apoyo de amarre teniendo en cuenta que para una línea de 220 kV la cadena es doble se calcula como:

Tracción máxima =
$$Q_L = 4.383x2 = 8.766$$
 kgf
$$\frac{Carga\ de\ rotura}{Tracción\ máxima} = \frac{32.618}{8.766} = 3,72 > 2,5$$

CÓDIGO: MT-ESP-PE-01-R00

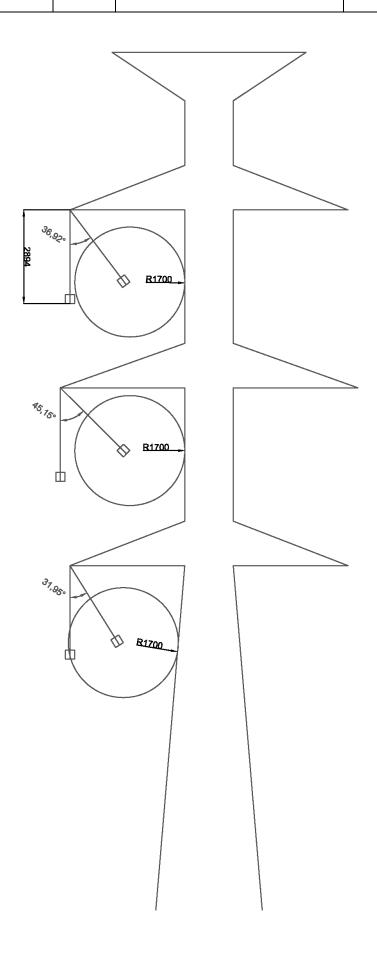
HOJA 100 OF 143

• Suspensión

La carga máxima que soporta el aislamiento en un apoyo de amarre teniendo en cuenta que para una línea de 220 kV la cadena es simple se calcula como:

$$Tracción\ máxima=Q_L=2.240\ kgf$$

$$\frac{\textit{Carga de rotura}}{\textit{Tracción máxima}} = \frac{16.309}{2.240} = 7,28 > 2,5$$


Se han calculado los ángulos máximos de desviación de la cadena de suspensión para los apoyos de la línea, considerando la zona energizada como la franja donde se encuentra el cable y los herrajes hasta el primer aislador del final de la cadena, pudiéndose observar en el esquema mostrado a continuación:

CÓDIGO: MT-ESP-PE-01-R00

HOJA **101** OF **143**

CÓDIGO: MT-ESP-PE-01-R00

HOJA 102 OF 143

9.5. Apoyos

Los apoyos serán normalizados de catálogos de casas comerciales nacionales, con las dimensiones y esfuerzos adecuados para esta tensión y conductor y en función de las necesidades de cada ubicación se colocarán de alineación, amarre o de fin de línea.

9.5.1. Dimensiones de los apoyos

Para la dimensionado de los apoyos se ha seleccionado series de apoyos de catálogos de fabricantes teniendo en cuenta que la tensión máxima de los cables es de 4.300 daN.

Con esta consideración, se escogen apoyos de disposición doble bandera con crucetas simétricas, de longitudes 4,3 m para las crucetas superior e inferior y 4,6 m para la cruceta intermedia. La distancia entre crucetas y la altura de la cúpula de doble cuerno será de 5,5 m. La distancia horizontal entre cuernos será de 6 m.

Los apoyos nº 1 y 2 tendrán 3 crucetas cuadradas en cada altura para garantizar el cumplimiento de distancia mínima de seguridad a los elementos del apoyo.

El apoyo nº 27 será de tipo especial, considerando que a futuro se pueda transformar en un apoyo de entronque para una entrada y salida a una subestación. Cada nivel se compondrá de 4 crucetas, siendo una de ellas una cruceta cuadrada auxiliar para el puente flojo del circuito que pudiera llegar a la subestación. Se considera un esfuerzo equivalente de 48.000 daN, dimensionando el apoyo con una longitud de crucetas de 4,7 m para las crucetas superior e inferior y 5,6 m para la cruceta intermedia. La distancia entre crucetas y la altura de la cúpula de doble cuerno será de 5,5 m. La distancia horizontal entre cuernos será de 6 m.

La altura útil de las torres en cada uno de los puntos del reparto se adaptará para conseguir, como mínimo, las distancias reglamentarias al terreno y demás obstáculos.

Las siluetas de los apoyos se representan en el plano "PL-ESP-PE-05" y los árboles de carga para cada uno de los apoyos están indicados en el documento "MT-ESP-PE-02".

9.5.2. Ensayo de los apoyos

Los apoyos habrán sido ensayados de acuerdo a lo indicado en la Norma UNE-EN 60652:2004 (Ensayos mecánicos de estructuras para líneas eléctricas aéreas).

CÓDIGO: MT-ESP-PE-01-R00

HOJA 103 OF 143

9.5.3. Cálculo mecánico de apoyos

Los cálculos mecánicos de apoyos se realizan de forma individual y para cada una de las distintas hipótesis de carga que establece la ITC 07 del Reglamento de Líneas de Alta Tensión.

Estos cálculos incluyen para cada hipótesis los esfuerzos individuales que cada conductor y cable transmiten a la cruceta y a la cúpula de tierra y el esfuerzo equivalente de todos ellos sobre el apoyo.

Los esfuerzos se referencian en un sistema de coordenadas cartesiano ortogonal a derechas (longitudinal, transversal, vertical).

Las hipótesis normales y anormales a considerar con las correspondientes sobrecargas a aplicar en cada una de ellas según la zona de aplicación B y C son las indicadas en las siguientes tablas:

CÓDIGO: MT-ESP-PE-01-R00 HOJA 104 OF 143

TIPO DE APOYO	TIPO DE ESFUERZO	1ª HIPÓTESIS (Viento)		HIPÓTESIS	3º HIPÓTESIS (Desequilibrio de	4º HIPÓTESIS (Rotura de conductores)	
	ESFUERZU	(Vieitto)	(Hielo)	(Hielo+Viento)	tracciones)	(Rotura de conductores)	
Suspensión de	V	tierra sometidos a una sobrecarga de viento (apdo. 3.1.2) correspondiente a una velocidad mínima de 120 ó 140 km/h según la categoría de la línea.	(apdo. 3.1.1) considerando los conductores y cables de tierra sometidos a la sobrecarga de hielo mínima (apdo. 3.1.3).		conductores y cables de tierri hielo mínima (apdo. 3.1.3). Para las líneas de catego sobrecarga de hielo, se co	a sometidos a la sobrecarga de oría especial, además de la onsiderarán los conductores y a una sobrecarga de viento	
Alineación o		Esfuerzo del viento (apdo. 3.1.2) correspondiente a una velocidad mínima de 120 ó 140 km/h según la categoría de la línea, sobre:	ALINEACIÓN:	Esfuerzo del viento (apdo. 3.1.2) para una velocidad mínima de 60 km/h y sobrecarga de hielo (apdo. 3.1.3) sobre:		ACIÓN: e aplica.	
Suspensión de Ángulo		 Conductores y cables de tierra. Apoyo. SÔLO ÁNGULO: Resultante de ángulo (apdo. 3.1.6.) 	ÁNGULO: Resultante de ángulo (apdo. 3.1.6.).	 Conductores y cables de tierra. Apoyo. SÓLO ÁNGULO: Resultante de ángulo (apdo. 3.1.6.) 	Resultant	GULO: e de ángulo . 3.1.6.)	
	L		No aplica.		Desequilibrio de tracciones (apdo. 3.1.4.1)	Rotura de conductores y cables de tierra (apdo. 3.1.5.1.)	
Amarre de		cargas permanentes (apud 3.1.1) considerando los conductores y cables de tierra sometidos a una sobrecarga de viento (apdo. 3.1.2) correspondiente a una velocidad mínima de 120 ó 140 km/h según la categoría de la lígos.	(apdo. 3.1.1) considerando los conductores y cables de tierra sometidos a la	Cargas permanentes (apdo. 3.1.1) considerando los conductores y cables de tierra sobrecarga de hielo mínima (apdo. 3.1.3) y a una sobrecarga de viento mínima correspondiente a 60 km/h (apdo. 3.1.2)	conductores y cables de tiern hielo mínima (apdo. 3.1.3). Para las líneas de catego sobrecarga de hielo, se co	a sometidos a la sobrecarga de oría especial, además de la onsiderarán los conductores y a una sobrecarga de viento	
Alineación o Amarre de Ángulo	Alineación Esfuerzo del viento (apdo. 3.1.2) correspondiente a una velocidad mínima de 120 ó 140 km/h según la categoría de la línea, sobre: - Conductores y cables de tierra.			Esfuerzo del viento (apdo. 3.1.2) para una velocidad mínima de 60 km/h y sobrecarga de hielo (apdo. 3.1.3) sobre: - Conductores y cables de tierra. - Apoyo. SÓLO ÁNGULO: Resultante de ángulo (apdo. 3.1.6.)	ALINEACIÓN: No se aplica. ÁNGULO: Resultante de ángulo (apdo. 3.1.6.)		
	L		No aplica.		Desequilibrio de tracciones (apdo. 3.1.4.2)	Rotura de conductores y cables de tierra (apdo. 3.1.5.2.)	

Para la determinación de las tensiones de los conductores y cables de tierra se considerará:

1º Hipótesis: Sometidos a una sobrecarga de viento (apdo. 3.1.2) correspondiente a una velocidad mínima de 120 ó 140 km/h según la categoría de la línea y a la temperatura de -10°C en zona B y -15°C en zona C.

Resto hipótesis: Sometidos a una sobrecarga de hielo mínima (apdo. 3.1.3) y a la temperatura de -15 °C en zona B y -20 °C en zona C. En las líneas de categoría especial, además de la sobrecarga de hielo, se considerarán los conductores y cables de tierra sometidos a una sobrecarga de viento mínima correspondiente a 60 km/h (apdo. 3.1.2). La 2ª Hipótesis (Hielo+Viento) será de aplicación exclusiva para las líneas de categoría especial.

CÓDIGO: MT-ESP-PE-01-R00 HOJA 105 OF 143

TIPO DE APOYO	TIPO DE	1º HIPÓTESIS	2	° HIPÓTESIS	3ª HIPÓTESIS (Deseguilibrio	4º HIPÓTESIS
TIPO DE APOTO	ESFUERZO	(Viento)	(Hielo)	(Hielo+Viento)	de tracciones)	(Rotura de conductores)
Anclaje de Alineación	٧	Cargas permanentes (apdo. 3.1.1) considerando los conductores y cables de tierra sometidos a una sobrecarga de viento (apdo. 3.1.2) correspondiente a una velocidad mínima de 120 ó 140 km/h según la categoría de la línea.	(anda 3 4 4) sensideranda	considerando los conductores y cables de tierra sometidos a la sobrecarga de hielo mínima (apdo. 3.1.3) y a una sobrecarga de viento mínima correspondiente a 60 km/h (apdo.	cables de tierra s 3.1.3). Para las líneas de hielo, se consider	tes (apdo. 3.1.1) considerando los conductores y ometidos a la sobrecarga de hielo mínima (apdo. e categoría especial, además de la sobrecarga de arán los conductores y cables de tierra sometidos a de viento mínima correspondiente a 60 km/h
o Anclaje de Ángulo	Т	Esfuerzo del viento (apdo. 3.1.2) correspondiente a una velocidad mínima de 120 ó 140 km/h según la categoría de la línea, sobre: - Conductores y cables de tierra. - Apoyo. SÓLO ÁNGULO: Resultante de ángulo (apdo. 3.1.6.)	No se aplica. ÁNGULO: Resultante de ángulo	Esfuerzo del viento (apdo. 3.1.2) para una velocidad mínima de 60 km/h y sobrecarga de hielo (apdo. 3.1.3) sobre: - Conductores y cables de tierra. - Apoyo. SÓLO ÁNGULO: Resultante de ángulo (apdo. 3.1.6.)		ALINEACIÓN: No se aplica. ÁNGULO: Resultante de ángulo (apdo. 3.1.6.)
	L		No aplica.		Desequilibrio de tracciones (apdo. 3.1.4.3)	Rotura de conductores y cables de tierra (apdo. 3.1.5.3.)
Fin de lines	٧	mínimo do 130 ó 140 km/h cogún lo	(apdo. 3.1.1) considerando los conductores y cables de tierra sometidos a la			Cargas permanentes (apdo. 3.1.1) considerando los conductores y cables de tierra sometidos a la sobrecarga de hielo mínima (apdo. 3.1.3). Para las líneas de categoría especial, además de la sobrecarga de hielo, se considerarán los conductores y cables de tierra sometidos a una sobrecarga de viento mínima correspondiente a 60 km/h (apdo. 3.1.2).
Fin de línea	Estuerzo del viento (apdo. 3.1. correspondiente a una velocida mínima de 120 ó 140 km/h según categoría de la línea, sobre: - Conductores y cables de tierra Apoyo.		No aplica.	Esfuerzo del viento (apdo. 3.1.2) para una velocidad mínima de 60 km/h y sobrecarga de hielo (apdo. 3.1.3) sobre: - Conductores y cables de tierra. - Apoyo.	No aplica.	No aplica.
	L	Desequilibrio de tracciones (apdo. 3.1.4.4).	(3	uilibrio de tracciones apdo. 3.1.4.4).		Rotura de conductores y cables de tierra (apdo. 3.1.5.4.)

Para la determinación de las tensiones de los conductores y cables de tierra se considerará:

¹º Hipótesis: Sometidos a una sobrecarga de viento (apdo. 3.1.2) correspondiente a una velocidad mínima de 120 ó 140 km/h según la categoría de la línea y a la temperatura de -10°C en zona B y -15°C en

Resto hipótesis: Sometidos a una sobrecarga de hielo mínima (apdo. 3.1.3) y a la temperatura de -15 °C en zona B y -20 °C en zona C. En las líneas de categoría especial, además de la sobrecarga de hielo, se considerarán los conductores y cables de tierra sometidos a una sobrecarga de viento mínima correspondiente a 60 km/h (apdo. 3.1.2). La 2ª Hipótesis (Hielo+Viento) será de aplicación exclusiva para las líneas de categoría especial.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 106 OF 143

<u>Hipótesis normales:</u> el coeficiente de seguridad no será inferior a 1,5 respecto al límite de fluencia.

<u>Hipótesis anormales:</u> el coeficiente de seguridad no será inferior a 1,2 respecto al límite de fluencia.

Obtenidos los esfuerzos de los apoyos, se comparan los esfuerzos a una altura de 4,4 metros por encima del inicio de la cabeza en cada una de las hipótesis, tanto para cargas verticales como horizontales. Para ello se escoge el armado cuyas resistencias no sean en ninguno de los casos menores que los esfuerzos a soportar. A continuación se muestran las tablas de esfuerzos característicos del catálogo de la casa POSTEMEL para la serie MISTRAL y EOLO respectivamente.

Ulindania	MISTRAL											
Hipótesis	40	60	80	90	120	150	190	270	320			
1a	3620	5730	8310	9540	12780	15640	20440	28650	32120			
1b	3000	5320	7740	8990	12130	14970	19920	27860	31330			
2a	5120	6830	9660	11070	14290	17500	21880	30820	34320			
2b	4840	6560	9370	10680	13980	17030	21520	30280	33770			
3	6640	8730	12210	14140	18080	22330	27670	39090	42200			
4a	2520	2530	2520	4770	4780	4760	4730	7020	7100			
4b	2680	3230	3760	3940	3930	4040	4080	8170	8710			
Carga vertical por fase		1500				200	10					

Hipótesis	EOLO	
	400	600
1a	39120	61930
1b	37950	60860
2a	42040	64930
2b	41500	64180
3	53140	79830
4a	7730	12300
4b	5790	8630
Carga vertical por fase	1500	

9.5.3.1. 1º hipótesis (viento)

9.5.3.1.1. Cargas permanentes

De acuerdo con el apartado 3.1.1 de la ITC-07 del RLEAT se consideran como cargas permanentes las cargas verticales debidas al peso propio de conductores, cables de tierra, aisladores y herrajes, apoyos y cimentaciones.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 107 OF 143

9.5.3.1.2. Fuerzas del viento sobre los componentes de las líneas aéreas

De acuerdo con el apartado 3.1.2 de la ITC-07 del RLEAT se considera un viento de 140km/h que se supone horizontal actuando perpendicularmente a las superficies sobre las que incide.

La acción del viento, en función de su velocidad V_{ν} en km/h, da lugar a las fuerzas que a continuación se indican sobre los distintos elementos de la línea.

Fuerzas de viento sobre los conductores y cables de tierra

La presión de viento en los conductores causa fuerzas transversales a la dirección de la línea, al igual que aumenta la tensión sobre los conductores.

Considerando los vanos adyacentes, la fuerza del viento sobre un apoyo de alineación será, para cada conductor del haz:

$$F_c = q x d x \frac{a_1 + a_2}{2} \text{ daN,}$$

Siendo:

d, diámetro del conductor, en metros.

 a_1 , a_2 longitudes de los vanos adyacentes, en metros. La semisuma de a_1 y a_2 es el vano de viento o eolovano, a_v .

q presión de viento

=
$$60 \text{ x} \left(\frac{V_v}{120}\right)^2 \text{daN/mm}^2$$
 para conductores de $d \leq 16 \text{mm}$

=
$$50 \text{ x} \left(\frac{V_v}{120}\right)^2 \text{daN/mm}^2$$
 para conductores de d > 16mm

La fuerza total del viento sobre los conductores en haz estará definida como la suma de las fuerzas sobre cada uno de los conductores, sin tener en cuenta posibles efectos de pantalla entre conductores, ni aún en el caso de haces de conductores de fase.

En las fuerzas del viento sobre apoyos en ángulo, ha de tenerse en cuenta la influencia del cambio en la dirección de la línea, así como en las longitudes de los vanos adyacentes.

Fuerza del viento sobre los apoyos de celosía

La presión que el viento ejerce sobre los apoyos de celosía en función de la velocidad de este según el Reglamento de líneas de Alta Tensión, se puede escribir como:

$$F_c = q x A_T \text{ daN,}$$

Siendo:

CÓDIGO: MT-ESP-PE-01-R00

HOJA 108 OF 143

 $A_{\rm T}$ área del apoyo expuesta al viento proyectada en el plano normal a la dirección del viento, en ${\rm m}^2$.

q presión de viento

$$= 170 \times \left(\frac{V_v}{120}\right)^2 \text{daN/mm}^2$$

9.5.3.1.3. Esfuerzos resultantes de ángulo

De acuerdo con el apartado 3.1.6 de la ITC-07 del RLEAT, en los apoyos situados en un punto en el que el trazado de la línea ofrezca un cambio de dirección se tendrá en cuenta, además, el esfuerzo resultante de ángulo de tracciones de los conductores y cables de tierra.

9.5.3.2. <u>2ªA hipótesis (hielo)</u>

9.5.3.2.1. Cargas permanentes

De acuerdo con el apartado 3.1.1 de la ITC-07 del RLEAT se consideran como cargas permanentes las cargas verticales debidas al peso propio de conductores, cables de tierra, aisladores y herrajes, apoyos y cimentaciones.

9.5.3.2.2. Sobrecarga motivadas por el hielo

De acuerdo con el apartado 3.1.3 de la ITC-07 del RLEAT los conductores y cables se consideran sometidos en la zona de cálculo B a una sobrecarga por manguito de hielo por unidad de longitud, cuyo valor es:

$$P_h = 0.18 \, x \, \sqrt{d} \, \, \mathrm{daN/m}$$

Siendo:

d: Diámetro del conductor o cable (mm).

9.5.3.2.3. Esfuerzos resultantes de ángulo

De acuerdo con el apartado 3.1.6 de la ITC-07 del RLEAT, en los apoyos situados en un punto en el que el trazado de la línea ofrezca un cambio de dirección se tendrá en cuenta, además, el esfuerzo resultante de ángulo de tracciones de los conductores y cables de tierra.

9.5.3.3. 2ºB hipótesis (hielo + viento)

9.5.3.3.1. Cargas permanentes

De acuerdo con el apartado 3.1.1 de la ITC-07 del RLEAT se consideran como cargas permanentes las cargas verticales debidas al peso propio de conductores, cables de tierra, aisladores y herrajes, apoyos y cimentaciones.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 109 OF 143

9.5.3.3.2. Sobrecarga motivadas por el hielo

De acuerdo con el apartado 3.1.3 de la ITC-07 del RLEAT los conductores y cables se consideran sometidos en la zona de cálculo B a una sobrecarga por manguito de hielo por unidad de longitud, cuyo valor es:

$$P_h = 0.18 \, x \, \sqrt{d} \, \text{daN/m}$$

Siendo:

d: Diámetro del conductor o cable (mm).

9.5.3.3.3. Fuerzas del viento sobre los componentes de las líneas aéreas

De acuerdo con el apartado 3.1.2 de la ITC-07 del RLEAT se considera un viento de 60km/h que se supone horizontal actuando perpendicularmente a las superficies sobre las que incide.

La acción del viento, en función de su velocidad V_{ν} en km/h, da lugar a las fuerzas que a continuación se indican sobre los distintos elementos de la línea.

Fuerzas de viento sobre los conductores y cables de tierra

La presión de viento en los conductores causa fuerzas transversales a la dirección de la línea, al igual que aumenta la tensión sobre los conductores.

Considerando los vanos adyacentes, la fuerza del viento sobre un apoyo de alineación será, para cada conductor del haz:

$$F_c = q \ x \ d \ x \ \frac{a_1 + a_2}{2} \ \text{daN,}$$

Siendo:

d, diámetro del conductor, en metros.

 a_1 , a_2 longitudes de los vanos adyacentes, en metros. La semisuma de a_1 y a_2 es el vano de viento o eolovano, a_v .

q presión de viento

=
$$60 \text{ x} \left(\frac{V_v}{120}\right)^2 \text{daN/mm}^2$$
 para conductores de $d \leq 16 \text{mm}$

=
$$50 \text{ x} \left(\frac{V_v}{120}\right)^2 \text{daN/mm}^2 \text{ para conductores de d} > 16 \text{mm}$$

En el caso de sobrecargas combinadas de hielo y de viento, se deberá considerar el diámetro incluido el espesor del manguito de hielo, para lo cual se aconseja considerar un peso volumétrico especifico del hielo de valor 750 daN/m³.

La fuerza total del viento sobre los conductores en haz estará definida como la suma de las fuerzas sobre cada uno de los conductores, sin tener en cuenta

CÓDIGO: MT-ESP-PE-01-R00

HOJA 110 OF 143

posibles efectos de pantalla entre conductores, ni aún en el caso de haces de conductores de fase.

En las fuerzas del viento sobre apoyos en ángulo, ha de tenerse en cuenta la influencia del cambio en la dirección de la línea, así como en las longitudes de los vanos adyacentes.

Fuerza del viento sobre los apoyos de celosía

La presión que el viento ejerce sobre los apoyos de celosía en función de la velocidad de este según el Reglamento de líneas de Alta Tensión, se puede escribir como:

$$F_c = q x A_T \text{ daN,}$$

Siendo:

 ${\rm A_T}$ área del apoyo expuesta al viento proyectada en el plano normal a la dirección del viento, en ${\rm m^2}$.

q presión de viento

$$= 170 \text{ x } \left(\frac{\text{V}_{\text{v}}}{\text{120}}\right)^{2} \text{daN/mm}^{2}$$

9.5.3.3.4. Esfuerzos resultantes de ángulo

De acuerdo con el apartado 3.1.6 de la ITC-07 del RLEAT, en los apoyos situados en un punto en el que el trazado de la línea ofrezca un cambio de dirección se tendrá en cuenta, además, el esfuerzo resultante de ángulo de tracciones de los conductores y cables de tierra.

9.5.3.4. 3º hipótesis (desequilibrio de tracciones)

9.5.3.4.1. Cargas permanentes

De acuerdo con el apartado 3.1.1 de la ITC-07 del RLEAT se consideran como cargas permanentes las cargas verticales debidas al peso propio de conductores, cables de tierra, aisladores y herrajes, apoyos y cimentaciones.

9.5.3.4.2. Sobrecarga motivadas por el hielo

De acuerdo con el apartado 3.1.3 de la ITC-07 del RLEAT los conductores y cables se consideran sometidos en la zona de cálculo B a una sobrecarga por manguito de hielo por unidad de longitud, cuyo valor es:

$$P_h = 0.18 x \sqrt{d} \text{ daN/m}$$

Siendo:

d: Diámetro del conductor o cable (mm).

CÓDIGO: MT-ESP-PE-01-R00

HOJA **111** OF **143**

9.5.3.4.3. Fuerzas del viento sobre los componentes de las líneas aéreas

De acuerdo con el apartado 3.1.2 de la ITC-07 del RLEAT se considera un viento de 60km/h que se supone horizontal actuando perpendicularmente a las superficies sobre las que incide.

La acción del viento, en función de su velocidad V_v en km/h, da lugar a las fuerzas que a continuación se indican sobre los distintos elementos de la línea.

Fuerzas de viento sobre los conductores y cables de tierra

La presión de viento en los conductores causa fuerzas transversales a la dirección de la línea, al igual que aumenta la tensión sobre los conductores.

Considerando los vanos adyacentes, la fuerza del viento sobre un apoyo de alineación será, para cada conductor del haz:

$$F_c = q \ x \ d \ x \ \frac{a_1 + a_2}{2} \ \text{daN,}$$

Siendo:

d, diámetro del conductor, en metros.

 a_1 , a_2 longitudes de los vanos adyacentes, en metros. La semisuma de a_1 y a_2 es el vano de viento o eolovano, a_v .

q presión de viento

=
$$60 \text{ x} \left(\frac{V_v}{120}\right)^2 \text{daN/mm}^2$$
 para conductores de $d \leq 16 \text{mm}$

=
$$50 \text{ x} \left(\frac{V_v}{120}\right)^2 \text{daN/mm}^2$$
 para conductores de d > 16mm

En el caso de sobrecargas combinadas de hielo y de viento, se deberá considerar el diámetro incluido el espesor del manguito de hielo, para lo cual se aconseja considerar un peso volumétrico especifico del hielo de valor 750 daN/m³.

La fuerza total del viento sobre los conductores en haz estará definida como la suma de las fuerzas sobre cada uno de los conductores, sin tener en cuenta posibles efectos de pantalla entre conductores, ni aún en el caso de haces de conductores de fase.

En las fuerzas del viento sobre apoyos en ángulo, ha de tenerse en cuenta la influencia del cambio en la dirección de la línea, así como en las longitudes de los vanos adyacentes.

9.5.3.4.4. Desequilibrio de tracciones

Se considerara por este concepto un esfuerzo equivalente al 50% de las tracciones unilaterales de los conductores y cables de tierra.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 112 OF 143

Este esfuerzo se aplicará en el punto de fijación de los conductores y cables de tierra en el apoyo. Se deberá tener en cuenta, por consiguiente, la torsión a que estos esfuerzos pudieran dar lugar. En los apoyos con ángulo se valorará el esfuerzo de ángulo creado por esta circunstancia.

9.5.3.4.5. Esfuerzos resultantes de ángulo

De acuerdo con el apartado 3.1.6 de la ITC-07 del RLEAT, en los apoyos situados en un punto en el que el trazado de la línea ofrezca un cambio de dirección se tendrá en cuenta, además, el esfuerzo resultante de ángulo de tracciones de los conductores y cables de tierra.

9.5.3.5. 4º hipótesis (rotura de conductores)

9.5.3.5.1. Cargas permanentes

De acuerdo con el apartado 3.1.1 de la ITC-07 del RLEAT se consideran como cargas permanentes las cargas verticales debidas al peso propio de conductores, cables de tierra, aisladores y herrajes, apoyos y cimentaciones.

9.5.3.5.2. Sobrecarga motivadas por el hielo

De acuerdo con el apartado 3.1.3 de la ITC-07 del RLEAT los conductores y cables se consideran sometidos en la zona de cálculo B a una sobrecarga por manguito de hielo por unidad de longitud, cuyo valor es:

$$P_h = 0.18 x \sqrt{d} \text{ daN/m}$$

Siendo:

d: Diámetro del conductor o cable (mm).

9.5.3.5.3. Fuerzas del viento sobre los componentes de las líneas aéreas

De acuerdo con el apartado 3.1.2 de la ITC-07 del RLEAT se considera un viento de 60km/h que se supone horizontal actuando perpendicularmente a las superficies sobre las que incide.

La acción del viento, en función de su velocidad V_v en km/h, da lugar a las fuerzas que a continuación se indican sobre los distintos elementos de la línea.

Fuerzas de viento sobre los conductores y cables de tierra

La presión de viento en los conductores causa fuerzas transversales a la dirección de la línea, al igual que aumenta la tensión sobre los conductores.

Considerando los vanos adyacentes, la fuerza del viento sobre un apoyo de alineación será, para cada conductor del haz:

CÓDIGO: MT-ESP-PE-01-R00

HOJA 113 OF 143

$$F_c = q \ x \ d \ x \ \frac{a_1 + a_2}{2} \ \text{daN,}$$

Siendo:

d, diámetro del conductor, en metros.

 a_1 , a_2 longitudes de los vanos adyacentes, en metros. La semisuma de a_1 y a_2 es el vano de viento o eolovano, a_v .

q presión de viento

=
$$60 \text{ x} \left(\frac{\text{V}_{\text{v}}}{120}\right)^2 \text{daN/mm}^2$$
 para conductores de $d \leq 16 \text{mm}$

=
$$50 \text{ x} \left(\frac{V_v}{120}\right)^2 \text{daN/mm}^2$$
 para conductores de d > 16mm

En el caso de sobrecargas combinadas de hielo y de viento, se deberá considerar el diámetro incluido el espesor del manguito de hielo, para lo cual se aconseja considerar un peso volumétrico especifico del hielo de valor 750 daN/m³.

La fuerza total del viento sobre los conductores en haz estará definida como la suma de las fuerzas sobre cada uno de los conductores, sin tener en cuenta posibles efectos de pantalla entre conductores, ni aún en el caso de haces de conductores de fase.

En las fuerzas del viento sobre apoyos en ángulo, ha de tenerse en cuenta la influencia del cambio en la dirección de la línea, así como en las longitudes de los vanos adyacentes.

9.5.3.5.4. Rotura de conductores y cable de tierra

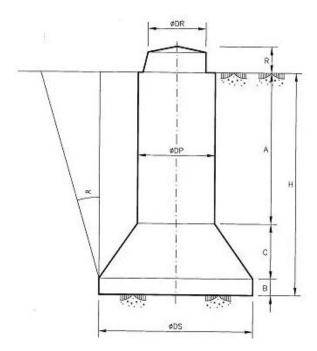
De acuerdo con el apartado 3.1.5 de la ITC-07 del RLEAT, se considerará una rotura de los conductores (uno o varios) de una sola fase o cable de tierra por apoyo independientemente del número de circuitos o cables de tierra instalados en él. Este esfuerzo considerará aplicado en el punto que produzca la solicitación más desfavorable para cualquier elemento del apoyo, teniendo en cuenta la torsión producida en el caso de que aquel esfuerzo sea excéntrico.

Al ser una línea conductores en haces múltiples se considera la rotura del cable de tierra sin reducción alguna de su tensión. La rotura total de los conductores de un haz de fase, pero supuesto aquellos con una tensión mecánica igual al 50 % de la que les corresponde en la hipótesis que se considere.

9.5.3.5.5. Esfuerzos resultantes de ángulo

De acuerdo con el apartado 3.1.6 de la ITC-07 del RLEAT, en los apoyos situados en un punto en el que el trazado de la línea ofrezca un cambio de dirección se tendrá en cuenta, además, el esfuerzo resultante de ángulo de tracciones de los conductores y cables de tierra.

CÓDIGO: MT-ESP-PE-01-R00


HOJA 114 OF 143

9.5.4. Cimentaciones

Las cimentaciones serán normalizadas de catálogo de la casa comercial que se haya escogido para los apoyos, con las dimensiones adecuadas para cumplir con los esfuerzos de compresión y de arranque.

9.5.4.1. Cimentación de patas separadas

En los apoyos de celosía las fijaciones al terreno se realizan mediante cuatro macizos independientes, una por pata, trabajando dos a compresión y otras dos al arranque, suficientemente separados entre sí para permitir su construcción. Cada cimentación estará compuesta por un macizo cilíndrico de hormigón en masa, con un ensanchamiento en la base a modo de zapata que configura el conjunto con una forma característica de "pata de elefante".

En este tipo de cimentaciones la condición de resistencia al arranque se presenta como la más restrictiva, no eximiendo tal particular de tener en consideración la compresión sobre el terreno.

Los cálculos y comprobaciones se desarrollan a partir del método del talud natural o ángulo de arrastre de tierras.

Tanto el esfuerzo de arranque (AR) como el de compresión (CO) se determinan a partir del momento máximo de vuelco (MV) de la solicitación, considerando las características más desfavorables posibles (esfuerzos útiles del apoyo), dividido

CÓDIGO: MT-ESP-PE-01-R00

HOJA 115 OF 143

por la distancia entre anclajes del apoyo. Por lo tanto, las solicitaciones al arranque y a la compresión se establecen, para cada hipótesis reglamentaria, a través de las siguientes fórmulas:

$$AR = \frac{M_{V}}{2 \cdot I} - \frac{F_{Z}}{4} - \frac{P}{4} \quad (daN) \qquad \qquad CO = -\frac{M_{V}}{2 \cdot I} - \frac{F_{Z}}{4} - \frac{P}{4} \quad (daN)$$

Donde:

MV = Momento de vuelco solicitante para la hipótesis considerará, en daN·m.

FZ = Cargas verticales transmitidas por los conductores y cables de tierra para la hipótesis considerada, en daN.

P = Peso propio del apoyo, en daN.

L = Distancias entre testas de anclaje del apoyo, en m

En la determinación del momento máximo de vuelco (MV) intervienen las cargas horizontales producidas por los conductores, cables de tierra y sobrecarga viento sobre el apoyo, considerando para cada una el punto real de aplicación.

Las características consideradas del terreno son las siguientes:

• Peso específico: $\gamma = 1.7 \text{ t/m}^3$

Ángulo talud natural: β = 30° (terreno medio)

• Presión admisible: $\tau_c = 3.0 \text{ kg/cm}^2$

La resistencia característica mínima del hormigón en masa se considera de 20 N/mm² (aprox. 200 kg/cm²), mientras que la densidad se establece en 2.300 kg/cm³3.

En oposición a la solicitación de arranque se considera el peso propio del apoyo unido a las cargas verticales consideradas en el cálculo del apoyo, al peso del macizo de hormigón (Ph), al de las tierras que gravitan sobre él (Pg) y al peso del cono de tierras que arrastraría el macizo en el arranque (Pa), cuyo volumen viene definido por el ángulo del talud natural (β) indicado en el Artº 3.6 de la ITC-LAT 07 del Reglamento.

El coeficiente de seguridad, Cs, se define como el cociente entre la carga resistente u opositora (CR) y la solicitación de arranque (AR) debiendo ser igual o superior a 1,5 o 1,2 respectivamente para las hipótesis "normales" y "anormales", según se refleja en el citado Artículo:

$$Cs = \frac{CR}{AR} \ge 1.5 (1.2)$$

La compresión (PC) sobre el terreno, a través de la base de cada cimentación (B), estará asociada a las siguientes cargas: peso del macizo de hormigón (Ph), peso de las tierras que gravitan sobre éste (Pg) y carga de comprensión (CO).

CÓDIGO: MT-ESP-PE-01-R00

HOJA **116** OF **143**

En esta última se incluyen el peso propio del apoyo y las cargas verticales transmitidas por conductores y cables de tierra.

En oposición a esta carga se considera la compresión máxima del terreno (τ_c) indicada en el R.T.L.A. en función de la tipología del terreno existente.

Las cimentaciones están calculadas para soportar los esfuerzos máximos admisibles por las torres. Por tanto, dado que los apoyos se encuentran a un porcentaje de uso inferior al 100% respecto a los esfuerzos máximos, queda comprobado que las cimentaciones también tendrán un porcentaje de uso inferior al 100% y por tanto su coeficiente de seguridad será superior a los reglamentarios exigidos.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 117 OF 143

10. Cálculos eléctricos

10.1. Características generales de la línea

Tensión nominal (kV)						
Longitud de la línea (km)						
Número de circuitos						
Número de conductores por fase						
Frecuencia (Hz)						
Zona de aplicaciónB Y C						
10.2. Características del conductor						
Material						
Sección total (mm2)						
Composición54+7						

10.3. Capacidad de corriente

La **densidad** máxima de corriente en régimen permanente para corriente alterna y frecuencia de 50 Hz para conductores de aluminio (δ_L) y el coeficiente de reducción "k" para los de aluminio-acero (Al-Ac), se deducen de la tabla recogida en el apartado 4.2 de la ITC-LAT 07, de tal forma que la densidad máxima de corriente para un conductor de Al-Ac (δ_{LA}), viene dada por:

$$\delta_{LA} = \delta_L \cdot k \quad (A/mm^2)$$

Para el conductor utilizado en el presente proyecto, la densidad e intensidad por conductor:

CÓDIGO: MT-ESP-PE-01-R00

HOJA 118 OF 143

Tipo de cable (código)	LA-545 CARDINAL	
Diámetro aparente (mm)	30,38	
Sección de aluminio (AI) (mm2)	484,53	
Sección de acero (Ac) (mm2)	62,81	
Sección total (mm2)	545,80	
δLΑ	1,645	
Intensidad admisible	897,7	

La potencia por circuito trifásico es:

$$S = \sqrt{3} \cdot U \cdot n \cdot I = \sqrt{3} \cdot 220 \cdot 1 \cdot 897,7 \cdot 10^{-3} = 342 \text{ MVA}$$

Como alternativa de cálculo, conforme al apartado 4.2.2 del ITC-LAT 07, se calcula según IEC 61597 la capacidad de transporte de la línea eléctrica con una velocidad de viento de 0,6 m/s perpendicular al conductor y considerando el efecto de la radiación solar en las condiciones climáticas de la zona más desfavorables:

$$I = \left[\left(P_{rad} + P_{conv} - P_{sol} \right) / R_T \right]^{1/2}$$

Donde:

- R_T es la resistencia eléctrica del conductor a la temperatura $T(\Omega/km)$
- P_{sol} es la ganancia de calor por la radiación solar, $P_{sol} = \gamma \cdot D \cdot S_i$ (W/m), donde:

y es el coeficiente de absorción de radiación solar

D es el diámetro del conductor (m)

S_i es la intensidad de radiación solar (W/m²)

• P_{rad} es la perdida de calor por radiación, $P_{rad} = s \cdot \pi \cdot D \cdot K_e \cdot (T_2^4 - T_1^4)$ (W), donde:

s es la constante de Stefan-Boltzmann (5,67·10⁻⁸ W·m⁻²·K⁻⁴)

D es el diámetro del conductor (m)

K_e es el coeficiente de emisividad respecto al cuerpo negro

T₁ es la temperatura ambiente (K)

CÓDIGO: MT-ESP-PE-01-R00

HOJA 119 OF 143

T₂ es la temperatura final de equilibrio (K)

• P_{conv} es la perdida de calor por convección, $P_{conv} = \lambda \cdot Nu \cdot (T_2 - T_1) \cdot \pi$ (W), donde:

λ es la conductividad térmica de la capa de aire en contacto con el conductor, asumida constante e igual a 0,02585 W·m⁻¹·K⁻¹

Nu es el número Nusselt, $Nu = 0.65 \cdot Re^{0.2} + 0.23 \cdot Re^{0.61}, \text{ donde Re es el número de Reynolds} \text{ } Re = 1.644 \cdot 10^9 \cdot v \cdot D \cdot \left[T_1 + 0.5 \cdot \left(T_2 - T_1\right)\right]^{-1.78}$

v es la velocidad del viento (m/s)

D es el diámetro del conductor (m)

T₁ es la temperatura ambiente (K)

T₂ es la temperatura final de equilibrio (K)

Considerando la temperatura de diseño de la línea, la radiación solar y la temperatura ambiente promedio de cada estación, una velocidad de viento de 0,6 m/s perpendicular al conductor, la potencia máxima de la línea eléctrica es la indicada a continuación:

POTENCIA MÁXIMA DE LA LÍNEA ELÉCTRICA				
Estación del año	Invierno	Verano		
Temperatura del conductor (°C)	85	85		
Temperatura ambiente (°C)	11	33		
Intensidad de radiación solar (W/m²)	337	541		
Intensidad (A)	1.308	1.065		
Potencia (MVA)	499	406		

10.3.1.Resumen de parámetros eléctricos

La impedancia es una magnitud que establece la relación entre la tensión y la intensidad de corriente. La impedancia se describe:

$$Z_K = R_K + jX_K \Omega/km$$

Donde:

• R_K es la resistencia por km, que en este caso es:

CÓDIGO: MT-ESP-PE-01-R00

HOJA 120 OF 143

 $R_K = 0.0615 \Omega / km$

 X_K es la reactancia de autoinducción por km que está definida por la siguiente expresión:

$$X_K = L_K \cdot \omega = 0.3870\Omega/km$$

En la que:

- ω es la pulsación de la corriente 2 π f
- L_K es el coeficiente de autoinducción en H/km, obtenido de la ecuación:

$$L_{K} = \left[\frac{1}{2 \text{ n}} + 4,6 \log \frac{\text{DMG}}{\text{RMG}}\right] 10^{-4}$$

Donde:

- El RMG se determina $RMG = \sqrt[n]{nrR^{n-1}} = 15,189$ mm, donde n es la cantidad de subconductores que componen el haz, r el radio del conductor y R es el radio de la circunferencia que pasa por los centros de los subconductores.
- La DMG se determina para un doble circuito trifásico como:

$$DMG = \sqrt[3]{D_1 \cdot D_2 \cdot D_3}$$

Donde:

$$D_{_{1}} = \frac{\sqrt{d_{_{12}}d_{_{12'}}d_{_{13}}d_{_{13'}}}}{d_{_{11'}}} \quad D_{_{2}} = \frac{\sqrt{d_{_{21}}d_{_{21'}}d_{_{23}}d_{_{23'}}}}{d_{_{22'}}} \quad D_{_{3}} = \frac{\sqrt{d_{_{31}}d_{_{31'}}d_{_{32}}d_{_{32'}}}}{d_{_{33'}}}$$

Siendo d_{ij} la distancia entre dos fases del mismo circuito, y d_{ij} , la distancia entre dos fases de circuitos diferentes.

El resultado es:

DMG = 5,595 m

10.3.2.Pérdida de potencia y caída de tensión

Considerando la intensidad admisible, la longitud de la línea y un $\cos \varphi = 0.9$, la caída de tensión se puede calcular simplificadamente como:

$$\Delta U\% = \frac{\sqrt{3} \cdot l \cdot (R_k + X_k \cdot tg\phi) \cdot \cos\phi \cdot L}{U} \cdot 100$$
= 2,88 %

CÓDIGO: MT-ESP-PE-01-R00

HOJA 121 OF 143

Asimismo, la pérdida de potencia se puede calcular con la siguiente expresión:

$$\Delta P\% = \frac{\sqrt{3} \cdot I \cdot R_k \cdot L}{U \cdot \cos \phi} \cdot 100 = 0.88 \%$$

10.3.3.Efecto corona

De acuerdo con el apartado 4 de la ITC-LAT 07, en líneas de tensión nominal superior a 66 kV debe comprobarse el comportamiento de los conductores frente al efecto corona. Por ello, en el presente apartado se determina la tensión crítica disruptiva de aparición del *efecto corona* al objeto de verificar que los resultados obtenidos son inferiores a los valores a partir de los cuales se produce dicha perturbación.

La tensión crítica de aparición del efecto corona, se determina para la línea en estudio y con la suficiente aproximación a partir de la ley empírica establecida por *F.W. Peek*, que para fases simples se corresponde con la siguiente expresión:

$$U_{c} = 84 \cdot m_{c} \cdot \delta \cdot m_{t} \cdot r \cdot log \left(\frac{DMG}{RMG} \right)$$

Siendo:

U_c: Tensión crítica disruptiva

 m_c : Coeficiente de rugosidad del conductor, comprendido entre 0,83 y 0,87 para el caso de conductores cableados. En el presente proyecto se considera un valor de 0,84.

m_t: Coeficiente meteorológico o "factor de mal tiempo", que toma en consideración el efecto de la humedad sobre la tensión crítica disruptiva, Uc. En el caso más desfavorable, para tiempo húmedo, se tomara un valor de 0,8

RMG: Radio Medio Geométrico del conductor, en cm. Se puede tomar con la suficiente aproximación igual al radio del conductor en circuitos simples.

DMG: Distancia Media Geométrica entre ejes de fases, en cm.

r: Radio del conductor en cm

δ: factor corrector de la densidad del aire en función de la altura sobre el nivel del mar y la temperatura. Este factor resulta directamente proporcional a la presión barométrica e inversamente proporcional a la temperatura absoluta del aire. Se determina a través de la siguiente expresión:

$$\delta = \frac{273 + 25}{76} \cdot \frac{h}{273 + t} = \frac{3,921 \cdot h}{273 + t}$$

CÓDIGO: MT-ESP-PE-01-R00

HOJA 122 OF 143

donde:

- t = Temperatura máxima correspondiente a la altitud del punto considerado, en °C (en el presente proyecto se considera de 10 °C).
- h = Presión barométrica en cm de columna de mercurio a la altura (media) de la línea (cercana a los 834 metros para el caso en proyecto). Esta presión, dependiente de la altitud sobre el nivel del mar en el punto considerado, habitualmente se determina a través de la fórmula de Halley:

$$log \ h = log \ 76 - \frac{y}{18.336} \quad \Rightarrow \quad h = 10^{log \ 76 - \frac{y}{18.336}}$$

considerando "y" a la altitud sobre el nivel del mar, en metros. Los resultados de la fórmula de Halley se tabulan a continuación:

RESULTADOS DE LA FÓRMULA DE HALLEY					
Altitud en metros sobre el nivel del mar Y	Presión atmosférica en centímetros de columna de mercurio h	Altitud en metros sobre el nivel del mar Y	Presión atmosférica en centímetros de columna de mercurio h		
0	76	1.800	60,8		
100	75,1	2.000	59,8		
200	74,2	2.200	58		
300	73,3	2.400	56		
400	72,4	2.500	55,4		
500	71,6	2.600	55		
600	70,7	2.800	54		
700	69,9	3.000	52,4		
800	69	3.500	49,3		
900	68,2	4.000	46,2		
1.000	67,4	4.500	43,3		
1.200	65,8	5.000	40,5		
1.400	63,9	5.500	37,8		
1.500	63,5	6.000	35,3		
1.600	62,3				

Considerando los diferentes valores, se obtienen los siguientes resultados:

Para tiempo seco:

$$U_c = 258,48 \text{ kV}$$

Para tiempo húmedo:

$$U_c = 206,78 \text{ kV}$$

En las condiciones habituales de funcionamiento de la instalación, la tensión máxima eficaz será de 245 kV, inferior a la tensión crítica disruptiva calculada en

CÓDIGO: MT-ESP-PE-01-R00

HOJA 123 OF 143

tiempo seco, por lo cual, en dichas condiciones no se producirán pérdidas apreciables por el efecto corona.

Sin embargo, en tiempo húmedo la tensión máxima eficaz es mayor que la tensión crítica disruptiva calculada. Por tanto, para estas condiciones las pérdidas por efecto corona son las siguientes:

$$p = \frac{241}{\delta} \cdot (f + 25) \cdot \sqrt{\frac{r}{D}} \cdot (U_x - U_c)^2 \cdot 10^{-5} = 306,68 \text{ kW}$$

Siendo:

U_x: Tensión simple considerada

U_c: Tensión crítica disruptiva

Que corresponde a unas pérdidas de 0,08% de la potencia máxima.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 124 OF 143

11. Pliego de condiciones técnicas

11.1. Condiciones generales

11.1.1. Objeto de este pliego

El objeto de este Pliego es la enumeración de tipo general técnico de Control y de Ejecución a las que se han de ajustar las diversas unidades de la obra, para ejecución del Proyecto.

11.1.2.Contratación

Además del presente documento, la documentación básica para la contratación de la materialización del presente proyecto serán:

- Planos
- Mediciones
- Memoria
- Condiciones Particulares de Contratación, que deberán contar con la aprobación previa de la Dirección Técnica, especificando la responsabilidad del suministro y montaje, criterios de medición y abono, garantías, etc.

11.1.3.Procedencia de materiales

El Contratista, en el caso de ser adjudicatario del suministro, tiene libertad de proveerse de los materiales en los puntos que le parezca conveniente, siempre que reúnan las condiciones contractuales, que estén perfectamente preparados para el objeto a que se apliquen, y sean empleados en obra conforme a las reglas del arte, a lo preceptuado en el Pliego de Condiciones y a lo ordenado por la Dirección Técnica.

Se exceptúa el caso en que los pliegos de condiciones particulares dispongan un origen preciso y determinado, en cuyo caso, este requisito será de indispensable cumplimiento.

Como norma general el Contratista vendrá obligado a presentar el Certificado de Garantía o Documento de Idoneidad Técnica de los diferentes materiales destinados a la ejecución de la obra.

11.1.4.Plazo de comienzo y de ejecución

El adjudicatario deberá dar comienzo a las obras dentro de los quince días siguientes a la fecha de la adjudicación definitiva a su favor, o lo que se acuerde contractualmente.

Las obras deberán quedar total y absolutamente terminadas en el plazo que se fije en la adjudicación a contar desde igual fecha que en el caso anterior. No se

CÓDIGO: MT-ESP-PE-01-R00

HOJA 125 OF 143

considerará motivo de demora de las obras la posible falta de mano de obra o dificultades en la entrega de los materiales.

11.1.5.Sanciones por retraso de las obras

Si el Contratista, excluyendo los casos de fuerza mayor, no tuviese perfectamente concluidas las obras y en disposición de inmediata utilización o puesta en servicio, dentro del plazo previsto, la propiedad podrá reducir de las liquidaciones, certificaciones o fianzas las cantidades establecidas según las cláusulas de contratación.

11.1.6.Trabajos defectuosos

El Contratista debe emplear los materiales que cumplan las condiciones exigidas en este Pliego y realizará todos los trabajos contratados de acuerdo con lo especificado en dicho documento.

Por ello y hasta que tenga lugar la recepción definitiva de la instalación, el Contratista es el único responsable de la ejecución de los trabajos que ha contratado y de las faltas y defectos que en estos pueda existir, por su mala ejecución o por la deficiente calidad de los materiales empleados, sin que pueda servir de excusa, ni le otorgue derecho alguno, la circunstancia de que por la Dirección Técnica no se le haya llamado la atención sobre el particular, ni tampoco el hecho de que le hayan sido valoradas las certificaciones parciales de obra, que siempre se supone que se extienden y abonan a buena cuenta. Asimismo será de su responsabilidad la correcta conservación de las diferentes partes de la obra, una vez ejecutadas, hasta su entrega.

Como consecuencia de lo anteriormente expresado, cuando la Dirección Técnica o su representante en la obra adviertan vicios o defectos en los trabajos efectuados, o que los materiales empleados no reúnan las condiciones preceptuadas, ya sea en el curso de ejecución de los trabajos o finalizados éstos y antes de verificarse la recepción definitiva, podrá disponer que las partes defectuosas sean demolidas y reconstruidas de acuerdo con lo preceptuado y todo ello a expensas de la Contrata.

En el supuesto de que la reparación de la obra, de acuerdo con el proyecto, o su demolición, no fuese técnicamente posible, se actuará sobre la devaluación económica de las unidades en cuestión, en cuantía proporcionada a la importancia de los defectos y en relación al grado de acabado que se pretende para la obra.

En caso de reiteración en la ejecución de unidades defectuosas, o cuando éstas sean de gran importancia, la Propiedad podrá optar, previo asesoramiento de la Dirección Técnica, por la rescisión de contrato sin perjuicio de las penalizaciones que pudiera imponer a la Contrata en concepto de indemnización.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 126 OF 143

11.1.7. Vicios ocultos

Si la Dirección Técnica tuviese fundadas razones para creer en la existencia de vicios ocultos de construcción en las obras ejecutadas, ordenará efectuar en cualquier tiempo y antes de la recepción definitiva, las comprobaciones que crea necesarias para reconocer los trabajos que crea defectuosos.

Los gastos de demolición, desmontaje y reconstrucción que se ocasionan, serán de cuenta del Contratista, siempre que los vicios existan realmente, en caso contrario, correrán a cargo del propietario.

11.1.8. Recepción provisional de las obras

Una vez terminada la totalidad de las obras, se procederá a la recepción provisional, extendiéndose un acta de la recepción.

Si las obras se encuentran en buen estado y han sido ejecutadas con arreglo a las condiciones establecidas, se darán por recibidas provisionalmente, comenzando a correr en dicha fecha el plazo de garantía de un año.

Cuando las obras no se hallen en estado de ser recibidas, se hará constar en el acta y se especificarán en la misma los defectos observados, así como las instrucciones al Contratista, que la Dirección Técnica considere necesarias para remediar los efectos observados, fijándose un plazo para subsanarlo, expirado el cual, se efectuará un nuevo reconocimiento en idénticas condiciones, a fin de proceder de nuevo a la recepción provisional de la obra.

Si el Contratista no hubiese cumplido, se considerará rescindida la Contrata con pérdidas de fianza, a no ser que se estime conveniente se le conceda un nuevo e improrrogable plazo.

Será condición indispensable para proceder a la recepción provisional la entrega por parte de la Contrata a la Dirección Técnica de la totalidad de los planos y/o documentación de la obra e instalaciones realmente ejecutadas.

11.1.9. Medición definitiva de los trabajos

Recibidas provisionalmente las obras, se procederá inmediatamente, por la Dirección Técnica a su medición general y definitiva.

11.1.10. Plazo de garantía

El plazo de garantía de las obras terminadas será de UN AÑO, transcurrido el cual se efectuará la recepción definitiva de las mismas, que, de resolverse favorablemente, relevará al Contratista de toda responsabilidad de conservación, reforma o reparación.

Caso de hallarse anomalías u obras defectuosas, la Dirección Técnica concederá un plazo prudencial para que sean subsanadas y si a la expiración del mismo resultase que aun el Contratista no hubiese cumplido su compromiso,

CÓDIGO: MT-ESP-PE-01-R00

HOJA 127 OF 143

se rescindirá el contrato, con pérdida de la fianza, ejecutando la Propiedad las reformas necesarias con cargo a la citada fianza.

11.1.11. Recepción definitiva

Finalizado el plazo de garantía se procederá a la recepción definitiva, con las mismas formalidades de la provisional. Si se encontraran las obras en perfecto estado de uso y conservación, se darán por recibidas definitivamente y quedará el Contratista relevado de toda responsabilidad administrativa quedando subsistente la responsabilidad civil según establece la Ley.

En caso contrario se procederá de idéntica forma que la preceptuada para la recepción provisional, sin que el Contratista tenga derecho a percepción de cantidad alguna en concepto de ampliación del plazo de garantía.

11.1.12. Dirección técnica de la obra

Conjuntamente con la interpretación técnica del proyecto, es misión de la Dirección Técnica la dirección y vigilancia de los trabajos que en las obras se realicen, y ello con autoridad técnica legal completa sobre las personas y cosas situadas en la obra y en relación con los trabajos que para la ejecución de las obras, e instalaciones anejas, se lleven a cabo, si considera que adoptar esta resolución es útil y necesaria para la buena marcha de las obras.

El Contratista no podrá recibir otras órdenes relativas a la ejecución de la obra, que las que provengan de la Dirección Técnica o de las personas delegadas.

11.1.13. Obligaciones del contratista

Toda la obra se ejecutará con estricta sujeción al Proyecto, a este Pliego de Condiciones y a las órdenes e instrucciones que se dicten por la Dirección Técnica o ayudantes delegados. El orden de los trabajos será fijado por ellos, señalándose los plazos prudenciales para la buena marcha de las obras.

El Contratista habilitará por su cuenta los caminos, vías de acceso, etc... y mantendrá en obra, en las debidas condiciones, los documentos esenciales del proyecto, para poder ser examinados en cualquier momento.

Por la Contrata se facilitarán todos los medios auxiliares que se precisen, y locales para almacenes adecuados, pudiendo adquirir los materiales dentro de las condiciones exigidas en el lugar y sitio que tenga por conveniente, pero reservándose el propietario, siempre por sí o por intermedio de sus técnicos, el derecho de comprobar que el contratista ha cumplido sus compromisos referentes al pago de jornales y materiales invertidos en la obra, e igualmente, lo relativo a las cargas en materia social, especialmente al aprobar las liquidaciones o recepciones de obras.

La Dirección Técnica, con cualquier parte de la obra ejecutada que no esté de acuerdo con el presente Pliego de Condiciones o con las instrucciones dadas

CÓDIGO: MT-ESP-PE-01-R00

HOJA 128 OF 143

durante su marcha, podrá ordenar su inmediata demolición, desmontaje o su sustitución hasta quedar, a su juicio, en las debidas condiciones o, alternativamente, aceptar la obra con la depreciación que estime oportuna en su valoración.

Igualmente se obliga a la Contrata a demoler o desmontar aquellas partes en que se aprecie la existencia de vicios ocultos, aunque se hubieran recibido provisionalmente.

Son obligaciones generales del Contratista las siguientes:

- Verificar las operaciones de replanteo y nivelación, previa entrega de las referencias por la Dirección Técnica.
- Firmar las recepciones.
- Presenciar las operaciones de medición y liquidaciones, haciendo las observaciones que estime justas, sin perjuicio del derecho que le asiste para examinar y comprobar dicha liquidación.
- Ejecutar cuanto sea necesario para la buena construcción y aspecto de las obras, aunque no esté expresamente estipulado en este pliego.
- El Contratista no podrá subcontratar la obra total o parcialmente, sin autorización escrita de la Dirección, no reconociéndose otra personalidad que la del Contratista o su apoderado.
- El Contratista se obliga, asimismo, a tomar a su cargo cuanto personal sea necesario a juicio de la Dirección Técnica.
- El Contratista no podrá, sin previo aviso y sin consentimiento de la Propiedad y Dirección Técnica, ceder ni traspasar sus derechos y obligaciones a otra persona o entidad.

11.1.14. Responsabilidades del contratista

Son de exclusiva responsabilidad del Contratista, además de las expresadas las de:

- Todos los accidentes que, por inexperiencia o descuido, sucedan a los operarios, debiendo atenerse a lo dispuesto en la legislación vigente sobre accidentes de trabajo y demás preceptos, relacionados con la construcción, régimen laboral, seguros, subsidiarios, etc.
- El cumplimiento de las Ordenanzas y disposiciones Municipales en vigor. Y en general será responsable de la correcta ejecución de las obras que haya contratado, sin derecho a indemnización por el mayor precio que pudieran costarle los materiales o por erradas maniobras que cometiera, siendo de su cuenta y riesgo los perjuicios que pudieran ocasionarse.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 129 OF 143

11.1.15. Seguridad y salud

El Contratista estará obligado a redactar un Plan de Seguridad y Salud específico para la presente obra, conformado y que cumplan las disposiciones vigentes, no eximiéndole el incumplimiento o los defectos del mismo de las responsabilidades de todo género que se deriven.

En caso de accidentes ocurridos a los operarios, en el transcurso de ejecución de los trabajos de la obra, el Contratista se atenderá a lo dispuesto a este respecto en la legislación vigente, siendo en todo caso, único responsable de su incumplimiento y sin que por ningún concepto pueda quedar afectada la Propiedad ni la Dirección Técnica, por responsabilidad en cualquier aspecto.

El Contratista será responsable de todos los accidentes que por inexperiencia o descuido sobrevinieran, tanto en la propia obra como en propiedades contiguas. Será por tanto de su cuenta el abono de las indemnizaciones a quien corresponda y, de todos los daños y perjuicios que puedan causarse en los trabajos de ejecución de la obra, cuando a ello hubiera lugar.

11.2. Especificaciones de los materiales y elementos constitutivos

Todos los elementos constitutivos de la instalación estarán de acuerdo a lo establecido en el Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y sus instrucciones técnicas complementarias ITC-LAT 01 a 09 (en adelante Reglamento) conforme con el Real Decreto 223/2008, de 15 de febrero (publicado en el B.O.E. nº 68 de 19 de marzo de 2008) y deberán cumplir las condiciones que sobre ellos se especifiquen en los distintos documentos que componen el Proyecto. Asimismo sus calidades serán acordes con las distintas normas que sobre ellos estén publicadas y que tendrán un carácter de complementariedad a este apartado del Pliego.

11.2.1.Cimentaciones

Las dimensiones y forma de las cimentaciones quedan recogidas en el apartado de Planos.

Para la fabricación del hormigón se utilizará el cemento tipo CEM IV/B 42,54 R-LH según UNE-EN 197-1. En terrenos agresivos por presencia de sulfatos, se sustituirá por IV/B 42,5 R-LH/SR UNE 80303-1 con el fin de obtener finalmente un hormigón tipo HM-20/P/20/I según EHE.

La fabricación del hormigón siempre se realizará de acuerdo con las recomendaciones de la "Instrucción de Hormigón Estructural" EHE en vigor, tanto se trate de hormigón procedente de planta que será el habitual, como del fabricado "in situ", para la utilización de este último será preceptiva la autorización de la Dirección Técnica.

CÓDIGO: MT-ESP-PE-01-R00

HOJA **130** OF **143**

11.2.2.Apoyos, cables, aisladores, herrajes y accesorios

Las dimensiones y características principales de los elementos constitutivos de la línea quedan recogidas en el apartado de Planos.

11.3. Reglamentación y normativa

A continuación se incluye la reglamentación y normativa aplicable y de referencia

11.3.1.Reglamentos e instrucciones

- Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y sus instrucciones técnicas complementarias ITC-LAT 01 a 09 (en adelante Reglamento), conforme con el Real Decreto 223/2008, de 15 de febrero (publicado en el B.O.E. nº 68 de 19 de marzo de 2008)
- Instrucción de Hormigón Estructural EHE

11.3.2.Normas UNE

Los materiales cumplirán las normas y especificaciones técnicas que les sean de aplicación y que se establecen como de obligado cumplimiento en la ITC-LAT 02.

11.3.3.Otras normas

 CEI 60815: Guía para la selección de aisladores según condiciones de polución.

11.4. Condiciones de ejecución

11.4.1.Obra civil tramo aéreo

La Obra Civil incluirá la excavación de los hoyos y zanjas para las cimentaciones, incluyendo el transporte, medios auxiliares y la retirada de tierra sobrante.

Las pistas o cambios de acceso a los apoyos se realizarán de modo que no se produzcan alteraciones destacables o permanentes sobre el terreno; a tal fin, se utilizarán preferentemente los viales ya existentes. Se mantendrán en buen estado las pistas realizadas y accesos empleados.

La forma y dimensiones de cada excavación se ajustarán a lo indicado en el apartado de Planos. Los anclajes se colocarán mediante plantillas o tirantes, no debiendo sufrir desplazamientos durante el vertido de hormigón.

El Contratista tomará las disposiciones convenientes, para dejar el menor tiempo posible las excavaciones abiertas, con objeto de evitar accidentes.

Las excavaciones se realizarán con útiles apropiados según el tipo de terreno.

CÓDIGO: MT-ESP-PE-01-R00

HOJA **131** OF **143**

Antes de verter el hormigón deberán limpiarse los hoyos de materiales desprendidos, además de vaciarse de agua, si la hubiera.

Una vez vertido el hormigón, se deberá proceder a su correcta compactación, mediante el empleo de vibradores mecánicos adecuados. Durante el hormigonado se procederá a la colocación de tubos de plástico, que permitan el paso de los cables de la toma de tierra.

Asimismo, se efectuarán los siguientes controles:

- Control de consistencia: Se medirá por el asiento en el cono de Abrams, según norma UNE 83313.
- Control de resistencia: Se realizará conforme la "Instrucción de Hormigón Estructural" EHE en vigor, para la modalidad de "Control estadístico del hormigón"

11.4.2.Armado e izado de apoyos

El armado e izado incluirá el transporte a obra de todos los elementos de la estructura y la tornillería, debiendo utilizarse los vehículos y grúas adecuados, incluso para las tareas de carga y descarga.

El armado se realizará de forma que el tramo o apoyo completo quede perfectamente nivelado sobre calces de madera a fin de evitar cualquier tipo de deformación.

Todas las barras y cartelas irán colocadas de acuerdo con los planos de montaje, realizándose el apriete final y graneteado una vez izado el apoyo. Asimismo, se colocarán placas de aviso de peligro por riesgo eléctrico.

El izado se realizará mediante pluma o grúa. En el izado con pluma se dispondrán los vientos adecuados a los esfuerzos a que vaya ser sometida. En el izado con grúa, se utilizará una grúa auxiliar para suspender el apoyo por su base.

Una vez izado el apoyo, se comprobará su verticalidad y la linealidad de las barras, fundamentalmente de los montantes.

11.4.3. Montaje y tendido de cables

El montaje y tendido también incluirá el transporte de todos los materiales necesarios desde el almacén a obra, la carga y descarga, y medios auxiliares.

Tanto para el transporte como para la carga y descarga se utilizarán vehículos y grúas adecuados.

Previo al tendido de cables se colocarán sobre los apoyos las poleas que servirán de base para el arrastre de los cables mediante el correspondiente piloto, realizándose previamente el montaje de las cadenas de aisladores en los apoyos de suspensión.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 132 OF 143

Todos los herrajes y aisladores de las cadenas deberán ser montados de acuerdo con los planos del Proyecto.

Los cruzamientos con otras instalaciones o infraestructuras se protegerán por medio de protecciones o porterías debidamente atirantadas con elementos que aseguren su función y situación. Los cruzamientos con líneas eléctricas, salvo imposibilidad, se efectuarán sin tensión de la línea cruzada.

El despliegue de cables se efectuará con tensión mecánica controlada, utilizando un equipo de tendido adecuado. Los apoyos de principio y fin del tramo a tender, se atirantarán con objeto de contrarrestar la tensión unilateral de los cables.

Una vez desplegado el cable, se procederá al tensado, al regulado definitivo, al engrapado tras la compensación de cadenas y a la colocación de todos los herrajes complementarios.

Una vez finalizado el tendido, se comprobará la verticalidad de las cadenas de suspensión. La tolerancia máxima admisible en las flechas de los cables será de +/- 10cm o un 2% de la flecha.

11.4.4.Tensado y regulado de conductores aéreos

Comprende la colocación de los cables en su flecha, sin sobrepasar la tensión de regulado. Previamente a esta operación se habrá realizado el amarre en uno de los extremos y los empalmes si los hubiese.

Con anterioridad al inicio del tensado y regulado, se procederá al marcado de flechas sobre poleas. Esta operación se realizará en los vanos de regulación y comprobación, indicando la temperatura a que corresponde.

11.4.5. Colocación de separadores, antivibradores y contrapesos

Se entregará al contratista una relación con las distancias para colocación de dichas piezas en todos los vanos de la línea.

El método de efectuar la colocación de amortiguadores y separadores se ajustará a las normas correspondientes facilitadas por el fabricante de dichos herrajes.

11.4.6.Protección y cruzamientos

El Contratista solicitará con antelación suficiente (6 semanas) las autorizaciones necesarias para realizar todos los cruzamientos con vías públicas, líneas eléctricas, telecomunicación, etc. con objeto de que el tendido no sufra interrupciones.

Todos los cruzamientos a realizar, excepto líneas eléctricas de alta tensión, deberán protegerse por medio de protecciones o porterías debidamente atirantadas con elementos que aseguren su función y estabilidad. Dependiendo del cruzamiento a realizar, las protecciones podrán ser de madera o metálicas.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 133 OF 143

Los cruzamientos con líneas eléctricas de alta y muy alta tensión, se efectuarán sin tensión en la línea cruzada y, sólo cuando se trate de líneas de tensión de igual o inferior a 66 kV y no resulte posible mantenerlas sin tensión durante la operación de cruce, el Contratista aplicará sistemas de protección eléctrica basados en técnicas de trabajos en tensión (TET) siempre que sea posible, en caso contrario, podrán colocarse mangueras de cable seco.

En el caso de que los cruzamientos se efectúen sin tensión en la línea cruzada, es necesario que el contratista solicite los descargos correspondientes con el suficiente tiempo de antelación para que no retrase la normal ejecución de la obra.

Los descargos se realizarán normalmente en días festivos, por lo que el contratista deberá organizar su trabajo de forma que los cruces con líneas coincidan con dichos días.

En los caminos con vías públicas se utilizarán, debidamente situadas, las señales de tráfico reglamentarias. En los cruzamientos con ferrocarriles electrificados, además de los pies metálicos, se colocará una red de cuerdas en su parte superior para proteger la catenaria.

11.4.7. Ejecución de la puesta a tierra

La ejecución de la puesta a tierra incluirá el suministro de los materiales necesarios, apertura de hoyos o zanja, hincado de picas, tendido de anillos y conexionado.

La toma de tierra se ejecutará según lo reflejado en el apartado de Planos.

Una vez finalizada, se medirán las resistencias de las puestas a tierra y, en el caso que corresponda, las tensiones de contacto.

11.4.8. Reposición del terreno

Las tierras sobrantes, así como los restos del hormigonado, deberán ser retiradas a vertedero, salvo autorización expresa del propietario y siempre que lo permita la vigilancia ambiental.

Todos los daños serán por cuenta del contratista, salvo aquellos tales como apertura de calle o accesos, aceptados previamente por el director de obra.

11.4.9. <u>Numeración de apoyos</u>. Avisos de peligro eléctrico.

Cada apoyo se identificará individualmente mediante un número, código o marca alternativa, de tal manera que sea legible desde el suelo de acuerdo con el Reglamento.

En todos los apoyos, cualquiera que sea su naturaleza, deberán estar claramente identificados el fabricante y tipo.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 134 OF 143

La placa de señalización de "riesgo eléctrico" se colocará en el apoyo a una altura suficiente para que no se pueda quitar desde el suelo (aprox. 4m).

11.5. Recepción de la obra

Durante la obra y una vez finalizada la misma, el director de obra verificará que los otros trabajos realizados estén de acuerdo con las especificaciones de este pliego de condiciones además de las condiciones particulares establecidas en el estudio de impacto ambiental, estudio de seguridad y resoluciones administrativas.

Una vez finalizadas las instalaciones, el contratista deberá solicitar la oportuna recepción global de la obra.

El director de obra contestará por escrito al contratista comunicando su conformidad a la instalación, o condicionando su recepción a la modificación de los detalles que estime susceptibles de mejora.

11.5.1. Calidad de las cimentaciones.

El director de obra verificará que las dimensiones de las cimentaciones y las características mecánicas del terreno se ajustan a las establecidas en el proyecto.

11.5.2. Tolerancias y control de calidad

Los requisitos de control de calidad que deberá de cumplir y aplicar el Contratista quedarán reflejados en el pliego de Condiciones Particulares de Contratación inicial.

11.6. Pruebas

Las pruebas de la instalación se realizarán mediante la puesta en tensión, para proceder posteriormente a su puesta en carga y poder comprobar su correcto funcionamiento a los valores nominales de la instalación.

11.6.1.0bjeto

El presente pliego tiene por objeto establecer las normas de seguridad en prevención de incendios forestales que han de observarse en la ejecución del Proyecto o en sus inmediaciones según decreto 7/2004, de 23 de Enero, del Consell de la Generalitat, para garantizar una adecuada conservación de los terrenos forestales.

11.6.2.Ámbito de aplicación

El ámbito de aplicación del presente pliego es el que corresponde a los terrenos forestales, los colindantes o con una proximidad menor a 500 metros de aquéllos, afectados por las actividades ligadas a la ejecución del Proyecto.

CÓDIGO: MT-ESP-PE-01-R00

HOJA **135** OF **143**

11.6.3.Normas de seguridad de carácter general

Deberán observarse, con carácter general, las siguientes normas de seguridad:

- Salvo autorización, concreta y expresa, del director de los servicios territoriales de la Consellería de Medio Ambiente, Agua, Urbanismo y Vivienda, no se encenderá ningún tipo de fuego.
- En ningún caso se fumará mientras se esté manejando material inflamable, explosivos, herramientas o maquinaria de cualquier tipo.
- Se mantendrán los caminos, pistas, fajas cortafuegos o áreas cortafuegos libres de obstáculos que impidan el paso y la maniobra de vehículos, y limpios de residuos o desperdicios.
- En ningún caso se transitará o estacionarán vehículos carentes de sistema de protección en el sistema de escape y catalizador, en zonas de pasto seco o rastrojo dado el riesgo de incendio por contacto.

11.6.4.Utilización de explosivos

En el caso de utilización de explosivos para la realización de voladuras, con independencia de las autorizaciones y medidas de seguridad que establezca la legislación vigente, en el lugar y momento de la voladura se dispondrá de: una autobomba operativa con una capacidad de agua no inferior a 3.000 litros y cinco operarios dotados con vehículo todo terreno de siete plazas y cinco mochilas extintoras de agua cargadas, con capacidad no inferior a 14 litros cada una, así como un equipo transmisor capaz de comunicar cualquier incidencia, de manera directa o indirecta, al teléfono 112 de emergencias, de la Generalitat.

11.6.5. Utilización de herramientas, maquinaria y equipos

- Los emplazamientos de aparatos de soldadura, grupos electrógenos, motores o equipos fijos eléctricos o de explosión, transformadores eléctricos, éstos últimos siempre y cuando no formen parte de la red general de distribución de energía, así como cualquier otra instalación de similares características, deberá realizarse en una zona desprovista de vegetación con un radio mínimo de 5 metros o, en su caso, rodearse de un cortafuegos perimetral desprovisto de vegetación de una anchura mínima de 5 metros.
- La carga de combustible de motosierras, motodesbrozadoras o cualquier otro tipo de maquinaria se realizará sobre terrenos desprovistos de vegetación, evitando derrames en el llenado de los depósitos y no se arrancarán, en el caso de motosierras y motodesbrozadoras, en el lugar en el que se han repostado. Asimismo, únicamente se depositarán las motosierras o motodesbrozadoras en caliente en lugares desprovistos de vegetación.
- Todos los vehículos y toda la maquinaria autoportante deberán ir equipados con extintores de polvo de 6 kilos o más de carga tipo ABC, Norma Europea (EN 3-1996).

CÓDIGO: MT-ESP-PE-01-R00

HOJA 136 OF 143

- Toda maquinaria autopropulsada dispondrá de matachispas en los tubos de escape.
- Todos los trabajos que se realicen con aparatos de soldadura, motosierras, motores-brozadoras, desbrozadoras de cadenas o martillos, equipos de corte (radiales), pulidoras de metal, así como cualquier otro en el que la utilización de herramientas o maquinaria en contacto con metal, roca o terrenos forestales pedregosos pueda producir chispas, y que se realicen en terreno forestal o en su inmediata colindancia, habrán de ser seguidos de cerca por operarios controladores, dotados cada uno de ellos de una mochila extintora de agua cargada, con una capacidad mínima de 14 litros, cuya misión exclusiva será el control del efecto que sobre la vegetación circundante producen las chispas, así como el control de los posibles conatos de incendio que se pudieran producir.

El número de herramientas o máquinas a controlar por cada operario controlador se establecerá en función del tipo de herramienta o maquinaria y del riesgo estacional de incendios, conforme con el siguiente cuadro de mínimos:

MAQUINARIA A CONTROLAR	FACTOR DE RIESGO	DEL 16 DE OCTUBRE AL 15 DE JUNIO	DEL 16 DE JUNIO AL 15 DE OCTUBRE ¹
Motosierra	1,5	8/1	4/1
Motodesbrozadora	2	6/1	3/1
Desbrozadora de cadenas o martillos	6	2/1	1/1
Equipos de corte, pulidoras, amoladoras y otras herramientas de uso en metales	6	2/1	1/1
Tractor de cadenas o ruedas con cuchilla o palas empujadoras, u otra maquinaria similar	3	4/1	2/1
Aparato de soldadura	12	1/1	1/1

En el caso de utilización simultánea en una misma zona de herramientas o máquinas diferentes, el operario controlador podrá controlarlas simultáneamente siempre que no se superen las proporciones establecidas al aplicar los pesos de los factores de riesgo asignados.

La distancia máxima entre el operario controlador y cada una de las herramientas o máquinas que le sean asignadas para su control será de:

• Del 16 de octubre al 15 de junio: 60 metros en terrenos de nula o escasa pendiente y 30 metros en el resto de los casos.

¹ En los trabajos que se realicen sobre terrenos silíceos, durante el período comprendido entre el 16 de junio y el 15 de octubre, la proporción será en todos los casos de 1/1.

CÓDIGO: MT-ESP-PE-01-R00

HOJA 137 OF 143

• Del 16 de junio al 15 de octubre: 30 metros en terrenos de nula o escasa pendiente y 15 metros en el resto de los casos.

Cada uno de los operarios controladores dispondrá, además del extintor de agua, de una reserva de ésta en cantidad no inferior a 30 litros situada sobre vehículo todo terreno lo más próxima posible al lugar de trabajo.

En aquellas obras o trabajos donde por la maquinaria o herramienta a utilizar sea preceptiva la presencia del operario controlador, y el número de operarios sea igual o superior a seis, incluido el operario controlador, este último se diferenciará del resto de operarios mediante un chaleco identificativo de color amarillo o naranja, en el que en sitio visible llevará las iniciales O. C.

En aquellas obras o trabajos donde por la maquinaria o herramienta a utilizar sea preceptiva la presencia del operario controlador, éste no abandonará la zona de trabajo hasta que no hayan transcurrido al menos 30 minutos desde la finalización de los trabajos que se realicen con la referida maquinaria o herramienta y dispondrá de un equipo transmisor capaz de comunicar cualquier incidencia, de manera directa o indirecta, al teléfono 112 de emergencias, de la Generalitat.

11.6.6.Explotaciones forestales

Además de las normas de seguridad recogidas en el presente pliego, en las zonas en tratamiento o en explotación forestal se mantendrán limpios de vegetación los parques de clasificación, cargaderos y zonas de descarga intermedia y una faja periférica de anchura suficiente en cada caso. Los productos se apilarán en cargaderos, debiendo guardar entre sí las pilas de madera, leñas, corcho, piñas u otros productos forestales una distancia mínima de 10 metros.

11.6.7.Suspensión cautelar de los trabajos

Con carácter general en los días y zonas para los que el nivel de preemergencia ante el riesgo de incendios forestales, que recoge el Plan Especial Frente al Riesgo de Incendios Forestales de la Comunidad Valenciana, establezca el nivel 3 de peligrosidad de incendios, se suspenderán todos los trabajos o actividades que pudiendo entrañar grave riesgo de incendio les sea de aplicación lo regulado en el presente pliego como consecuencia de las herramientas, maquinaria o equipos utilizados para su desarrollo.

CÓDIGO: MT-ESP-PE-01-R00

HOJA **138** OF **143**

12. <u>Presupuesto</u>

12.1. Materiales

Nº	Ud.	[Denominación Partida		Importe Ud.	Importe Total
			<u>CAPÍTULO I Materiales.</u> 1.1 Apoyos			
1.1.1	8.996,00	KG APOYO	MISTRAL-320-15u-DH55b	1	1,76 €	15.832,96 €
1.1.2	10.905,00	KG APOYO	MISTRAL-320-21u-DH55b	1	1,76 €	19.192,80 €
1.1.3	6.161,00	KG APOYO	MISTRAL-80-27u-DH55b	4	1,76 €	43.373,44 €
1.1.4	12.072,00	KG APOYO	MISTRAL-270-27u-DH55b	1	1,76 €	21.246,72 €
1.1.5	8.626,00	KG APOYO	MISTRAL-90-33u-DH55b	8	1,76 €	121.454,08 €
1.1.6	8.626,00	KG APOYO	MISTRAL-80-33u-DH55b	1	1,76 €	15.181,76 €
1.1.7	7.794,00	KG APOYO	MISTRAL-80-30u-DH55b	7	1,76 €	96.022,08 €
1.1.8	11.400,00	KG APOYO	MISTRAL-190-33u-DH55b	2	1,76 €	40.128,00€
1.1.9	14.258,00	KG APOYO	MISTRAL-270-33u-DH55b	1	1,76 €	25.094,08 €
1.1.10	9.194,00	KG APOYO	MISTRAL-90-36u-DH55b	3	1,76 €	48.544,32 €
1.1.11	9.194,00	KG APOYO	MISTRAL-80-36u-DH55b	2	1,76 €	32.362,88 €
1.1.12	8.379,00	KG APOYO	MISTRAL-120-30u-DH55b	2	1,76 €	29.494,08 €
1.1.13	9.613,00	KG APOYO	MISTRAL-190-27u-DH55b	1	1,76 €	16.918,88€
1.1.14	10.262,00	KG APOYO	MISTRAL-190-30u-DH55b	1	1,76 €	18.061,12€
1.1.15	7.794,00	KG APOYO	MISTRAL-90-30u-DH55b	2	1,76 €	27.434,88 €
1.1.16	17.846,00	KG APOYO	EOLO-600-20u-DH55a	1	1,76 €	31.408,96 €
1.1.17	12.110,00	KG APOYO	MISTRAL-190-36u-DH55b	4	1,76 €	85.254,40 €

CÓDIGO: MT-ESP-PE-01-R00 HOJA **139** OF **143**

1.1.18	9.930,00	KG APOYO	MISTRAL-120-36u-DH55b	1	1,76 €	17.476,80 €
1.1.19	15.153,00	KG APOYO	MISTRAL-270-36u-DH55b	1	1,76 €	26.669,28 €
1.1.20	10.394,00	KG APOYO	MISTRAL-90-42u-DH55b	1	1,76 €	18.293,44 €
1.1.21	7.280,00	KG APOYO	MISTRAL-90-27u-DH55b	2	1,76 €	25.625,60 €
1.1.22	5.511,00	KG APOYO	MISTRAL-80-24u-DH55b	3	1,76 €	29.098,08€
1.1.23	10.807,00	KG APOYO	MISTRAL-270-24u-DH55b	1	1,76 €	19.020,32 €
1.1.24	9.794,00	KG APOYO	MISTRAL-90-39u-DH55b	1	1,76 €	17.237,44 €
1.1.25	8.585,00	KG APOYO	MISTRAL-190-24u-DH55b	1	1,76 €	15.109,60 €
Total 1	Total 1.1 Apoyos					855.536,00€

N°	Ud.	Denominación Partida	Importe Ud.	Importe Total
		CAPÍTULO I Materiales. 1.2 Conductores, Fibra Optica, Aislamiento, Aparamenta y Tierras		
1.2.1	234.311,14	Kg. Conductor Al/Ac Cardinal	2,51 €	588.120,95 €
1.2.2	300,00	Ud. Cadena de amarre doble 220 kV (Conductor simple) + Antivibradores	641,26 €	192.378,00 €
1.2.3	282,00	Ud. Cadena de suspensión simple 220 kV (Conductor simple) + Antivibradores	311,67 €	87.890,94 €
1.2.4	19.393,62	Kg. Cable de tierra/fibra óptica tipo OPGW 48 25	3,60 €	69.817,03 €
1.2.5	26,00	Ud. Conjunto simple de amarre conductor tipo OPGW + Antivibradores	180,71 €	4.698,46 €
1.2.6	29,00	Ud. Conjunto simple de suspensión conductor tipo OPGW + Antivibradores	153,00 €	4.437,00 €
1.2.7	9,00	Ud. Caja de empalme de fibra óptica, 2 vías	545,00 €	4.905,00 €
1.2.8	9.316,35	Kg. Cable de tierra/fibra óptica tipo Ac-53	0,44 €	4.108,51 €
1.2.9	26,00	Ud. Conjunto simple de amarre conductor tipo Ac-53 + Antivibradores	118,00 €	3.068,00 €
1.2.10	29,00	Ud. Conjunto simple de suspensión conductor tipoAc-53 + Antivibradores	79,17€	2.295,93 €

CÓDIGO: MT-ESP-PE-01-R00 HOJA **140** OF **143**

1.2.11	106,00	Placa de peligro normalizada	3,00€	318,00 €
1.2.12	106,00	Placa de numeración de apoyo	3,00€	318,00 €
Total 1.2 Conductores, Fibra Optica, Aislamiento, Aparamenta y Tierras 962.355				962.355,82 €
TOTAL MATERIALES 1.817.81				1.817.891,82€

12.2. Obra civil y montaje

N°	Ud.	Denominación Partida	Importe Ud.	Importe Total		
		CAPITULO II Obra Civil y Montaje 2.1Obra Civil				
2.1.1	580,60	M3 Excavación en todo tipo de terreno, incluyendo retirada de tierras para instalación de apoyo	275,00 €	159.665,00 €		
2.1.2	638,66	M3 Hormigonado con acceso a pie de hoyo	335,00 €	213.951,10 €		
2.1.3	PA Despeje y desbroce del terreno medios mecánicos y retirada de capa vegetal en la profundidad indicada en el anexo, para ejecución de nuevas pistas de acceso, incluso almacenamiento en montones de altura inferior a dos metros para posterior utilización y restitución de la tierra vegetal y/o carga y transporte de productos a vertedero o préstamo autorizados.		31.323,00 €	31.323,00 €		
Total	Total 2.1- Obra Civil 404.939					

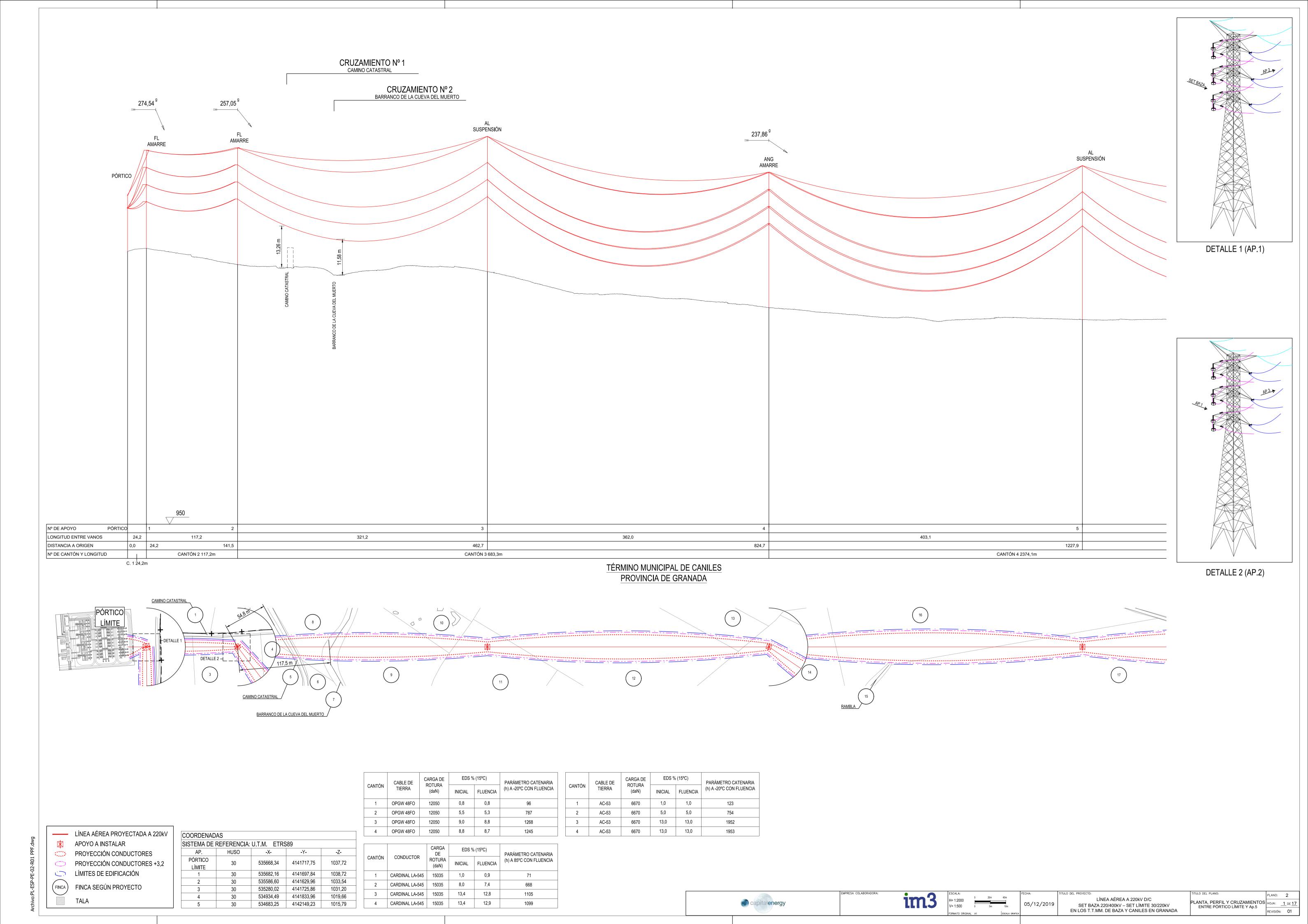
CÓDIGO: MT-ESP-PE-01-R00

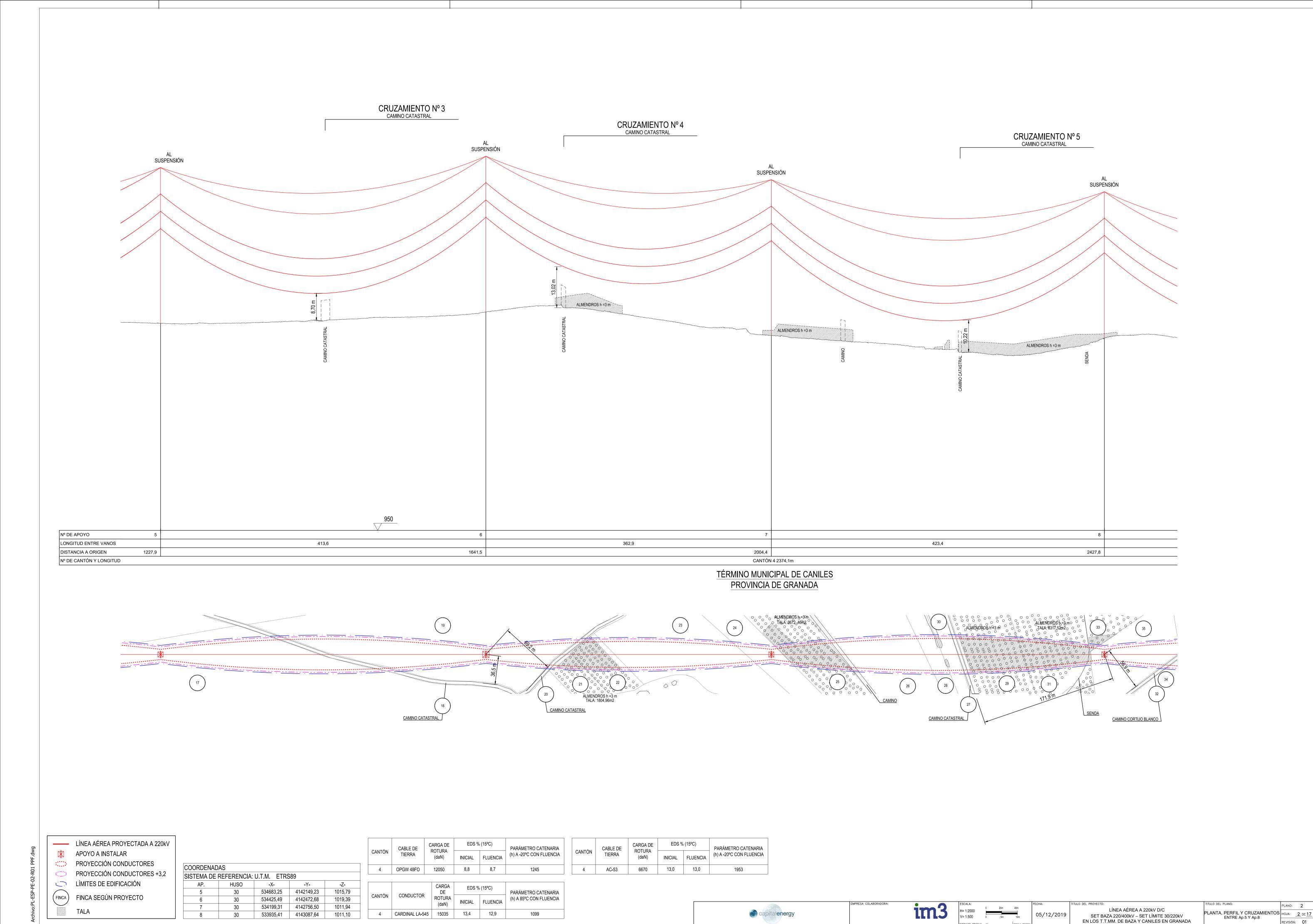
HOJA **141** OF **143**

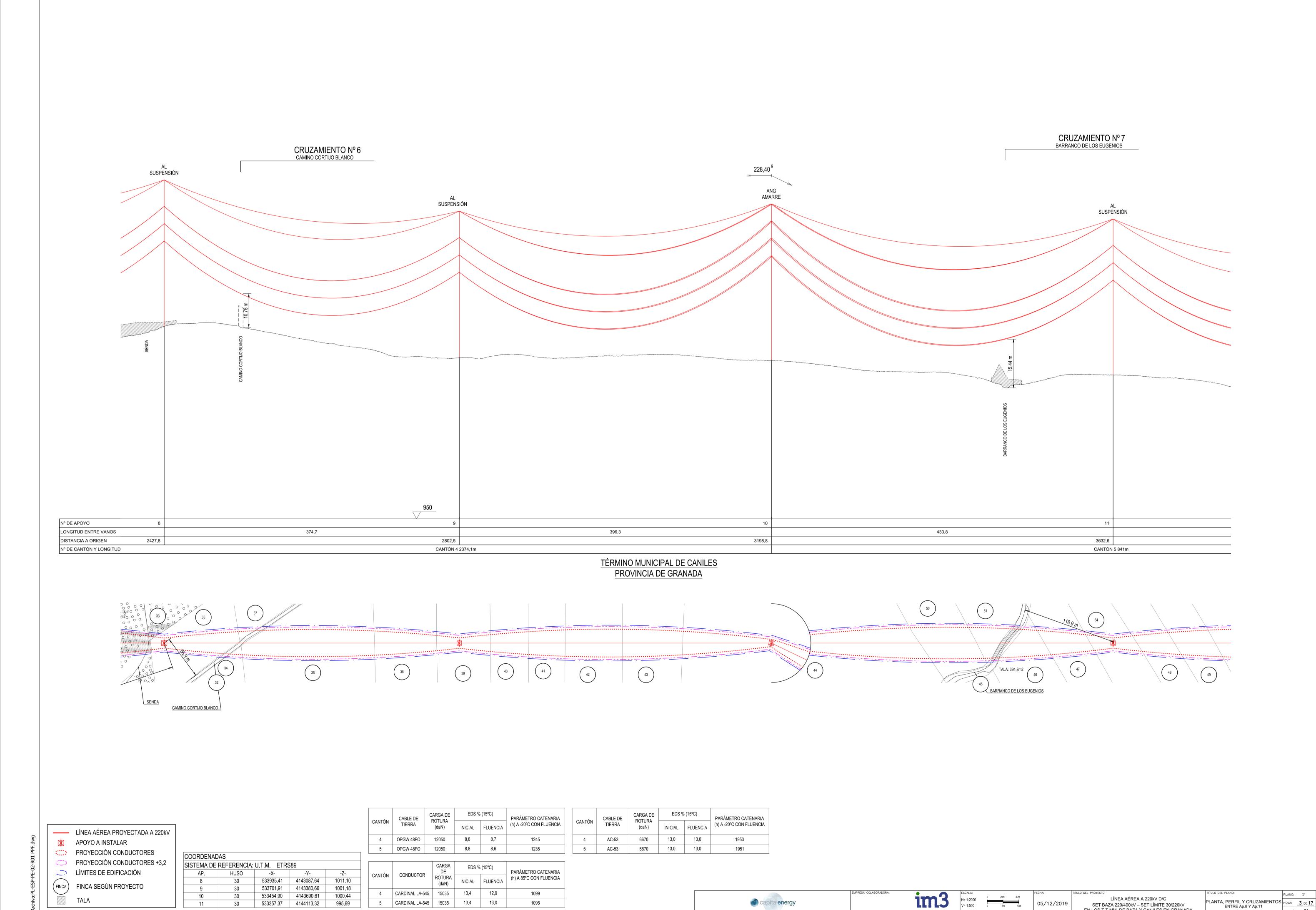
Nº	Ud.	Denominación Partida	Importe Ud.	Importe Total	
		2.2 Montaje			
2.2.1	53,00	Ud identificación de finca ubicación de apoyo y acceso	400,00€	21.200,00€	
2.2.2	486.100,00	Kg. Acopio, armado e izado de apoyos metálicos	1,10 €	534.710,00 €	
2.2.3	128.024,88	M. Tendido aéreo de Conductor Al/Ac Cardinal	22,20€	2.842.152,34 €	
2.2.4	11.328,05	M. Tendido aéreo cable de tierra tipo OPGW	4,88 €	55.280,88 €	
2.2.5	11.328,05	M. Tendido aéreo cable de tierra tipo Ac-53	3,03 €	34.267,35€	
2.2.6	53,00	Ud. Instalación toma de tierra anillo para apoyo tetrabloque	925,00€	49.025,00€	
2.2.7	9,00	Ud. Montaje y conexión caja empalme fibra óptica	750,00€	6.750,00 €	
2.2.8	53,00	Ud Estaquillado y Comprobación y Replanteo apoyo línea 220kV	180,00€	9.540,00 €	
2.2.9	106,00	Ud. Instalación Numeración y Señalización de peligro	50,20€	5.321,20 €	
		Total 2.2- Montaje		3.558.246,77 €	
TOTAL	OBRA CIVIL	Y MONTAJE		<u>3.963.185,87</u> €	

12.3. Presupuesto final

	RESUMEN
TOTAL MATERIALES	1.817.891,82 €
TOTAL OBRA CIVIL Y MONTAJE	3.963.185,87 €
TOTAL PROYECTO EJECUCION	5.781.077,69 €




CÓDIGO: MT-ESP-PE-01-R00

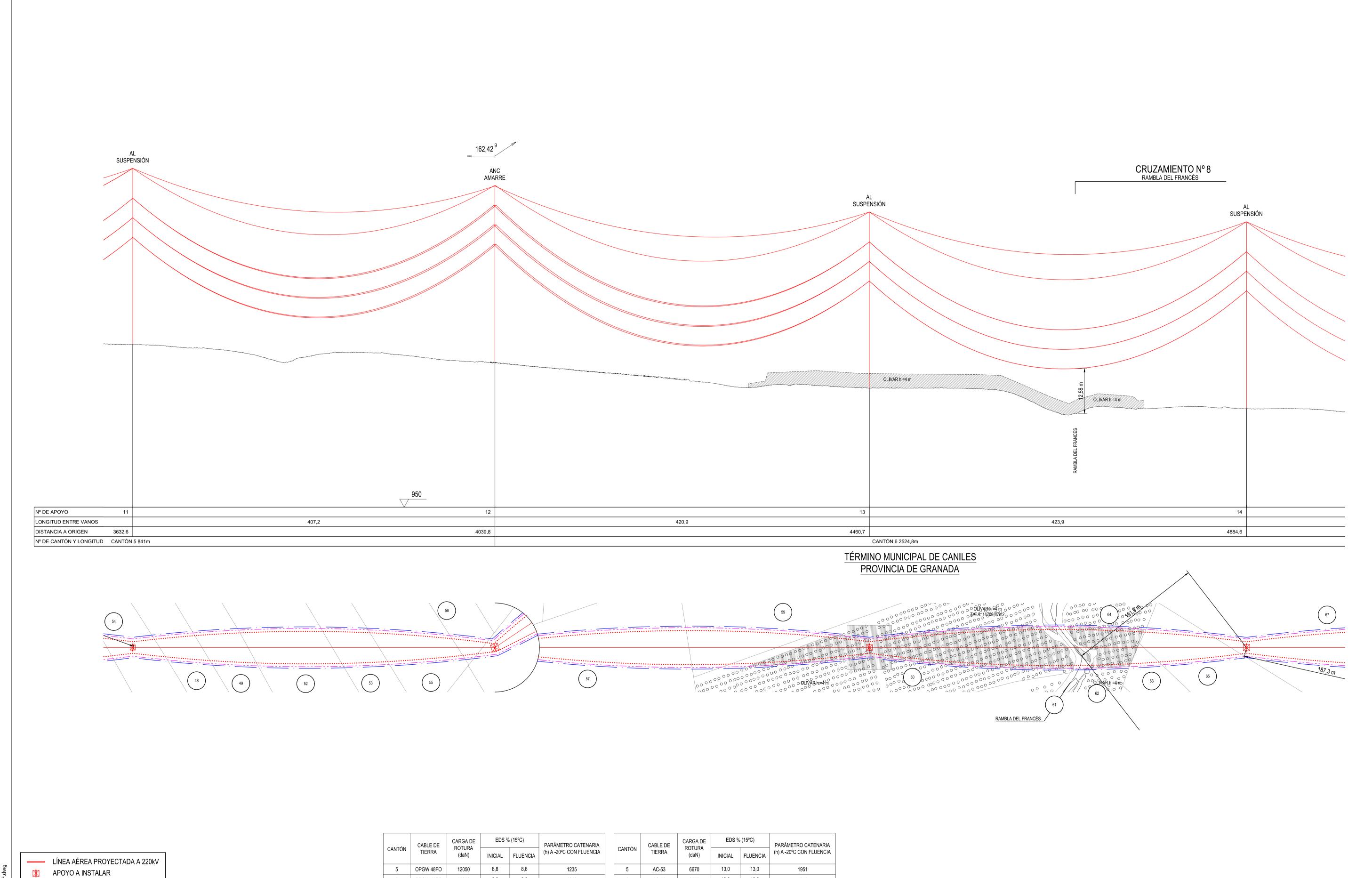

HOJA **142** OF **143**

13. <u>Listado de planos</u>

Título	Código Plano	Rev.
PLANO DE SITUACIÓN	PL-ESP-PE-01	0
PLANOS DE PLANTA, PERFIL Y CRUZAMIENTOS	PL-ESP-PE-02	0
PLANOS DE PLANTA CATASTRAL	PL-ESP-PE-03	0
PLANOS DE PLANTA GENERAL DE ORDENACIÓN URBANÍSTICA	PL-ESP-PE-04	0
PLANOS DE ESQUEMAS DE APOYOS	PL-ESP-PE-05	0
PLANOS DE PUESTA A TIERRA DE APOYOS	PL-ESP-PE-06	0
PLANOS DE HERRAJES	PL-ESP-PE-07	0

533357,37 4144113,32

995,69


5 CARDINAL LA-545 15035

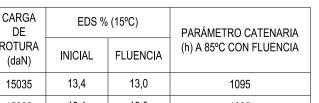
13,4

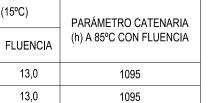
1095

capitalenergy

SET BAZA 220/400kV – SET LÍMITE 30/220kV EN LOS T.T.MM. DE BAZA Y CANILES EN GRANADA

LÍMITES DE EDIFICACIÓN FINCA TALA


PROYECCIÓN CONDUCTORES


PROYECCIÓN CONDUCTORES +3,2 SISTEMA DE REFERENCIA: U.T.M. ETRS89 533357,37 4144113,32 FINCA SEGÚN PROYECTO 12 533265,83 4144510,06 532958,97 4144798,10 13 532649,87 4145088,25

COORDENADAS

CARGA DE CANTÓN CONDUCTOR ROTURA 995,69 990,81 5 CARDINAL LA-545 15035 13,4 983,42 977,68 6 CARDINAL LA-545 15035 13,4

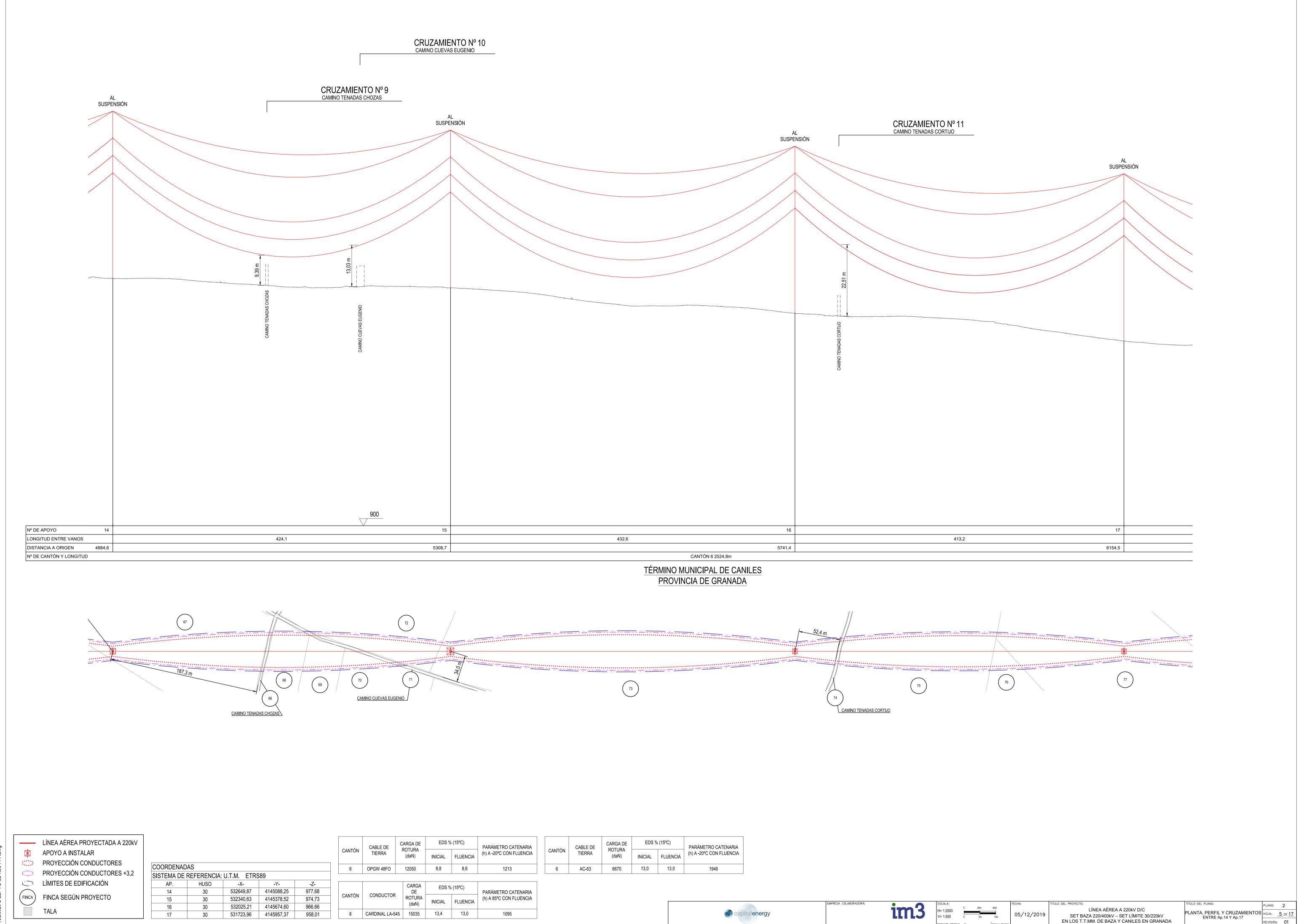
6 OPGW 48FO

1213

AC-53

6670

13,0


13,0

1946

capitalenergy

LÍNEA AÉREA A 220kV D/C SET BAZA 220/400kV – SET LÍMITE 30/220kV EN LOS T.T.MM. DE BAZA Y CANILES EN GRANADA

PLANTA, PERFIL Y CRUZAMIENTOS HOJA: 4 DE 17
ENTRE Ap.11 Y Ap.14

capitalenergy

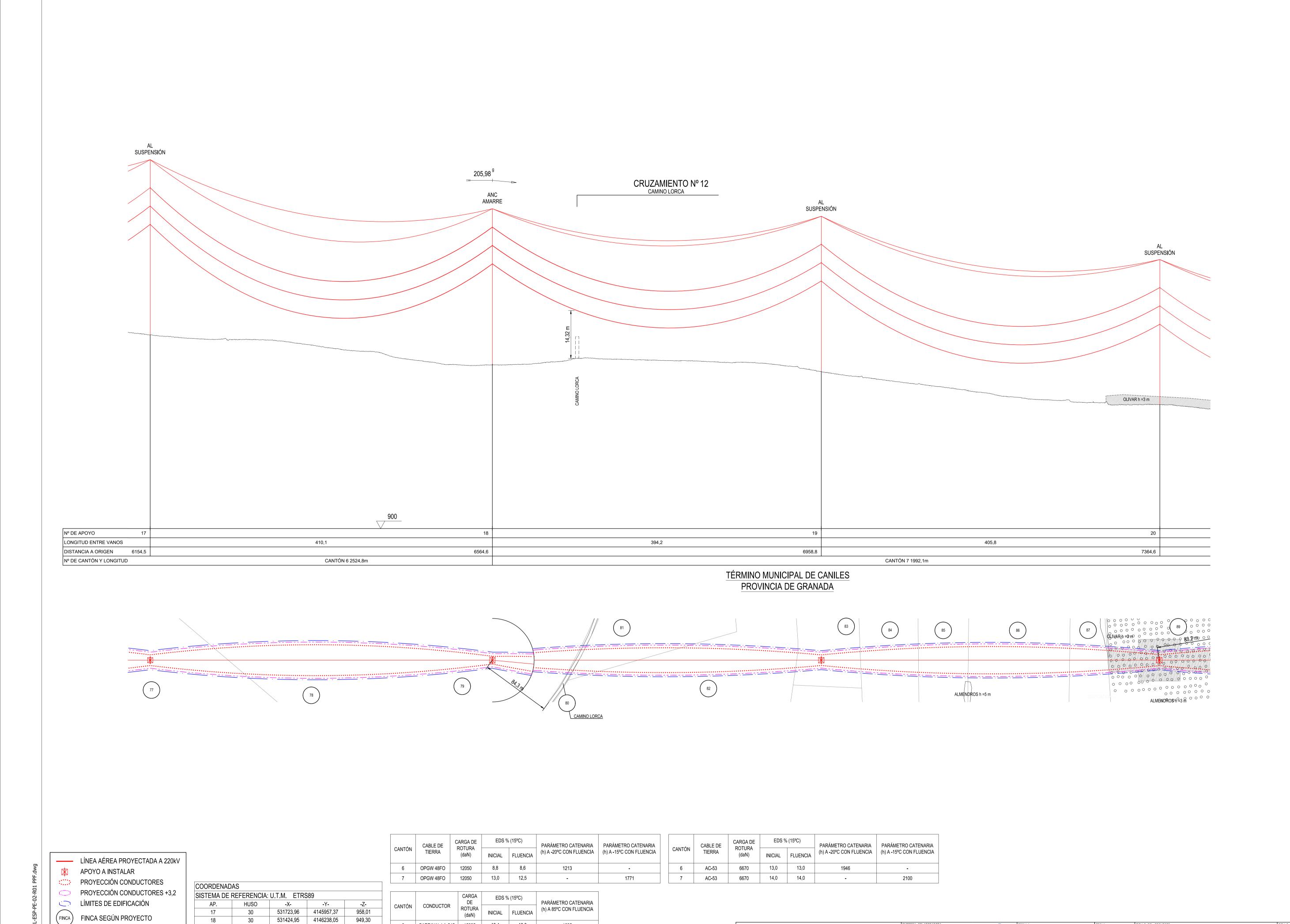
LÍNEA AÉREA A 220kV D/C

SET BAZA 220/400kV – SET LÍMITE 30/220kV EN LOS T.T.MM. DE BAZA Y CANILES EN GRANADA

TALA

966,66

958,01


6 CARDINAL LA-545 15035

1095

532025,21

531723,96 4145957,37

4145674,60

FINCA SEGÚN PROYECTO

TALA

18

19

30

531424,95 4146238,05

531164,14 4146533,59

530895,65 4146837,83

949,30

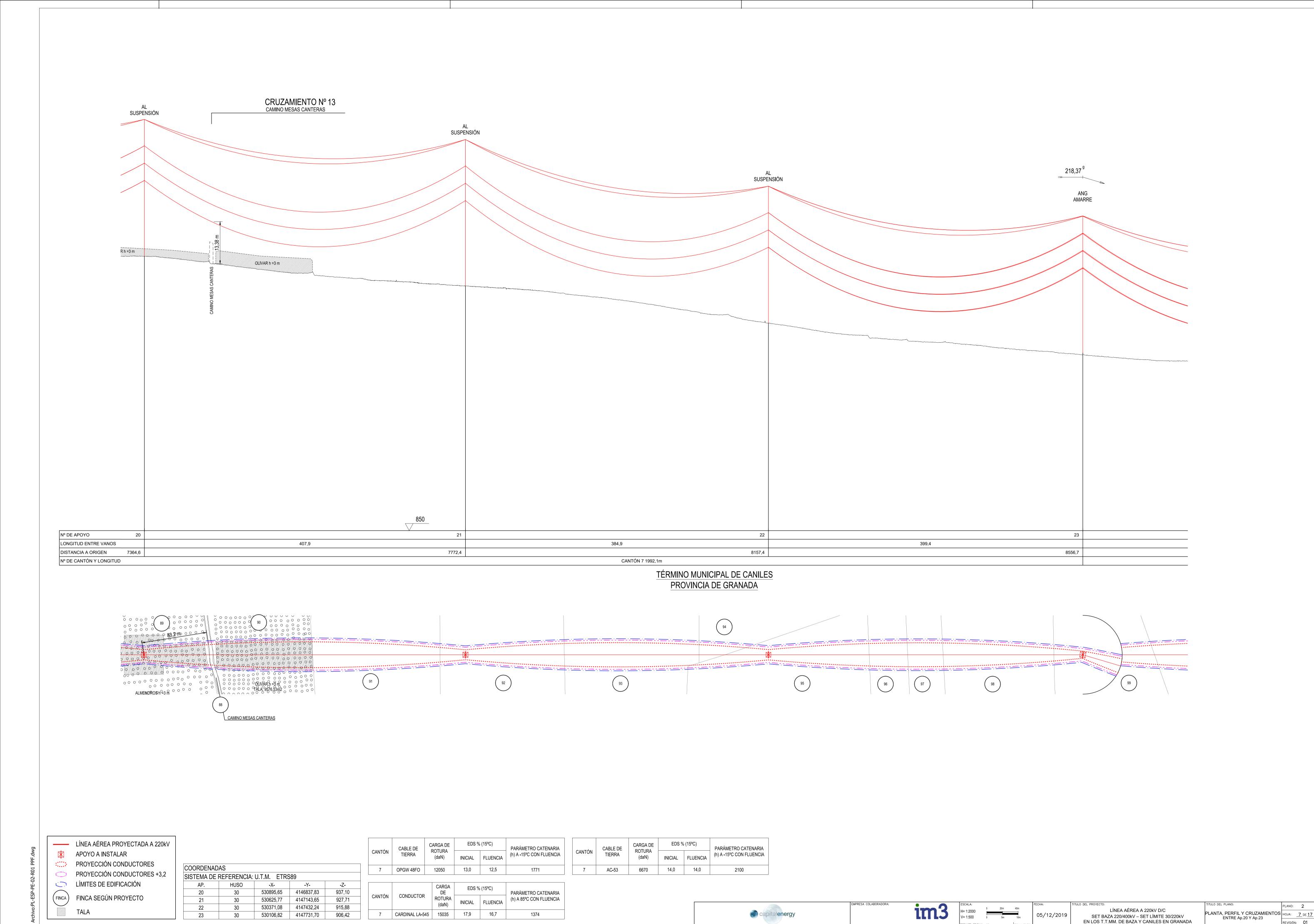
947,06

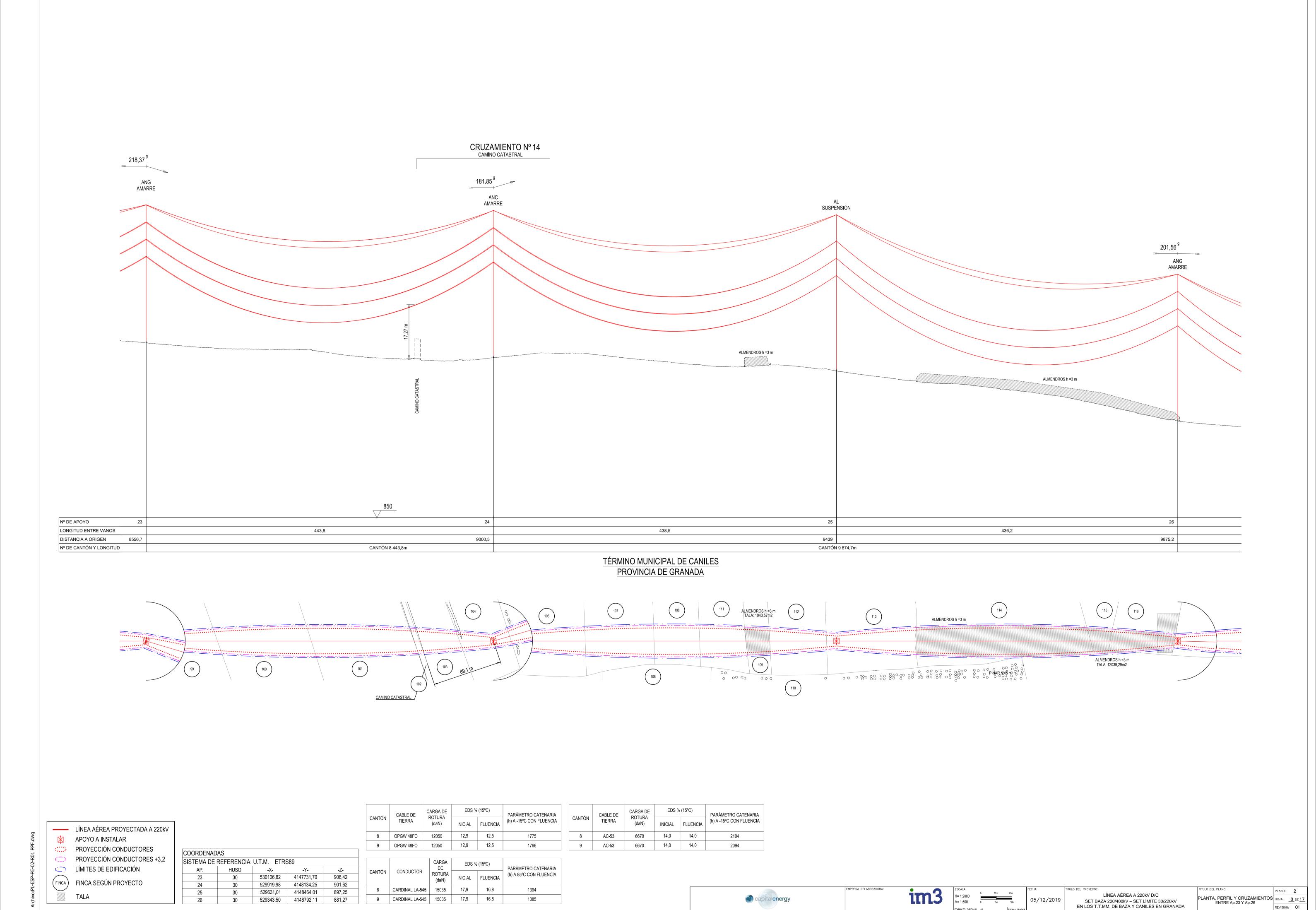
937,10

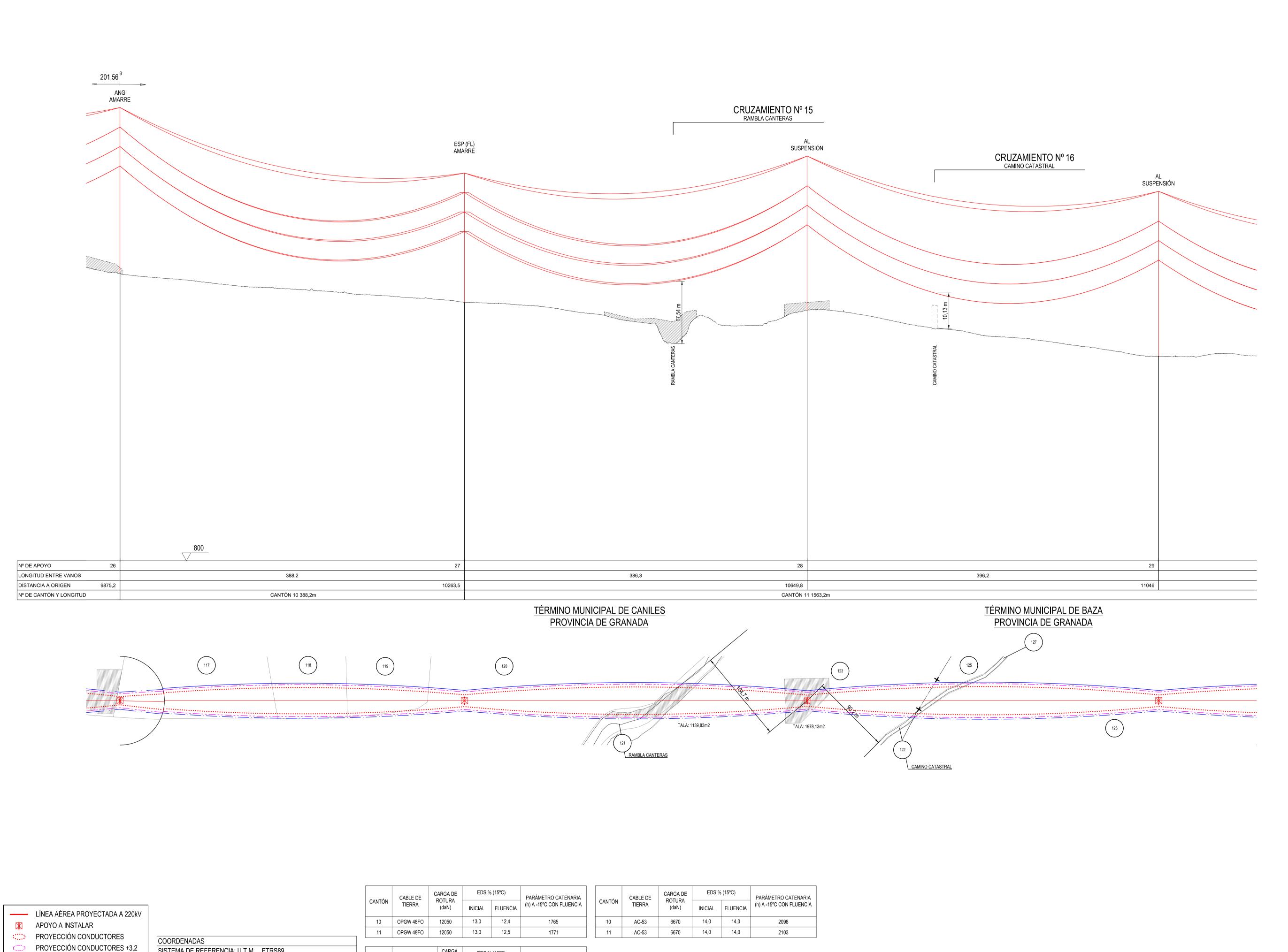
6 CARDINAL LA-545 15035 13,4

CARDINAL LA-545 15035

17,9


1095


1374


capitalenergy

LÍNEA AÉREA A 220kV D/C

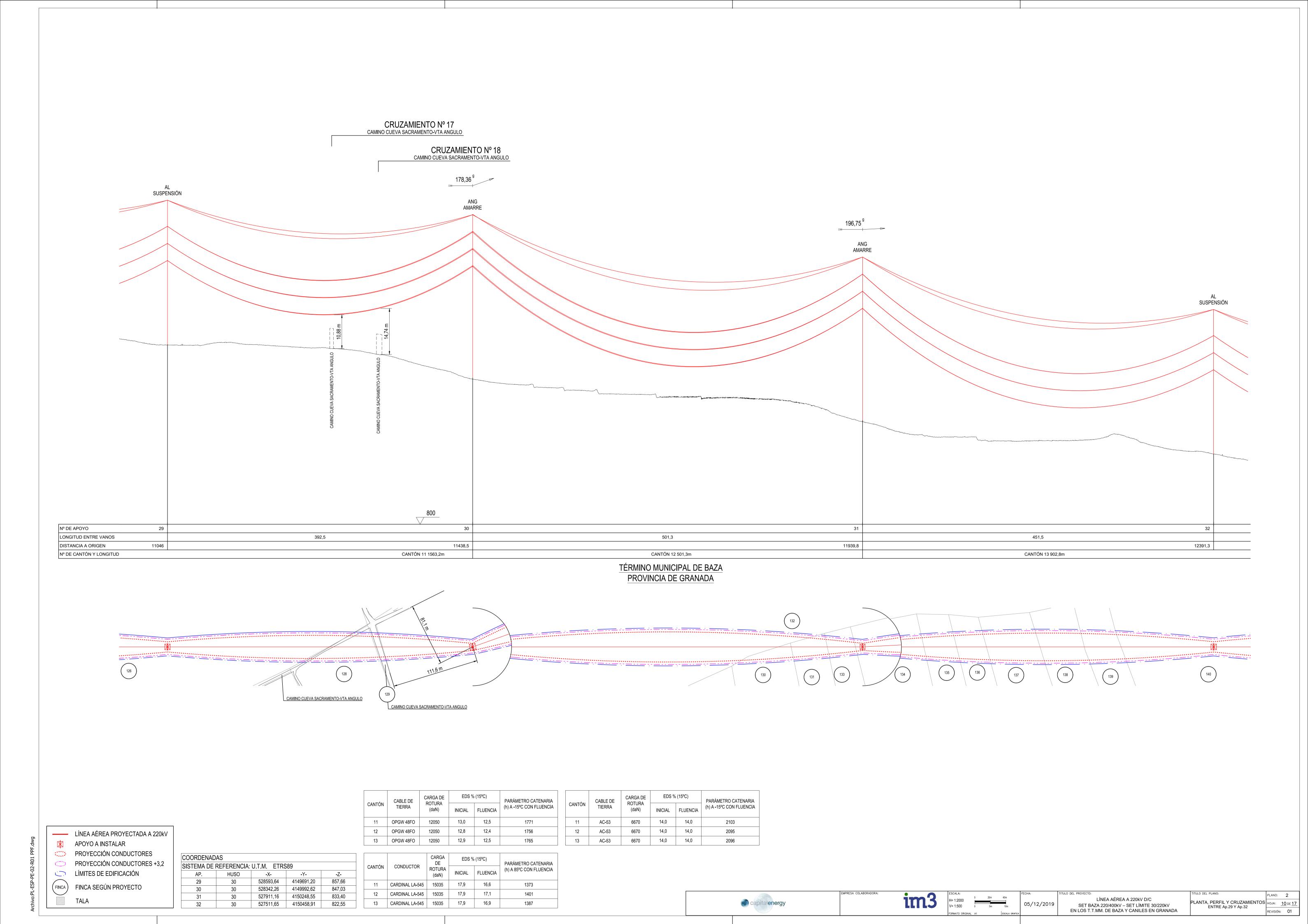
SET BAZA 220/400kV – SET LÍMITE 30/220kV EN LOS T.T.MM. DE BAZA Y CANILES EN GRANADA PLANTA, PERFIL Y CRUZAMIENTOS HOJA: 6 DE 17
ENTRE Ap.17 Y Ap.20

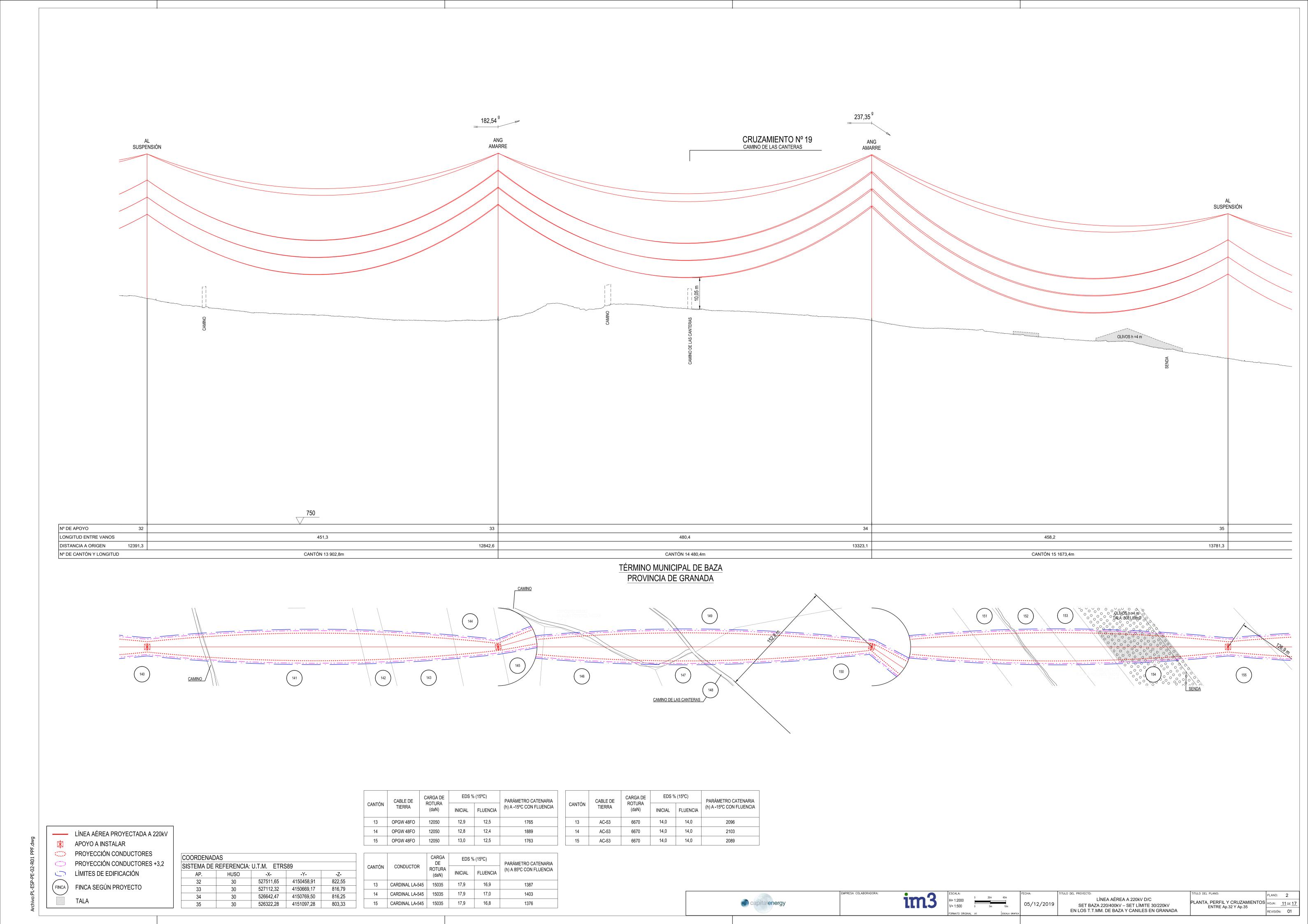
FINCA TALA

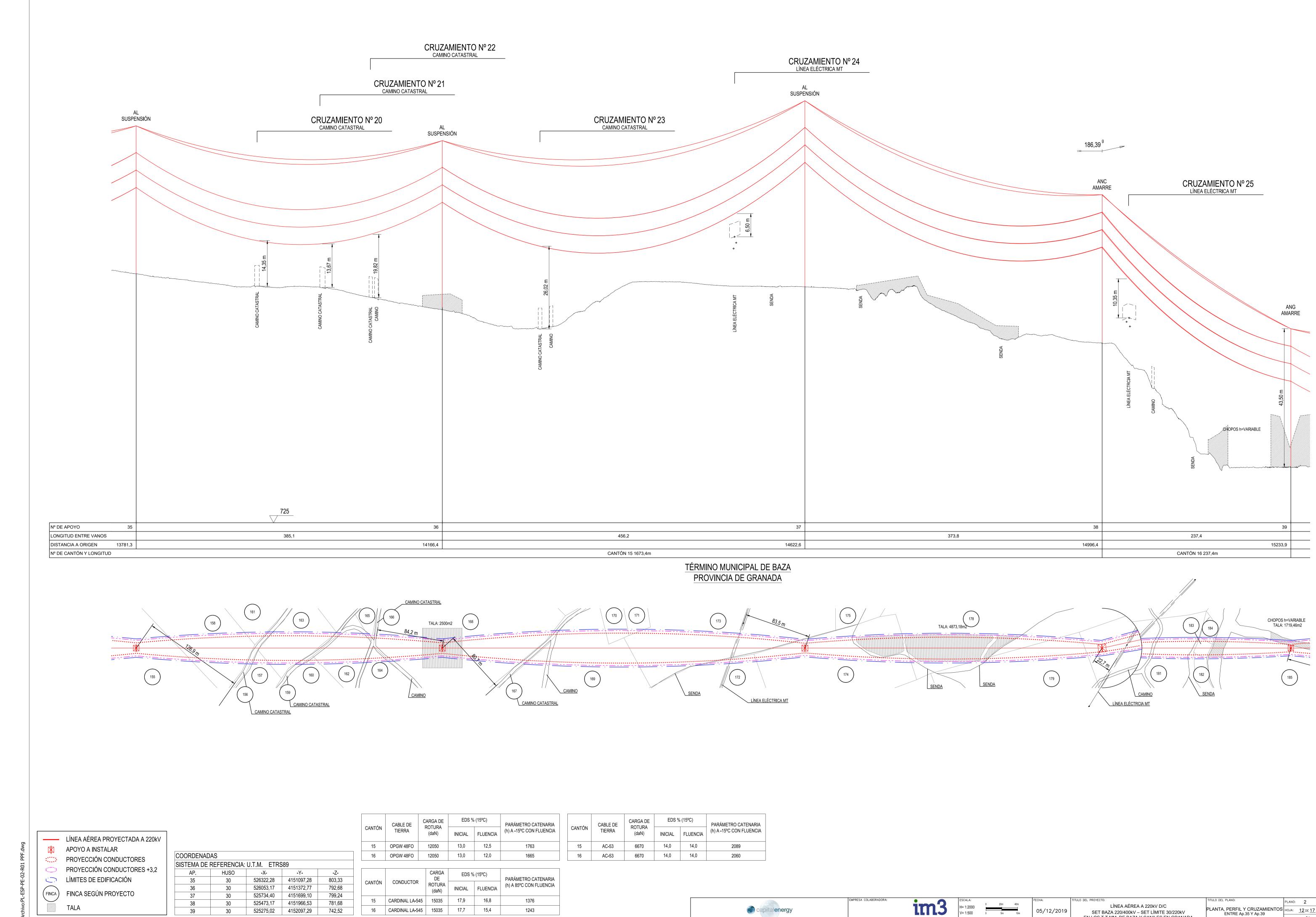
LÍMITES DE EDIFICACIÓN

FINCA SEGÚN PROYECTO

SISTEMA DE REFERENCIA: U.T.M. ETRS89 529343,50 4148792,11 529094,83 4149090,26 528847,41 4149386,93 528593,64 4149691,20

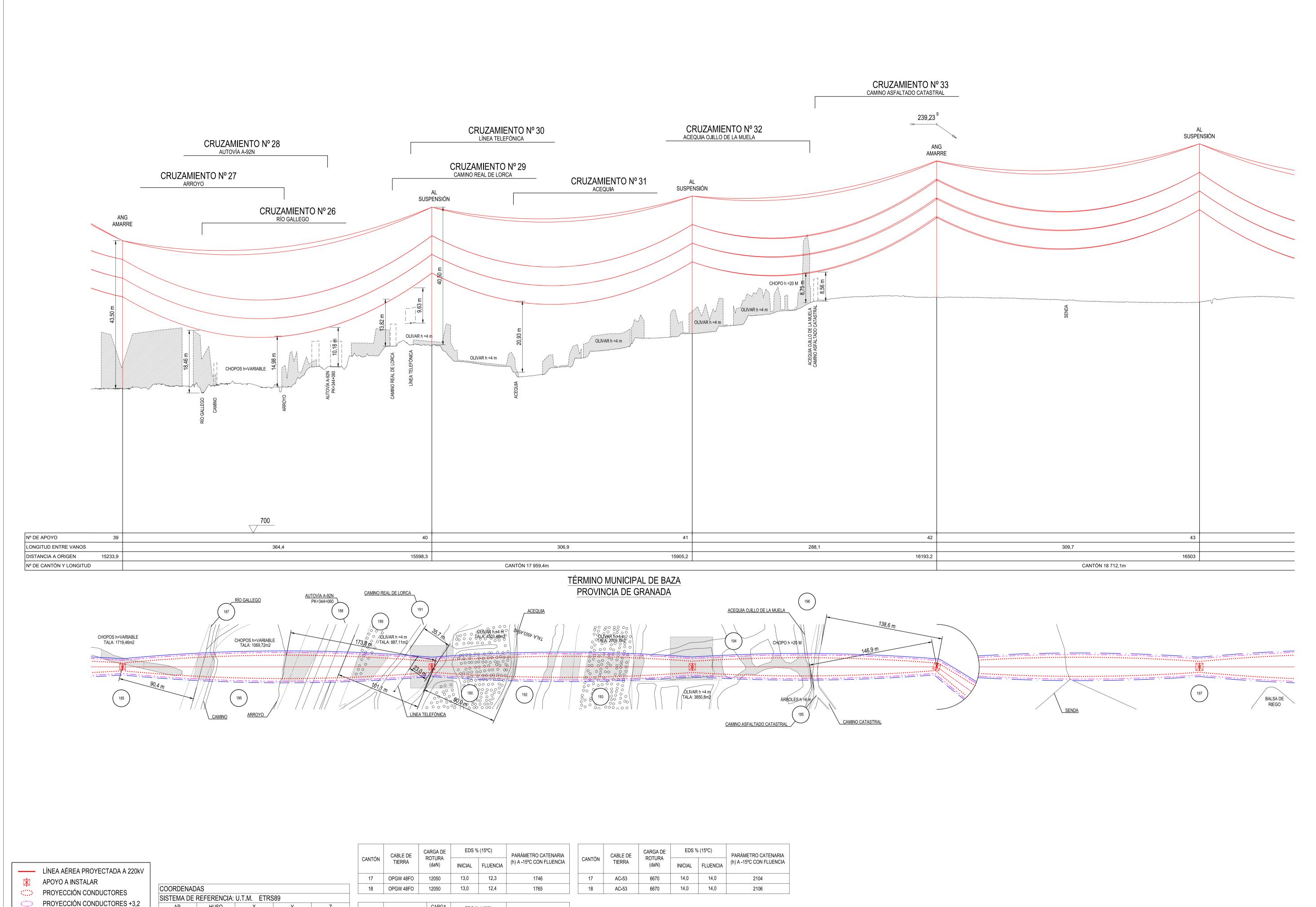

CARGA DE EDS % (15°C) CANTÓN CONDUCTOR ROTURA 881,27 INICIAL FLUENCIA (daN) 872,81 10 CARDINAL LA-545 | 15035 | 17,9 | 16,6 870,59 11 CARDINAL LA-545 15035 857,66 17,9


PARÁMETRO CATENARIA (h) A 85°C CON FLUENCIA 1367 1373


capitalenergy

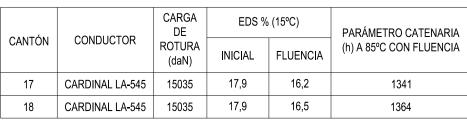
LÍNEA AÉREA A 220kV D/C SET BAZA 220/400kV – SET LÍMITE 30/220kV EN LOS T.T.MM. DE BAZA Y CANILES EN GRANADA

PLANTA, PERFIL Y CRUZAMIENTOS HOJA: 9 DE 17
ENTRE Ap.26 Y Ap.29



SET BAZA 220/400kV – SET LÍMITE 30/220kV EN LOS T.T.MM. DE BAZA Y CANILES EN GRANADA

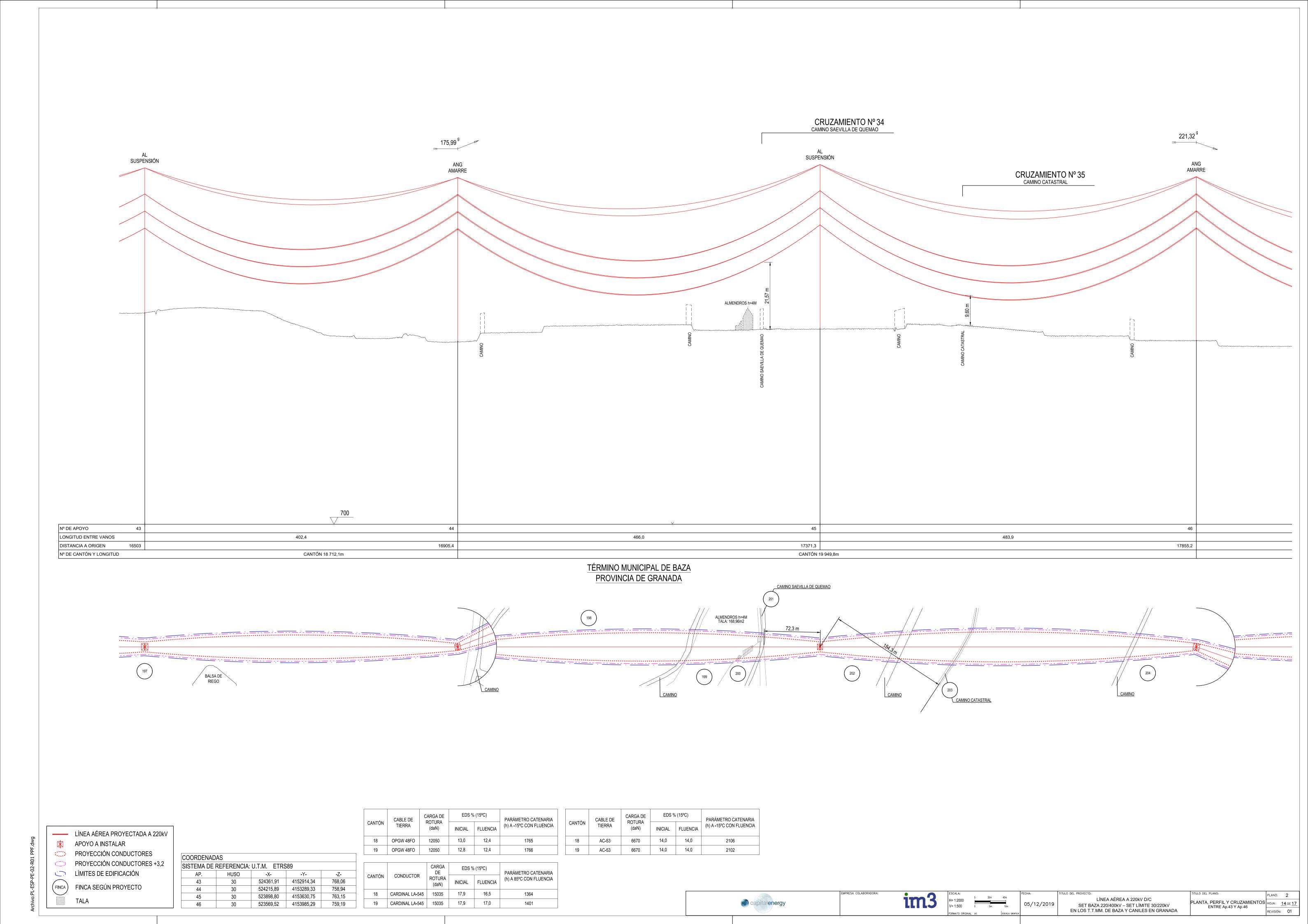
4152097,29

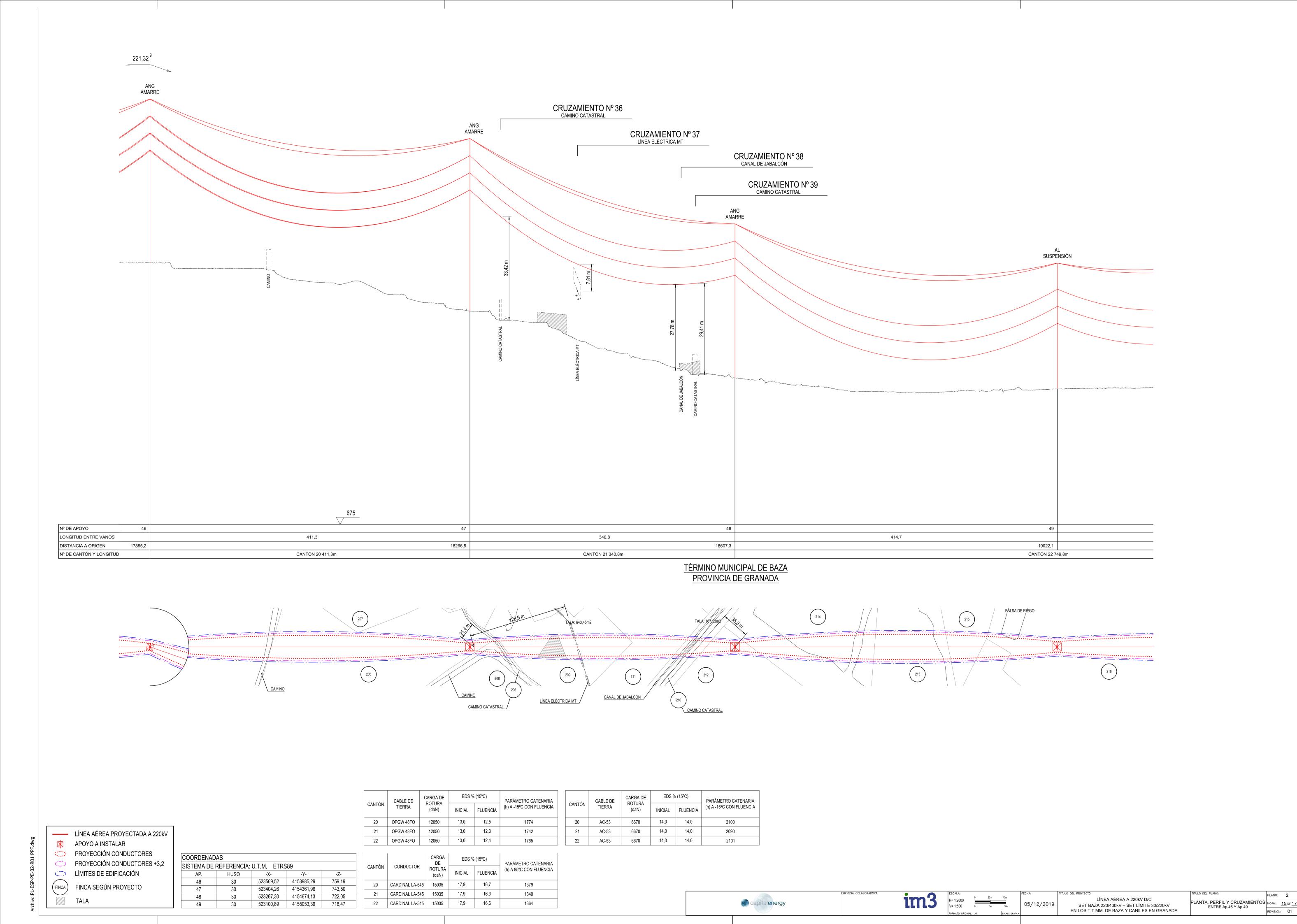


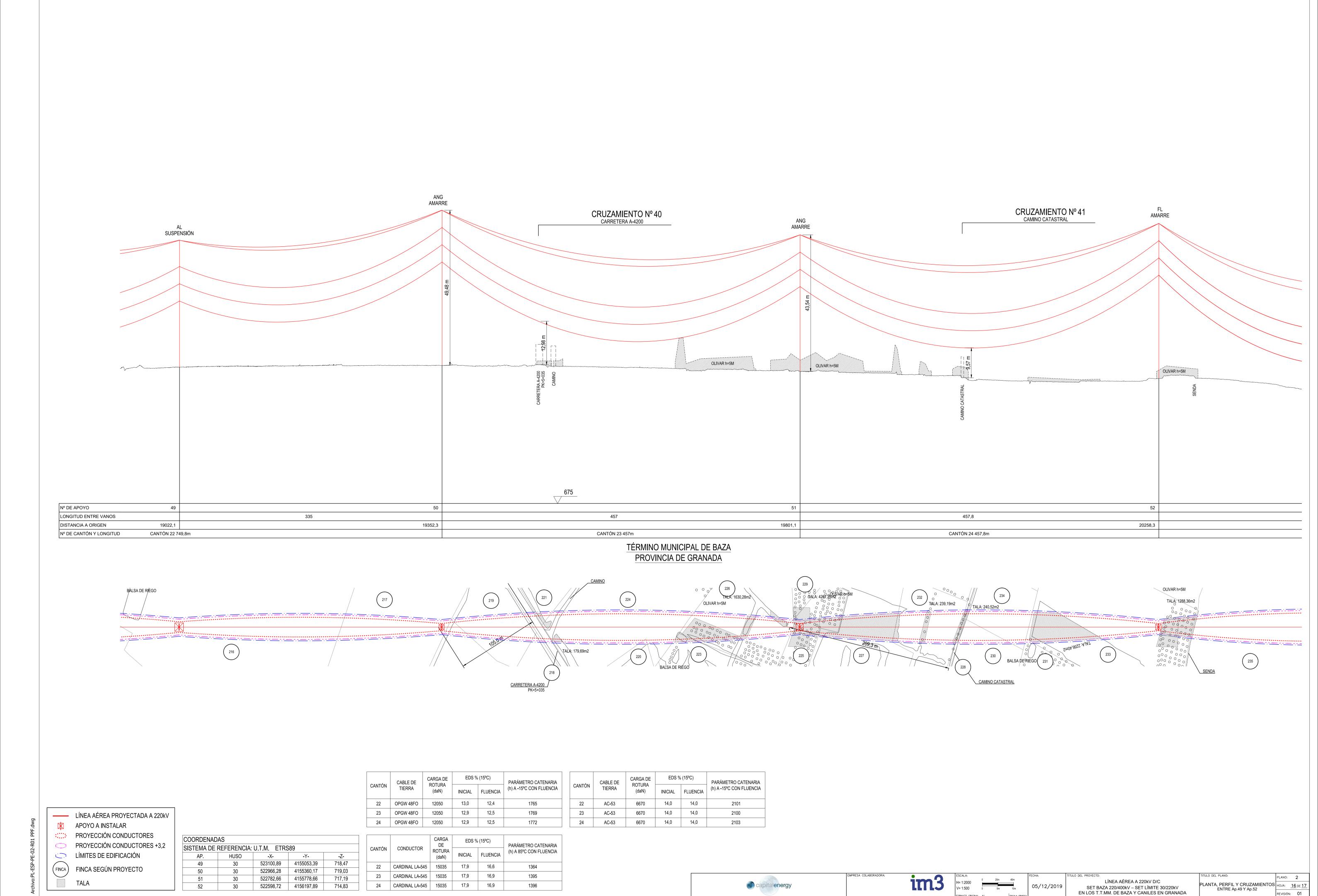
FINCA

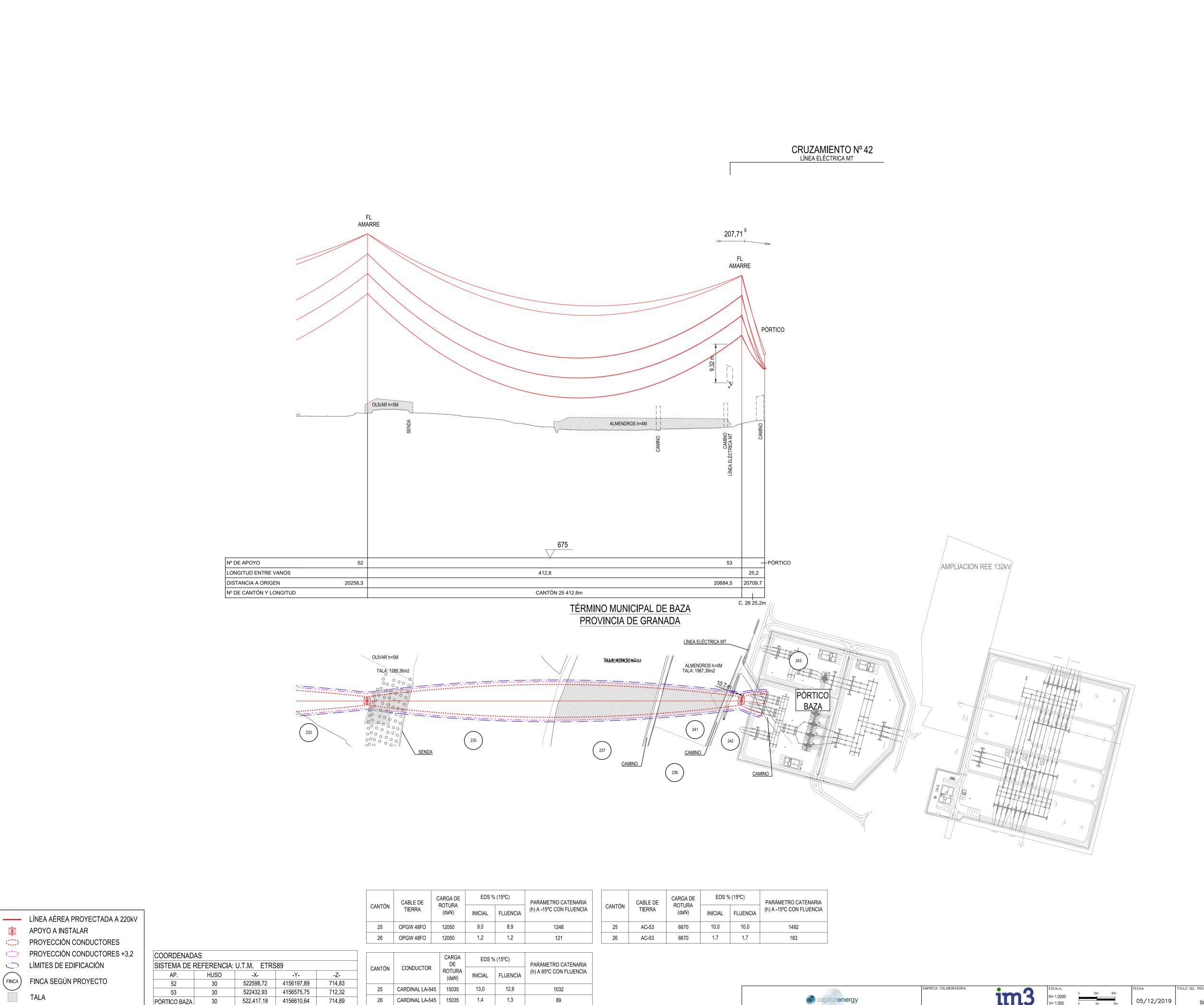
LÍMITES DE EDIFICACIÓN FINCA SEGÚN PROYECTO TALA

41 42 43


-Y-525275,02 4152097,29 742,52 524970,84 4152298,03 755,40 524714,71 4152467,06 758,68 769,00 524474,29 4152625,72 768,06 524361,91 4152914,34






LÍNEA AÉREA A 220kV D/C SET BAZA 220/400kV - SET LÍMITE 30/220kV EN LOS T.T.MM. DE BAZA Y CANILES EN GRANADA

PLANTA, PERFIL Y CRUZAMIENTOS HOJA: 13 DE 17

LÍNEA AÉREA A 220kV D/C

SET BAZA 220/400kV – SET LÍMITE 30/220kV EN LOS T.T.MM. DE BAZA Y CANILES EN GRANADA

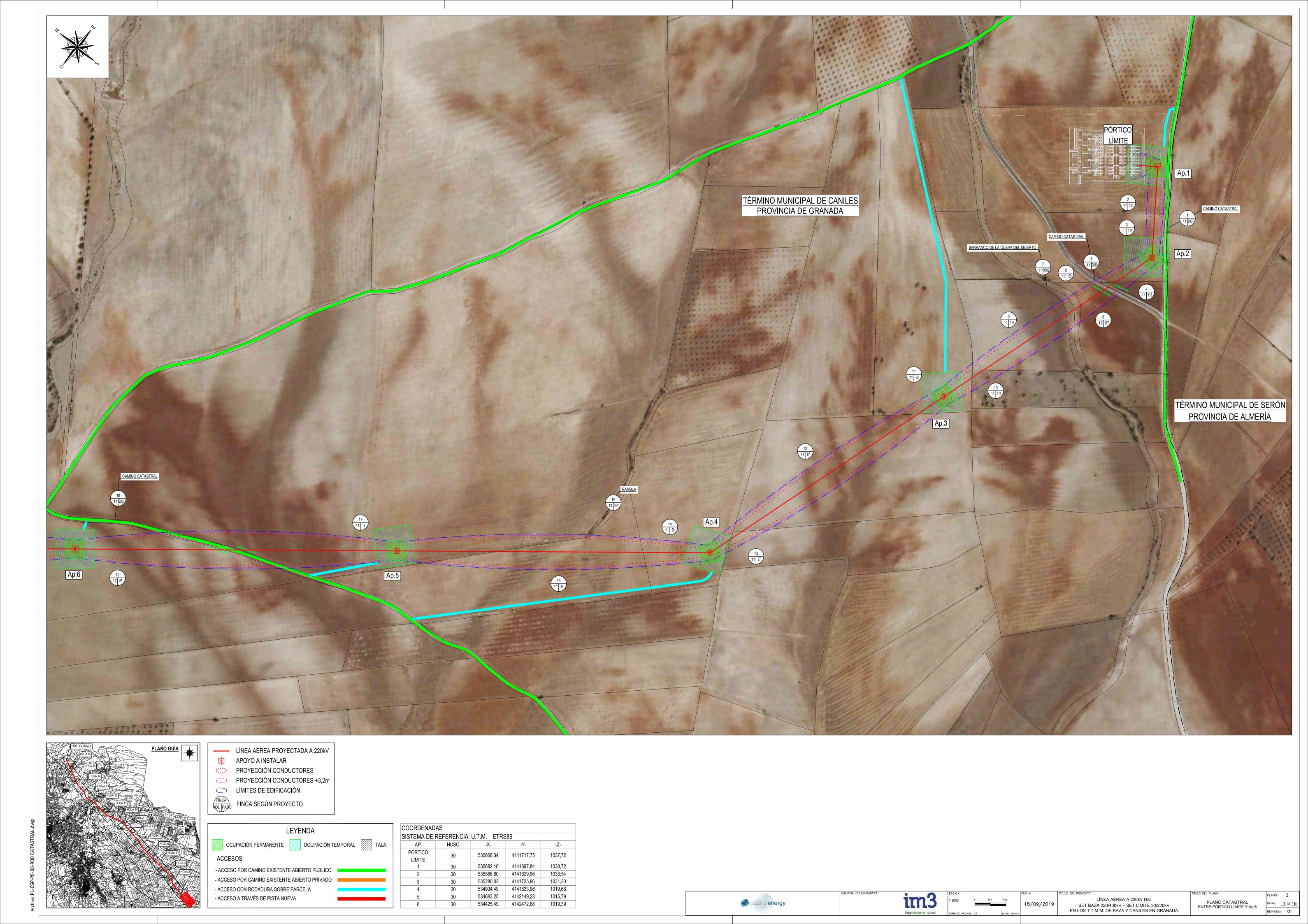
PLANTA, PERFIL Y CRUZAMIENTOS HOJA: 17 DE 17 ENTRE Ap.52 Y PÓRTICO BAZA

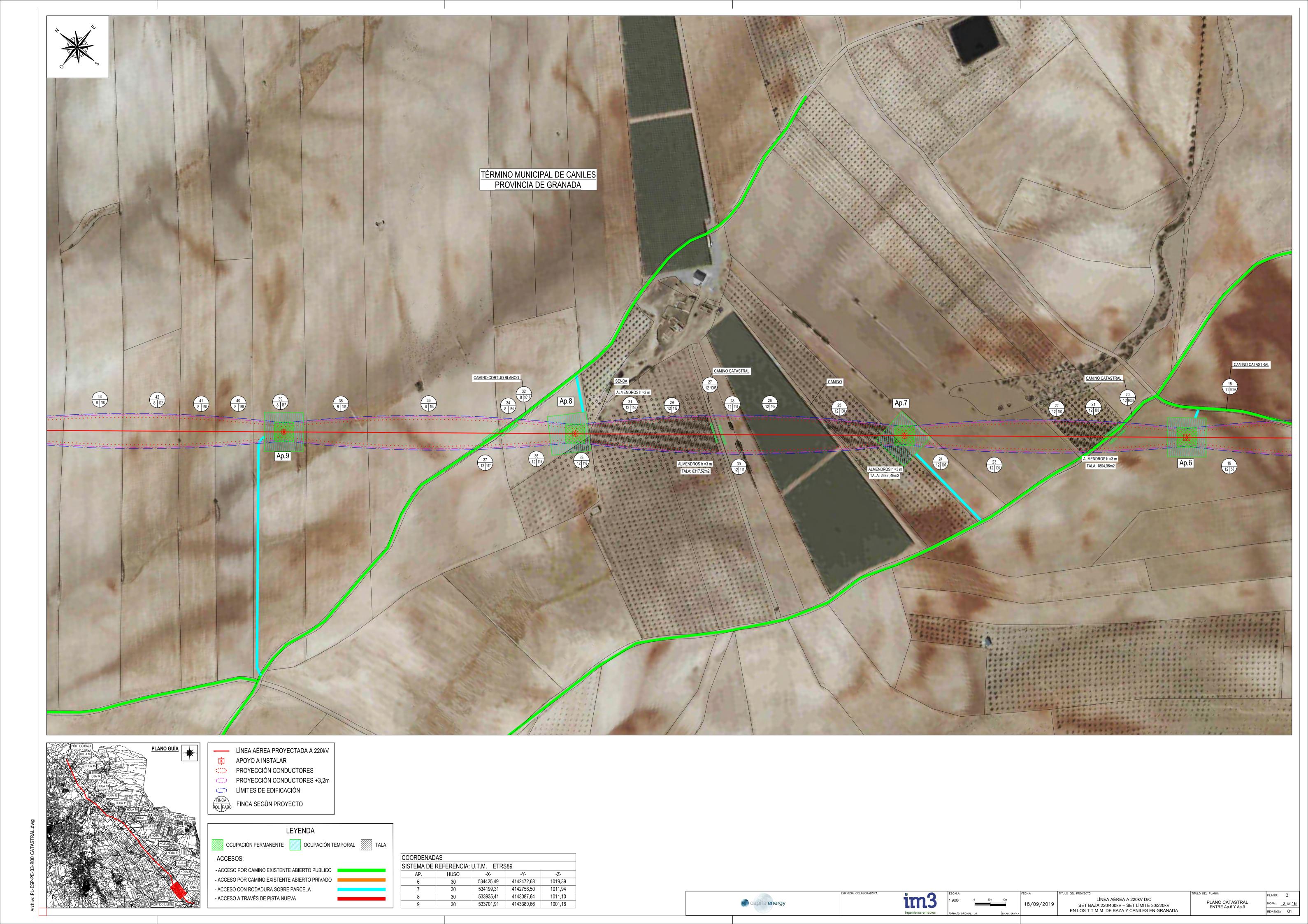
FINCA

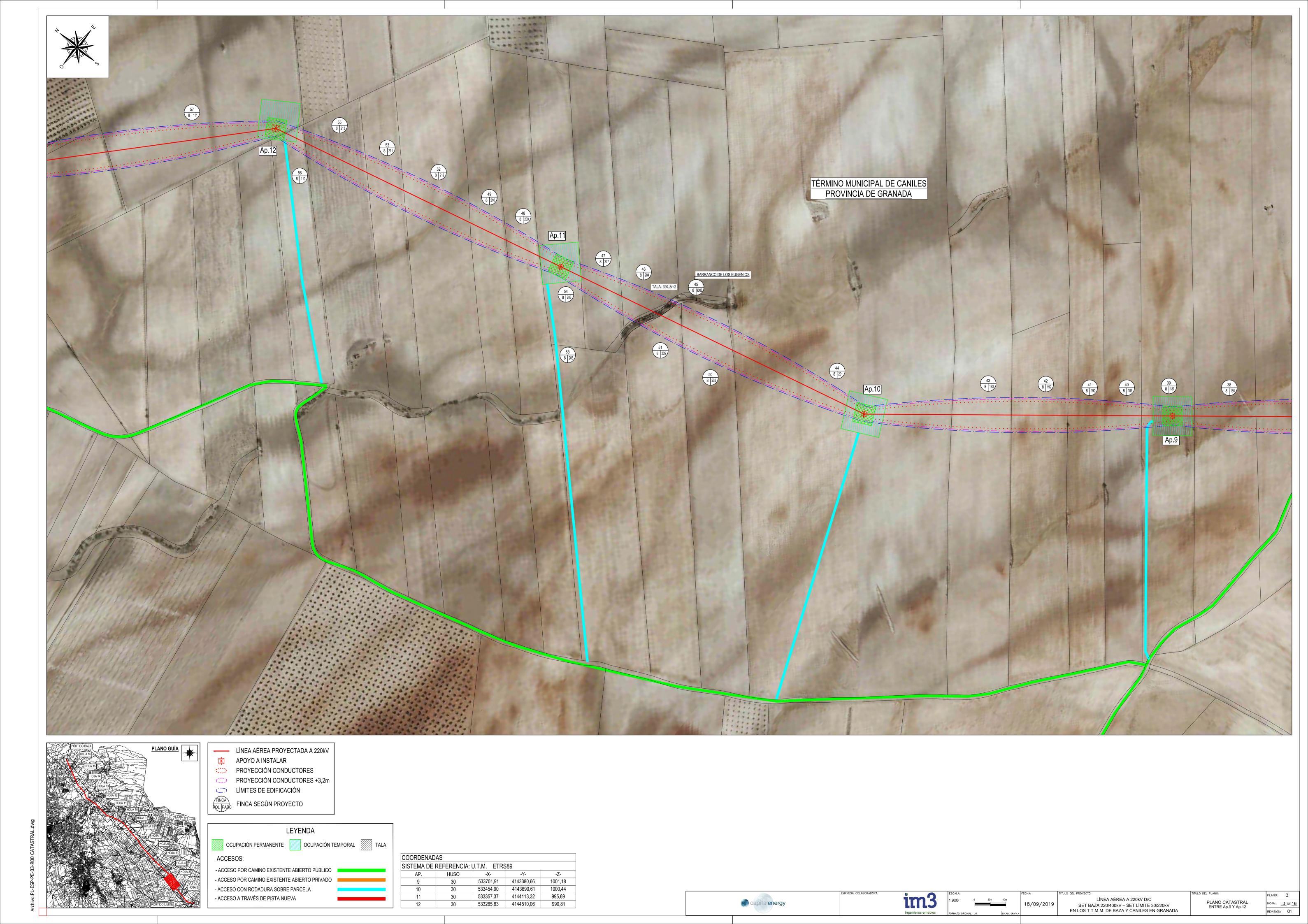
APOYO A INSTALAR

LÍMITES DE EDIFICACIÓN

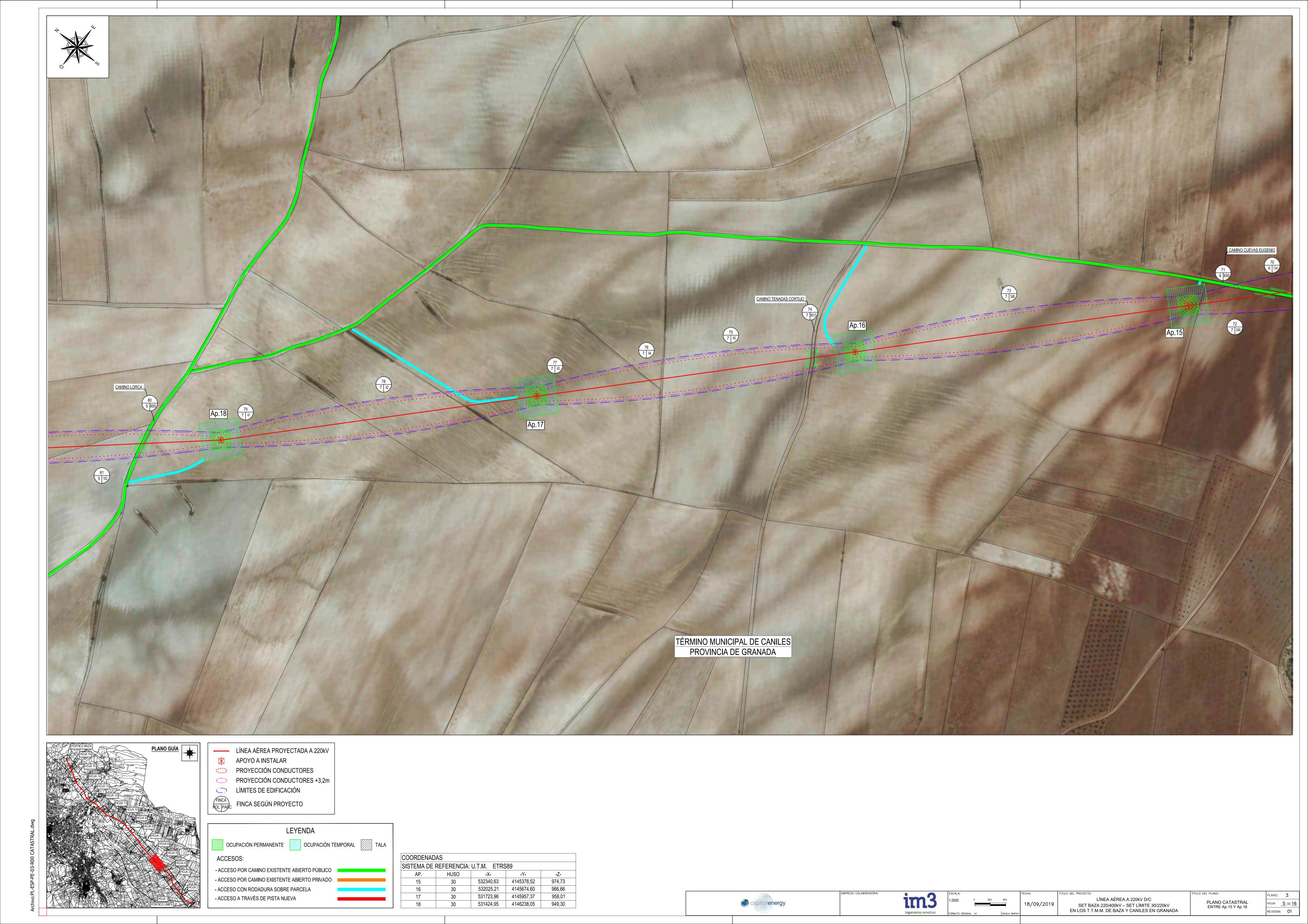
TALA


FINCA SEGÚN PROYECTO

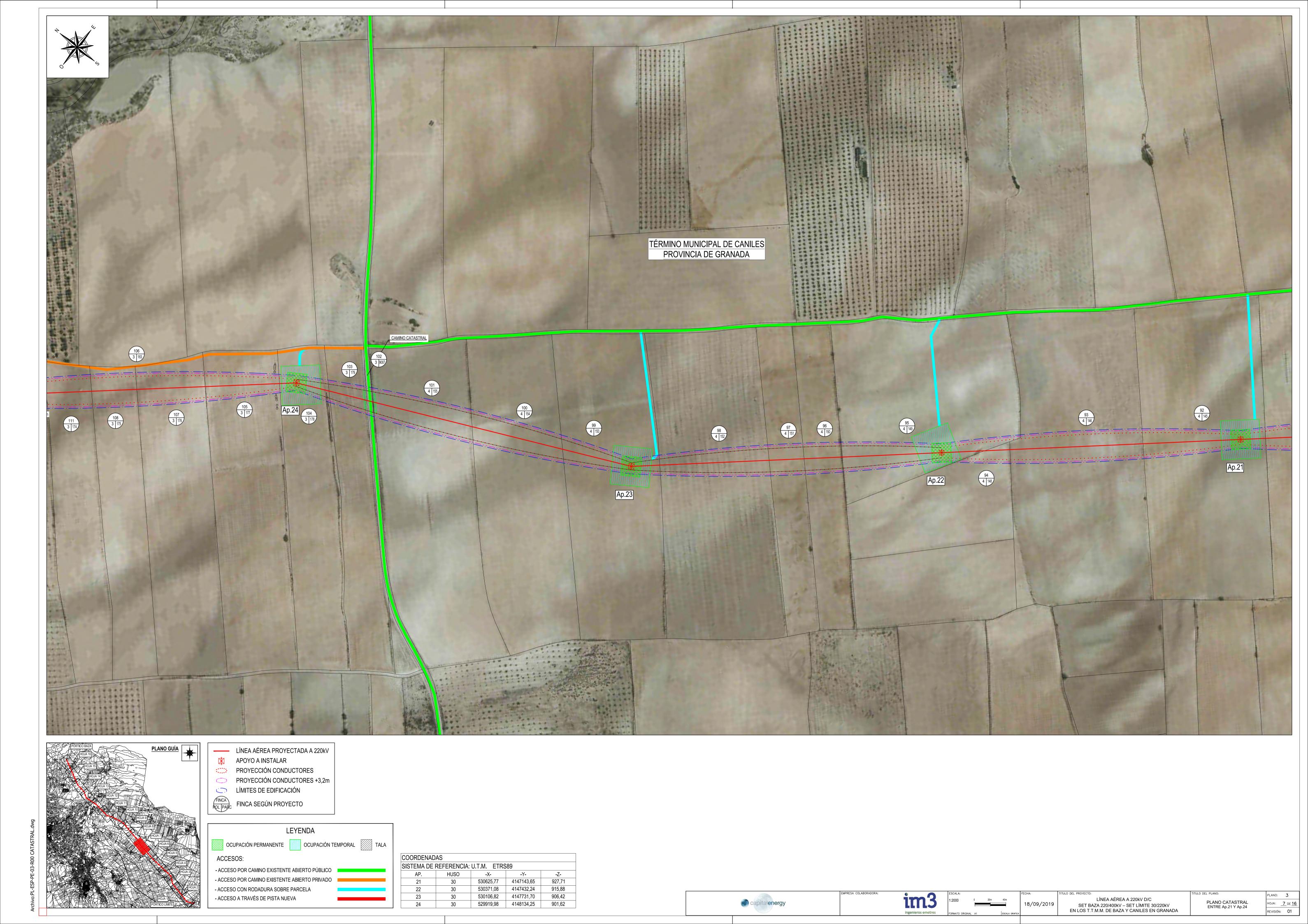

PÓRTICO BAZA

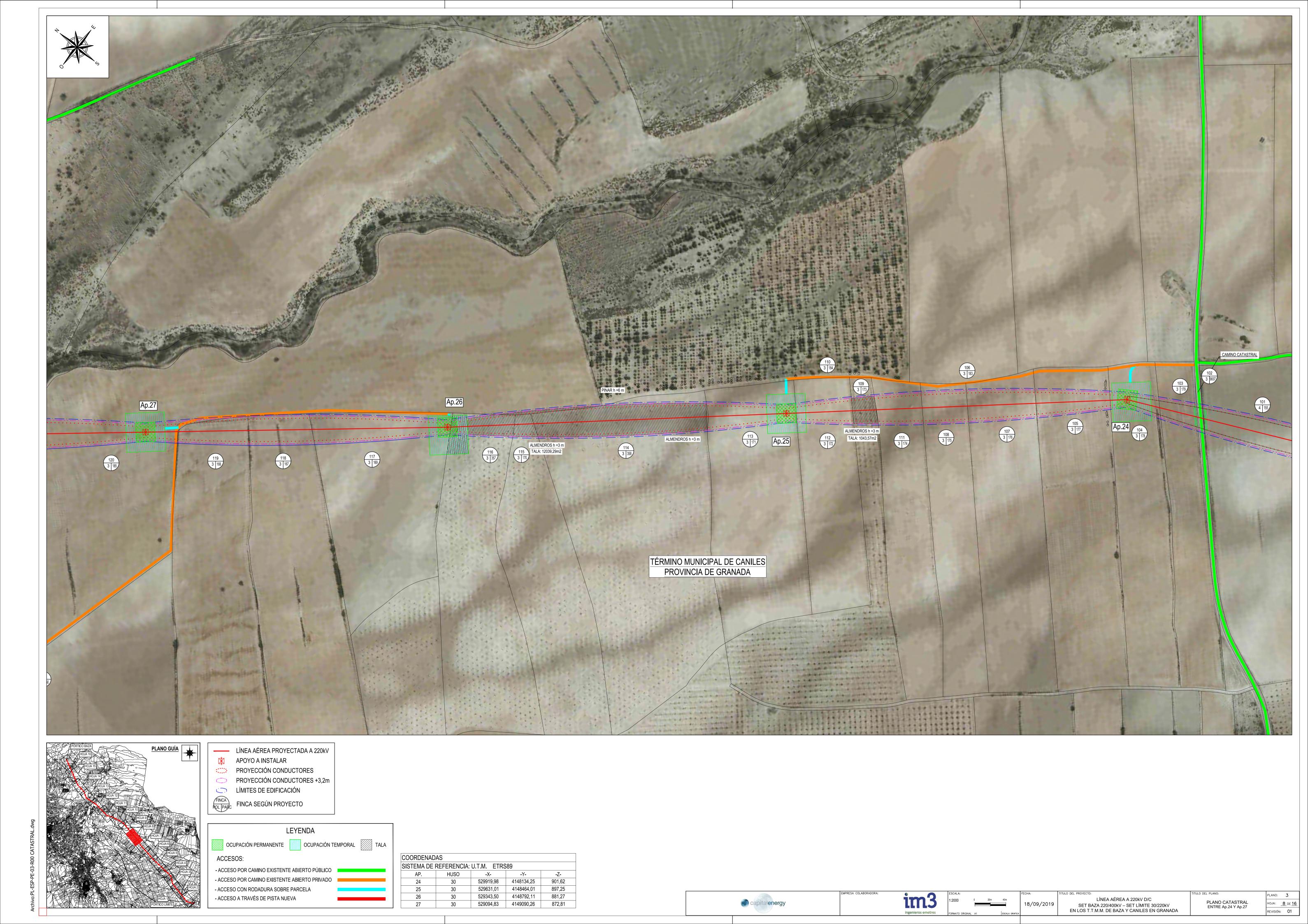

30

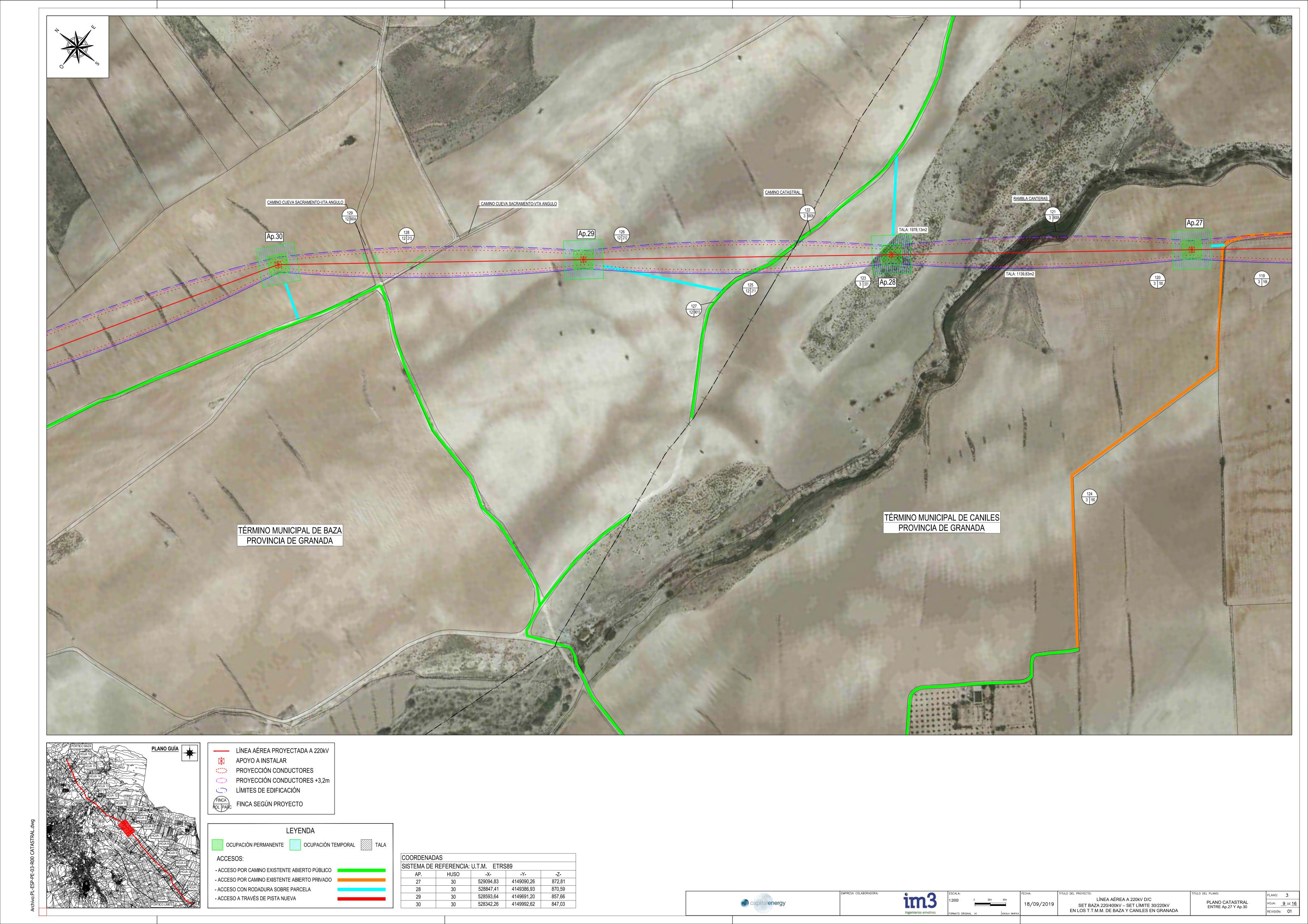

714,89

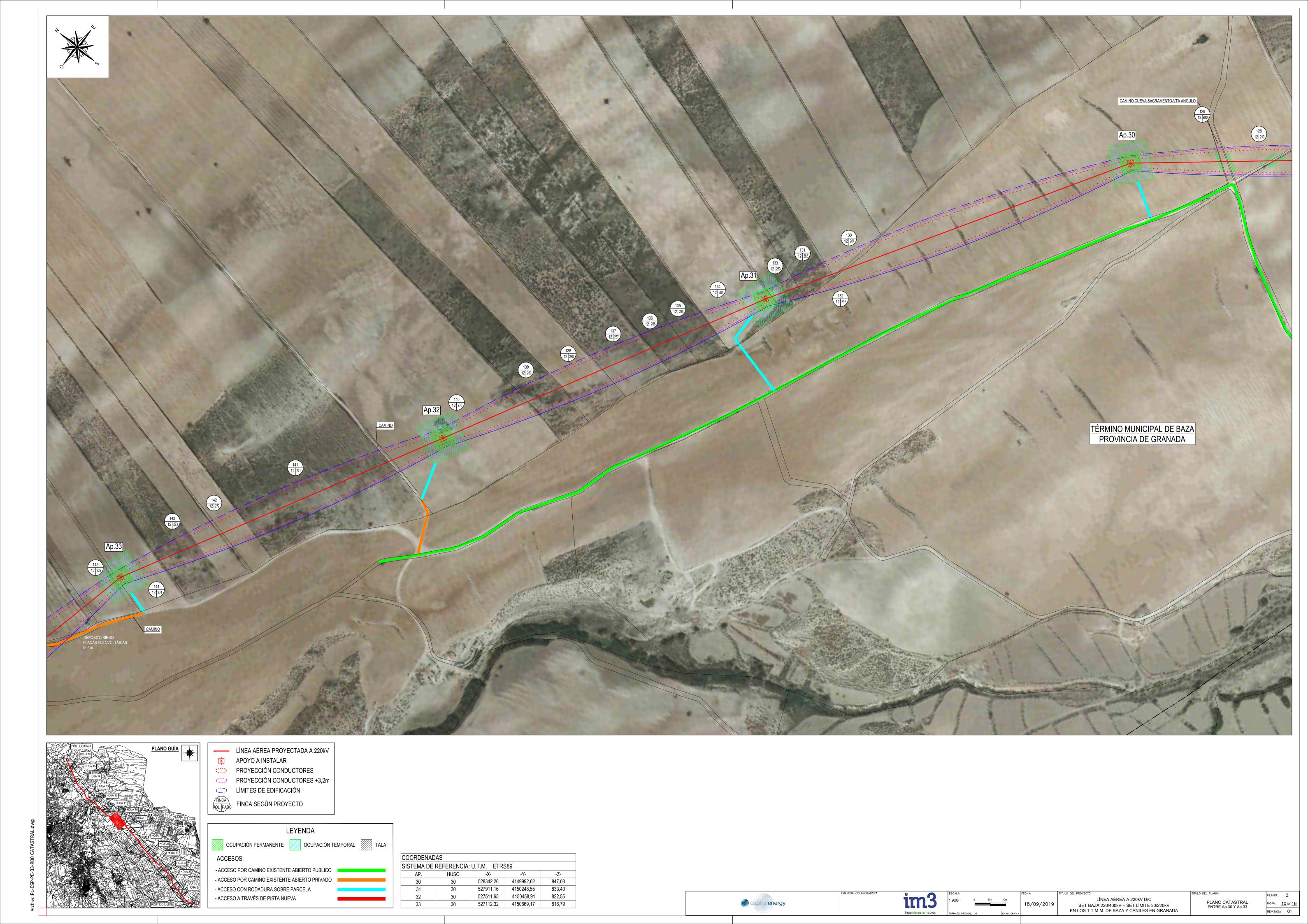

522.417,18 4156610,64

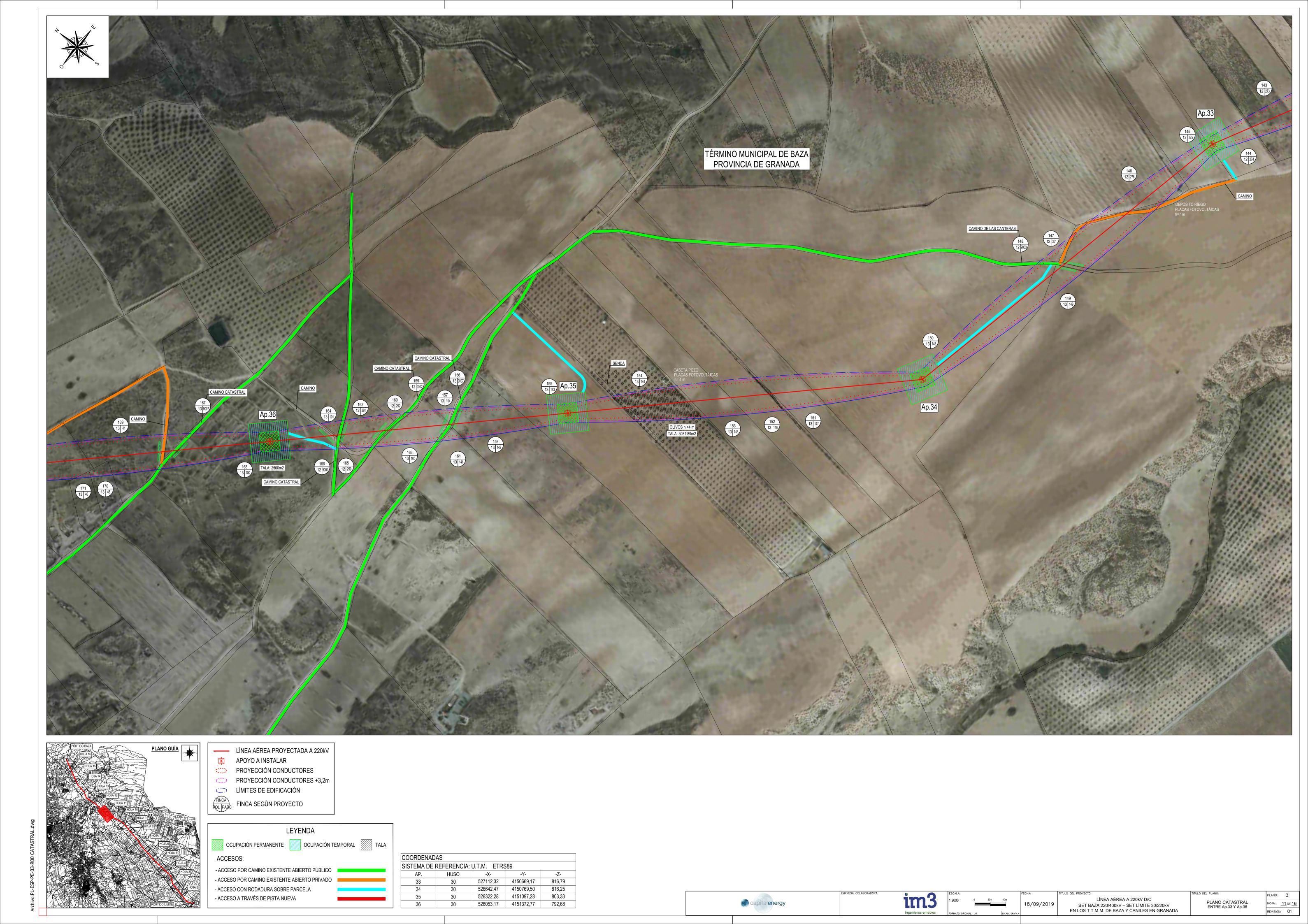


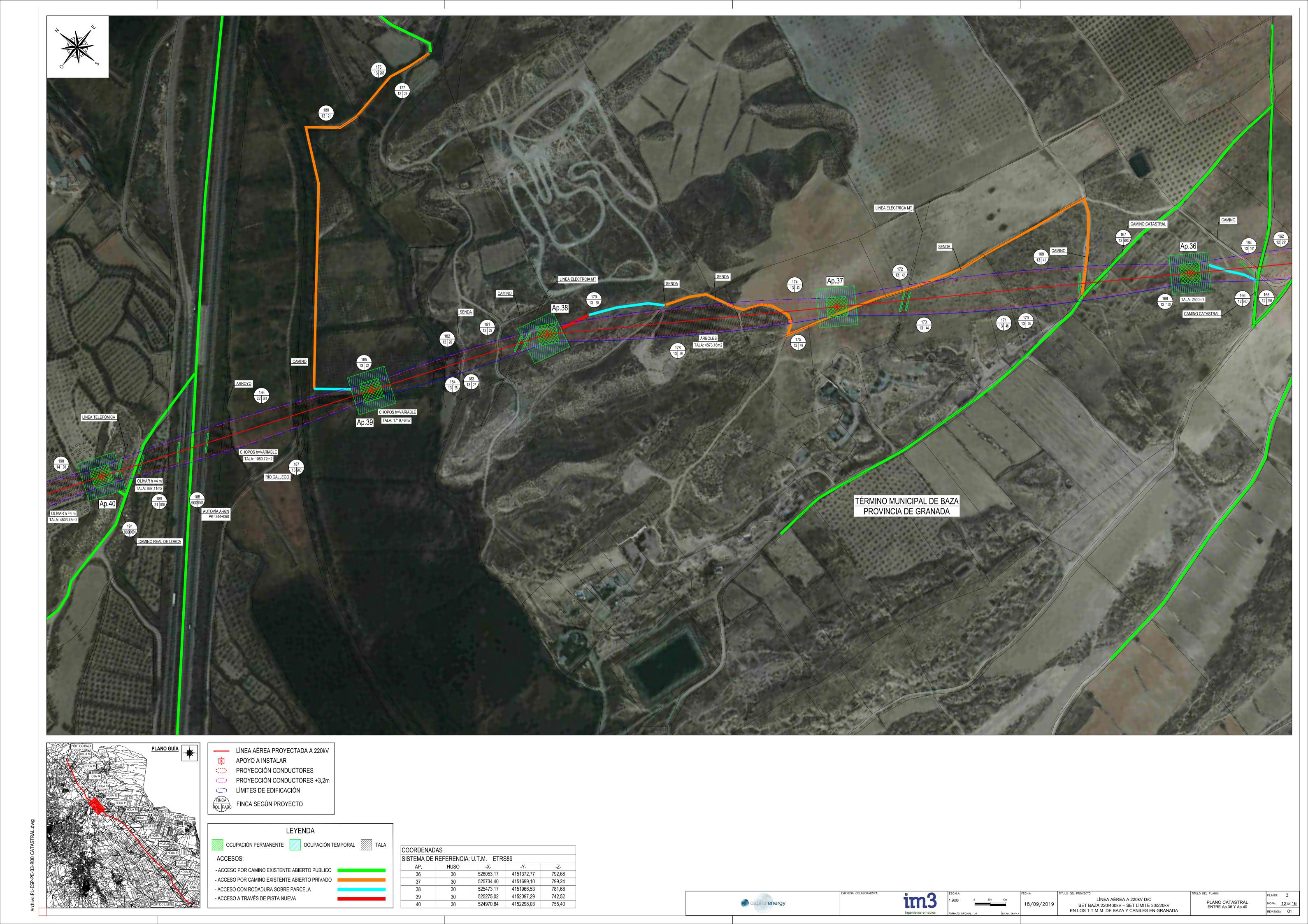


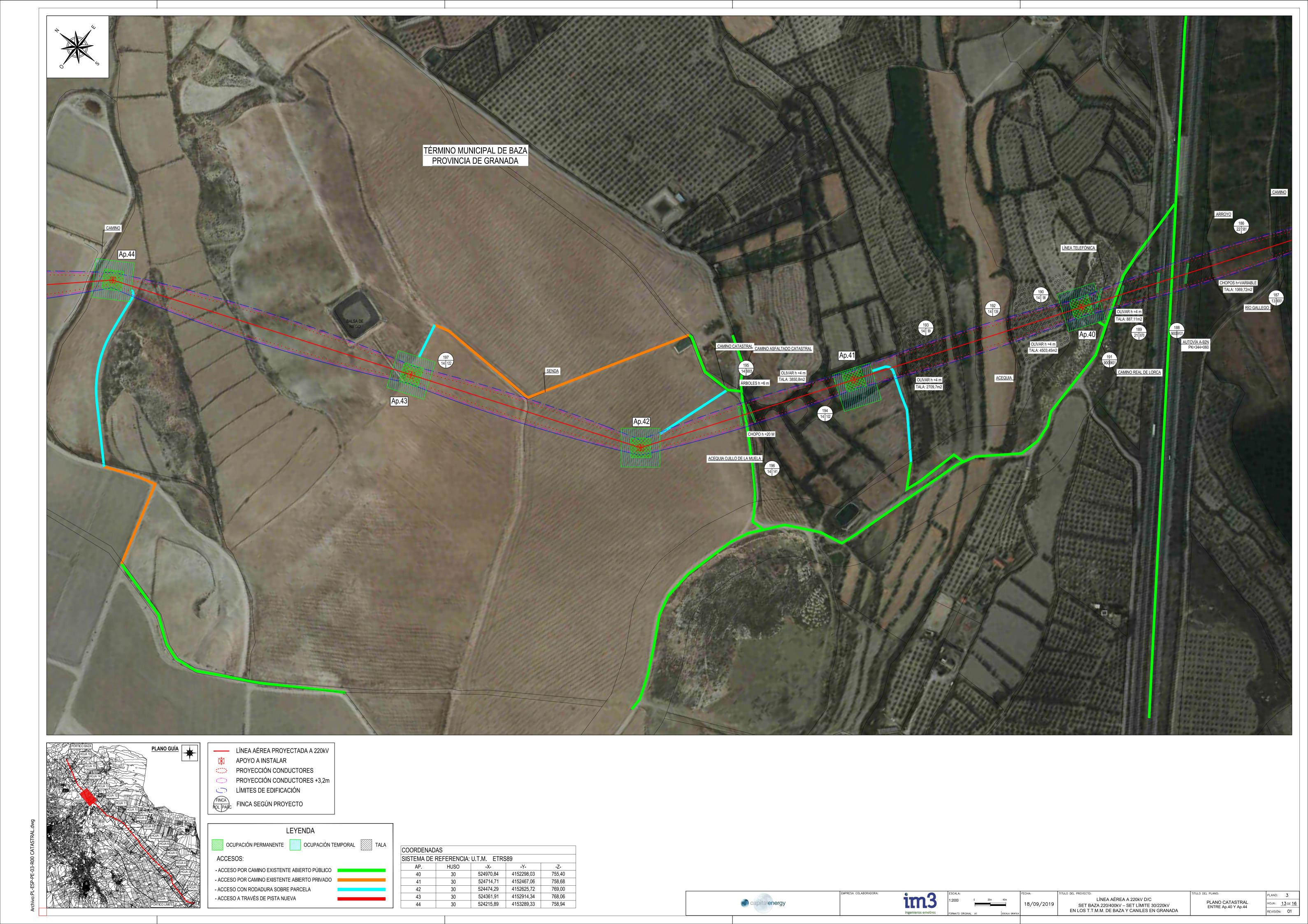


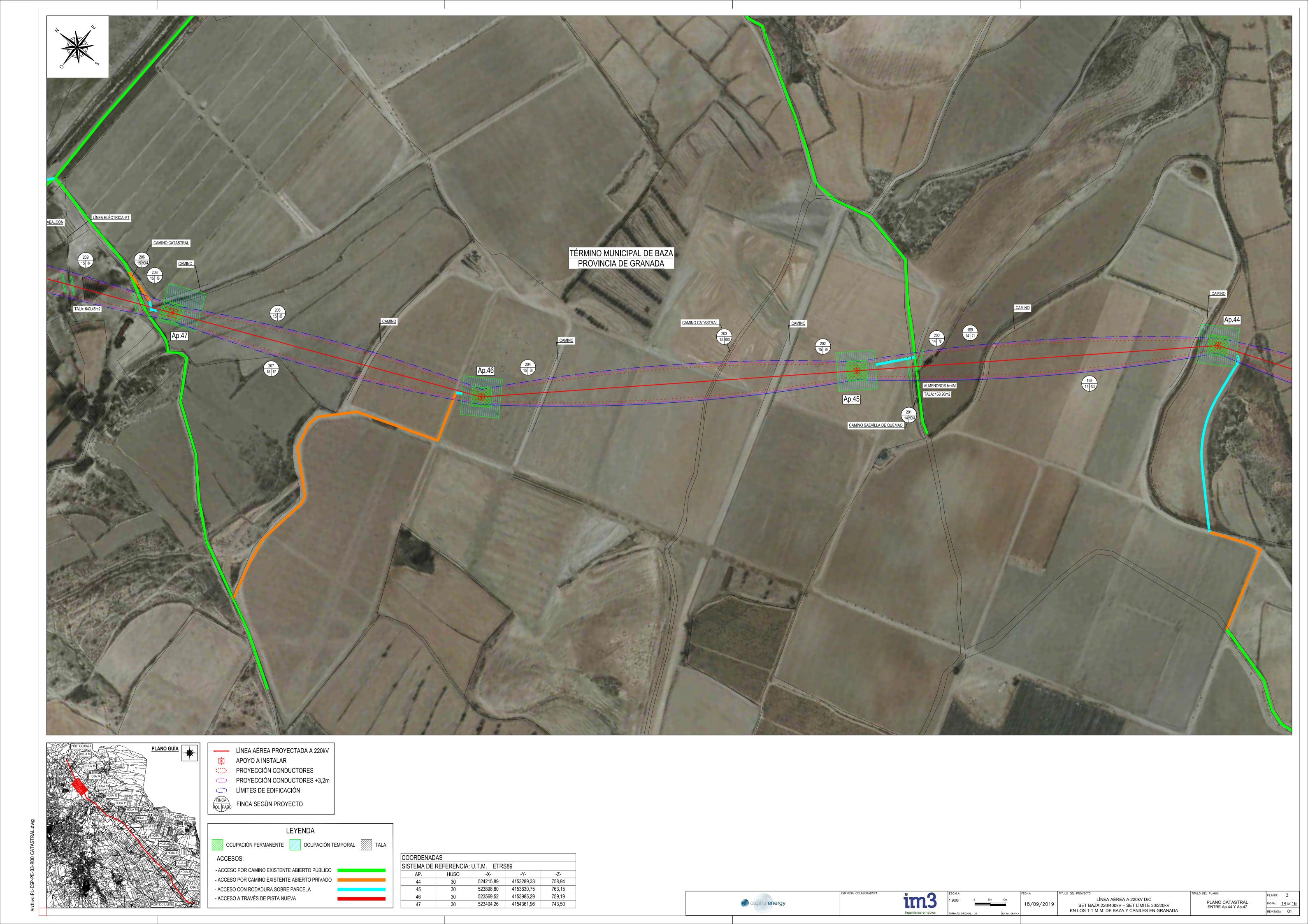


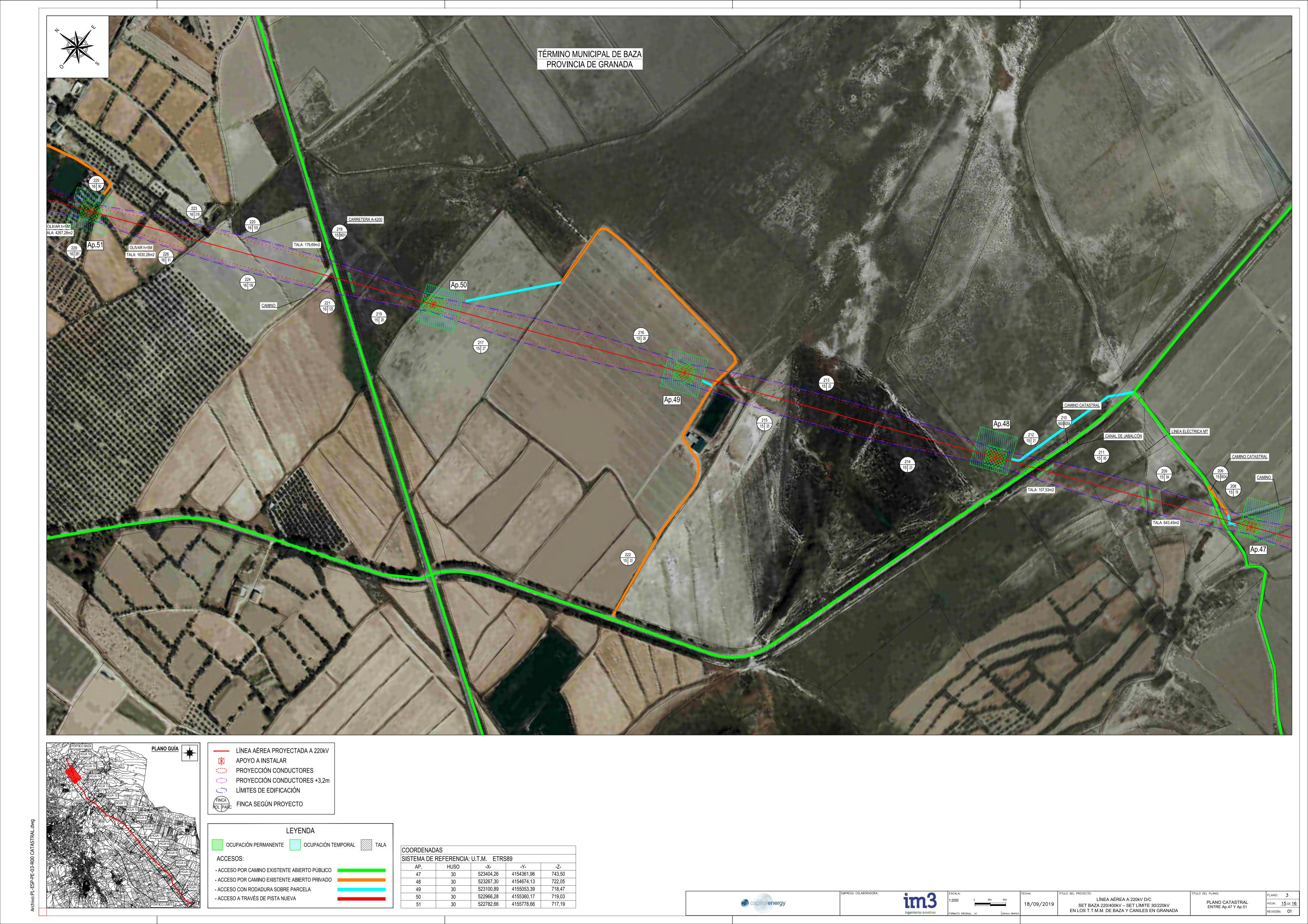


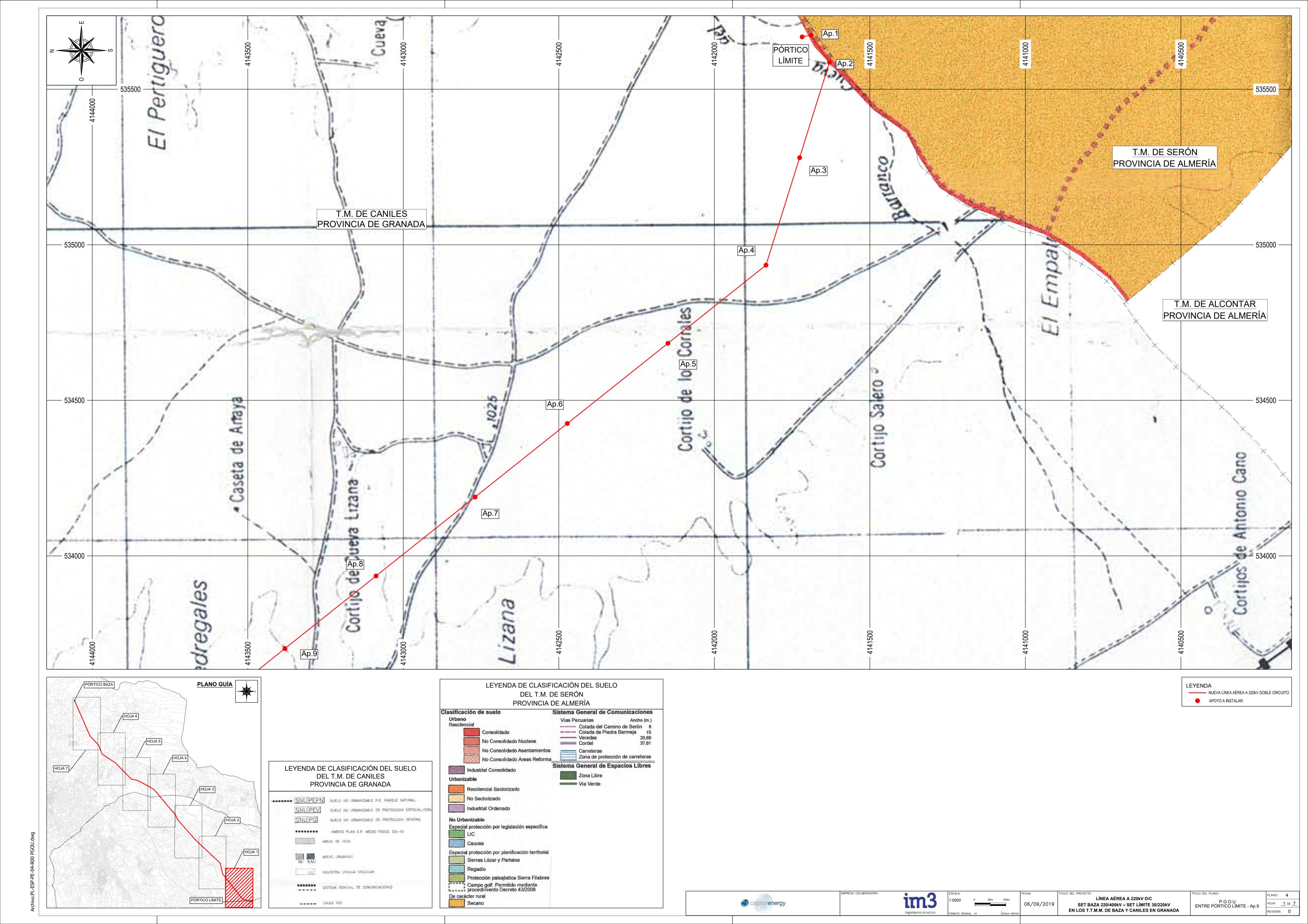


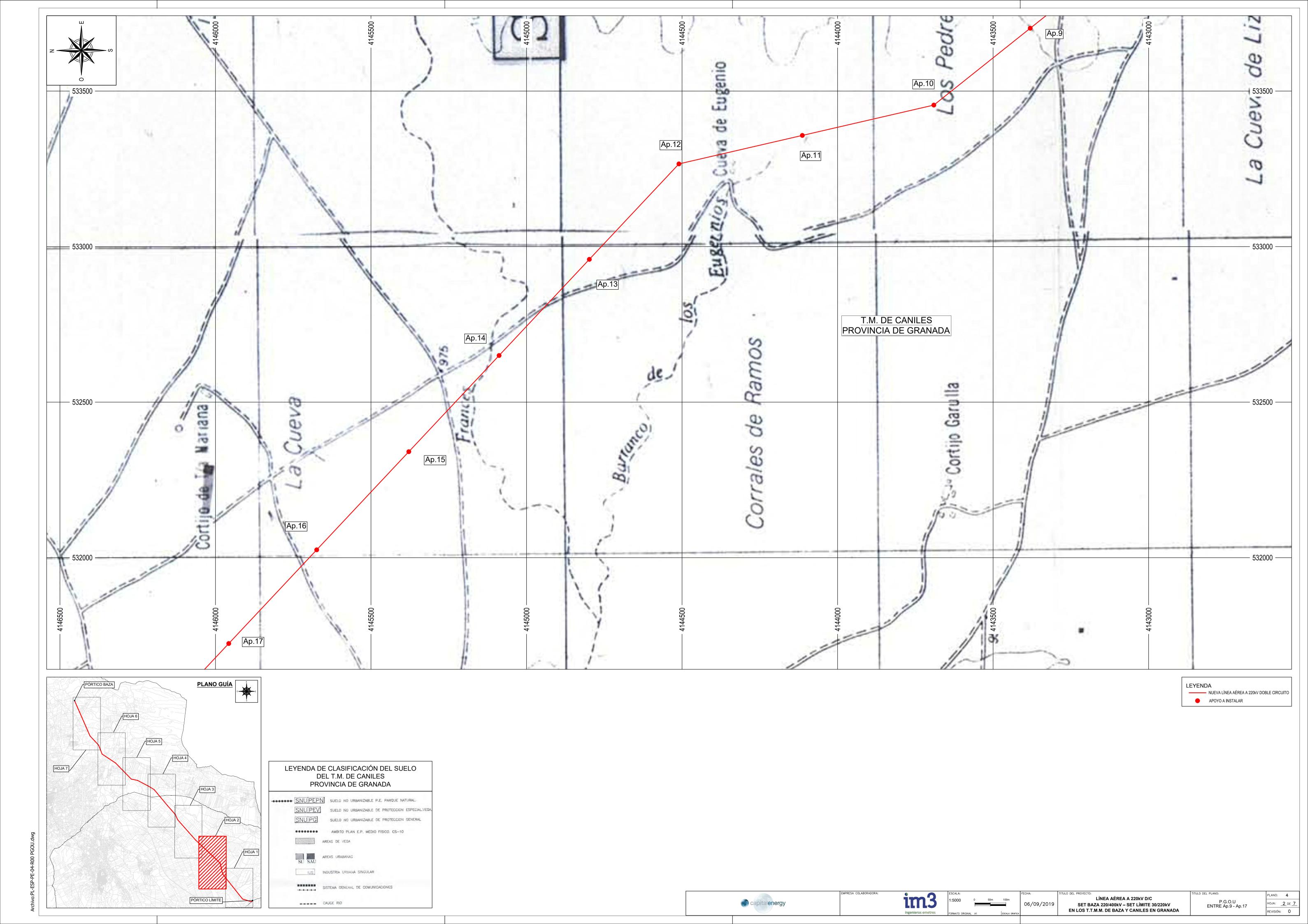


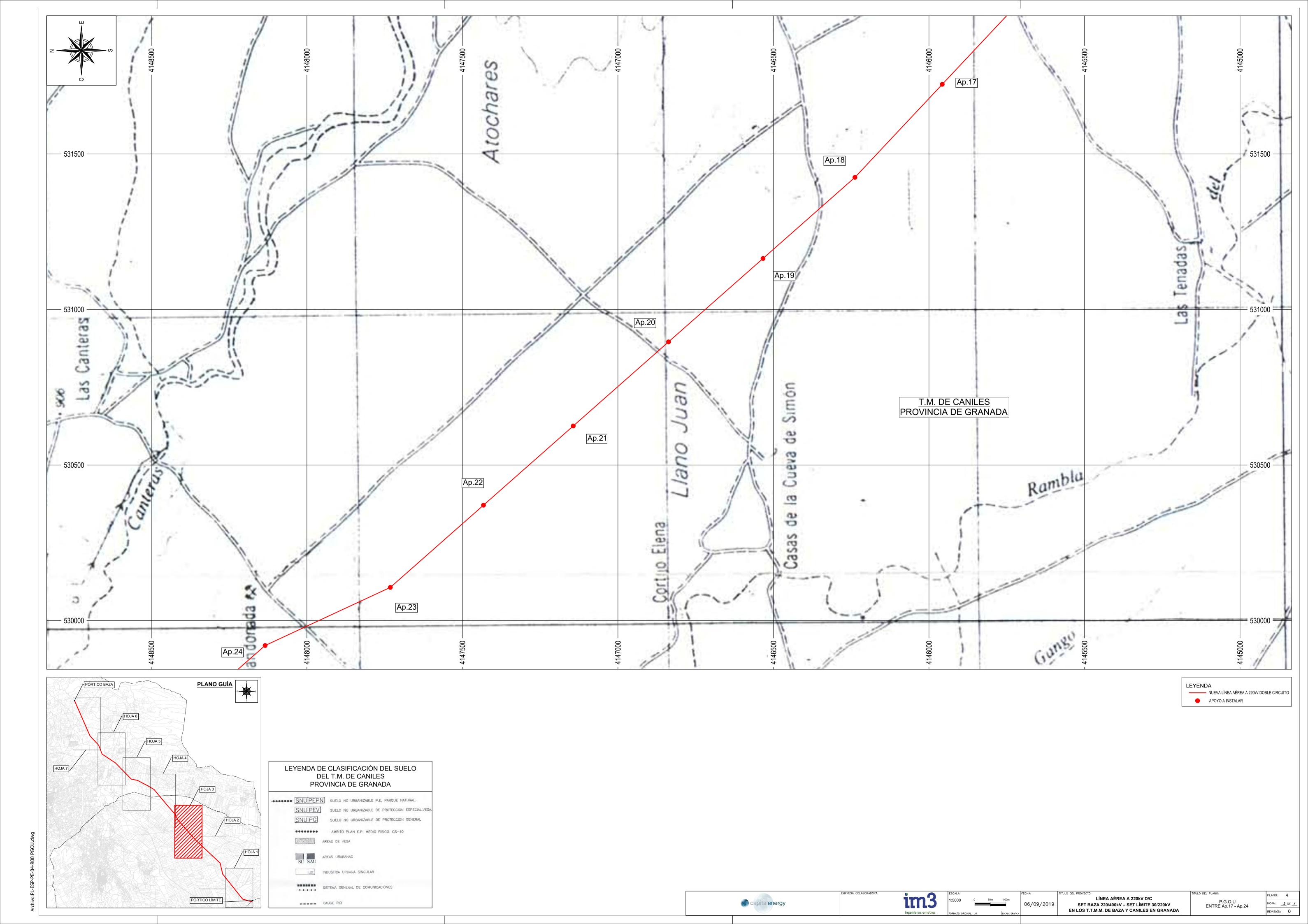


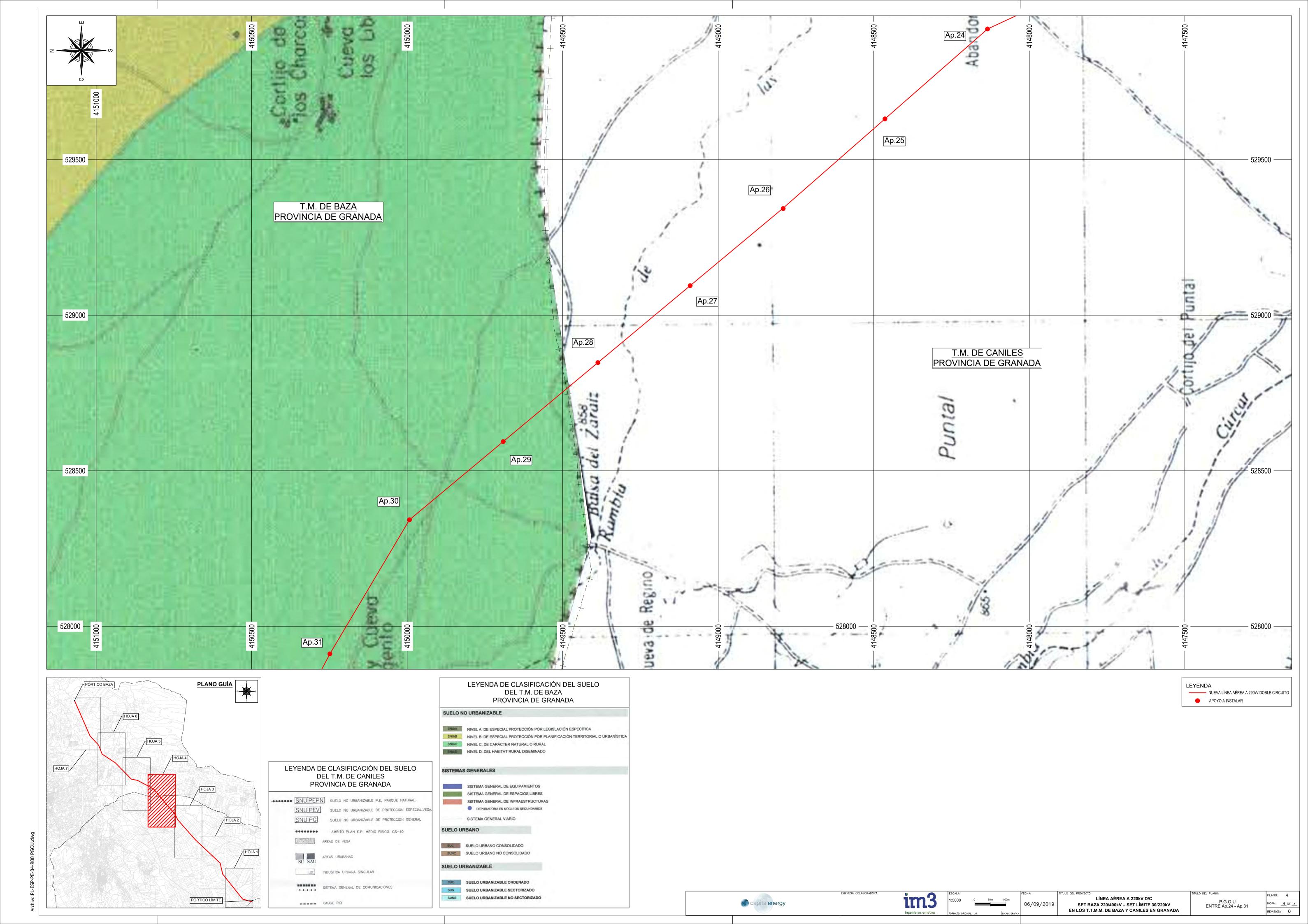


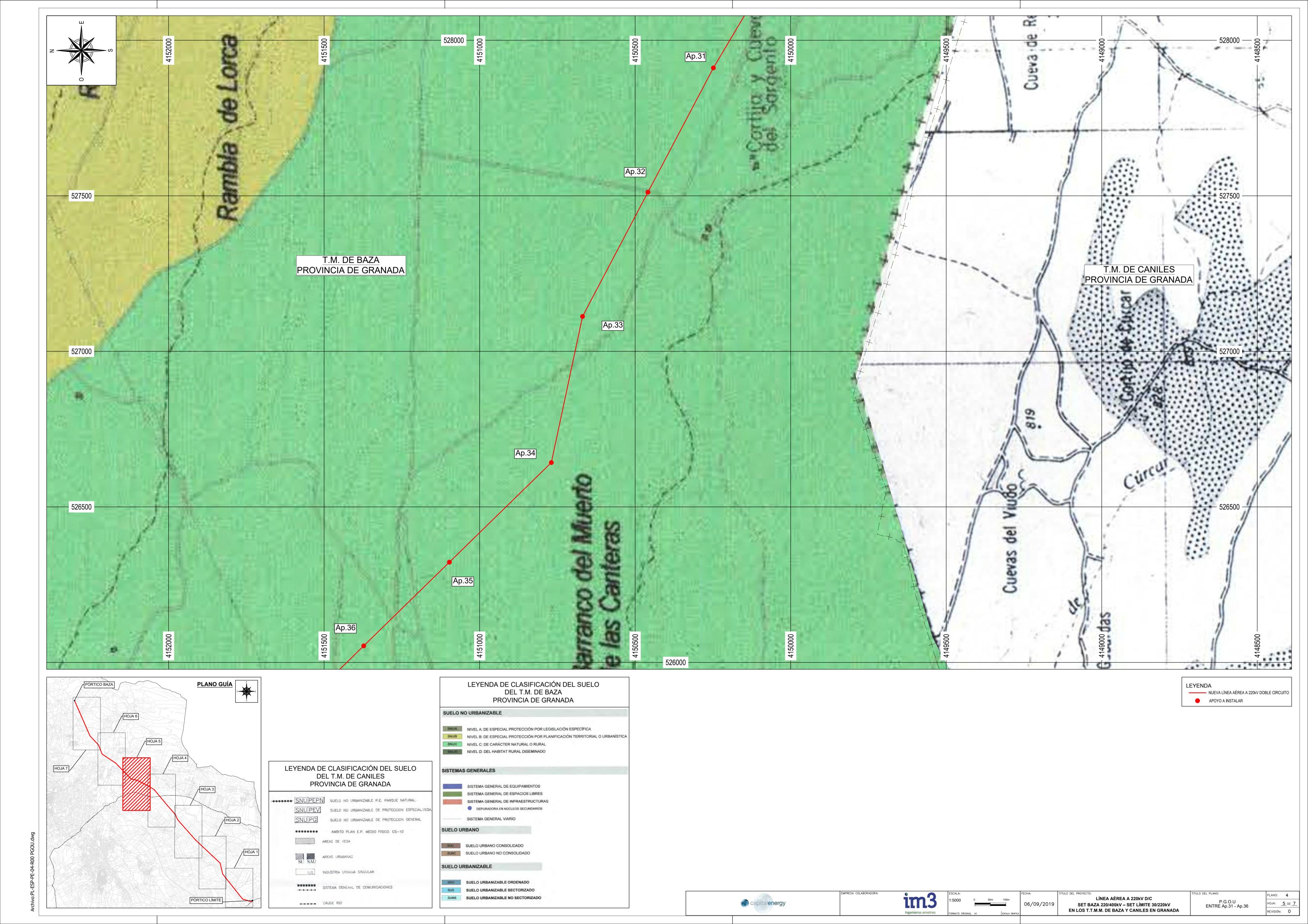


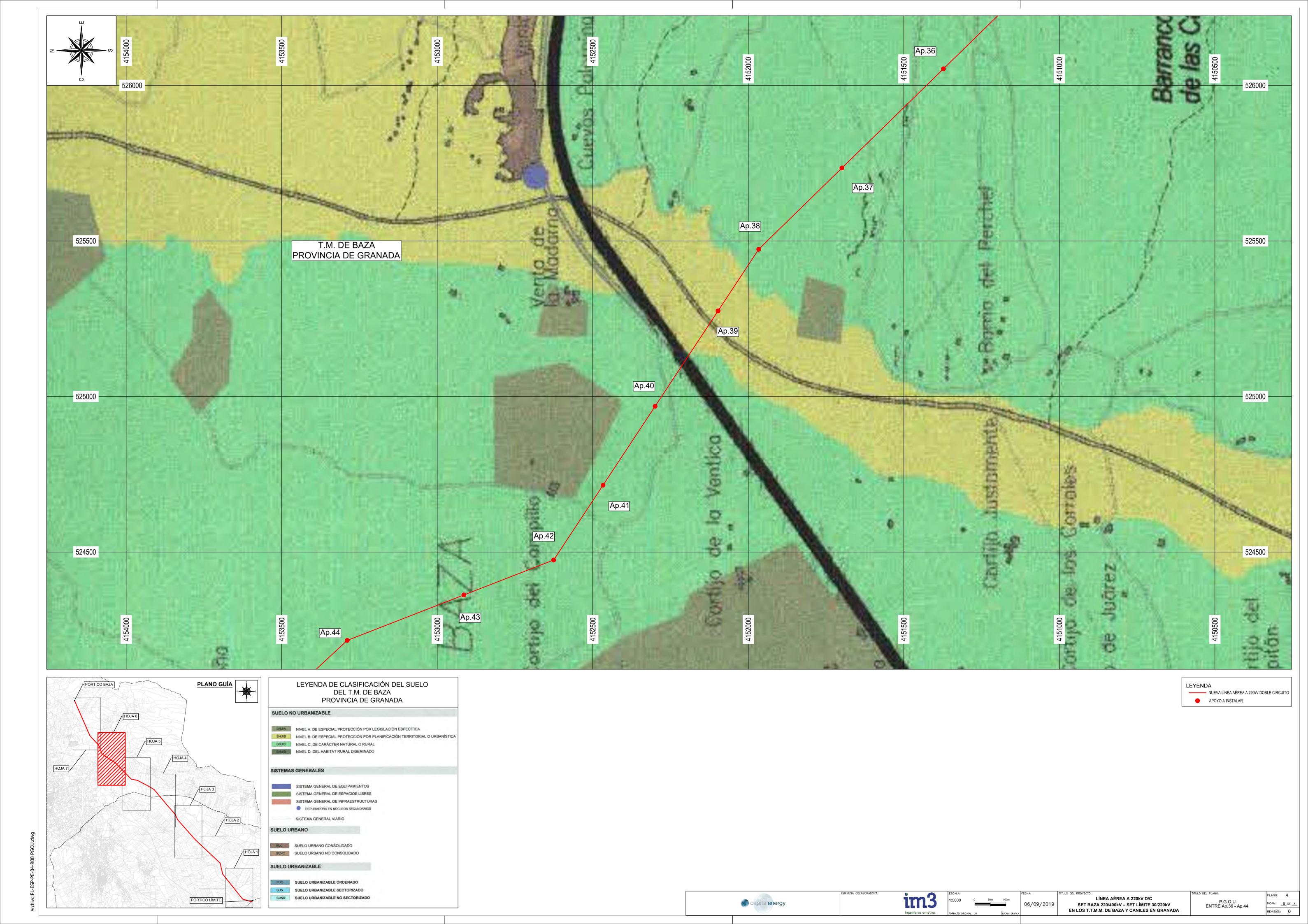


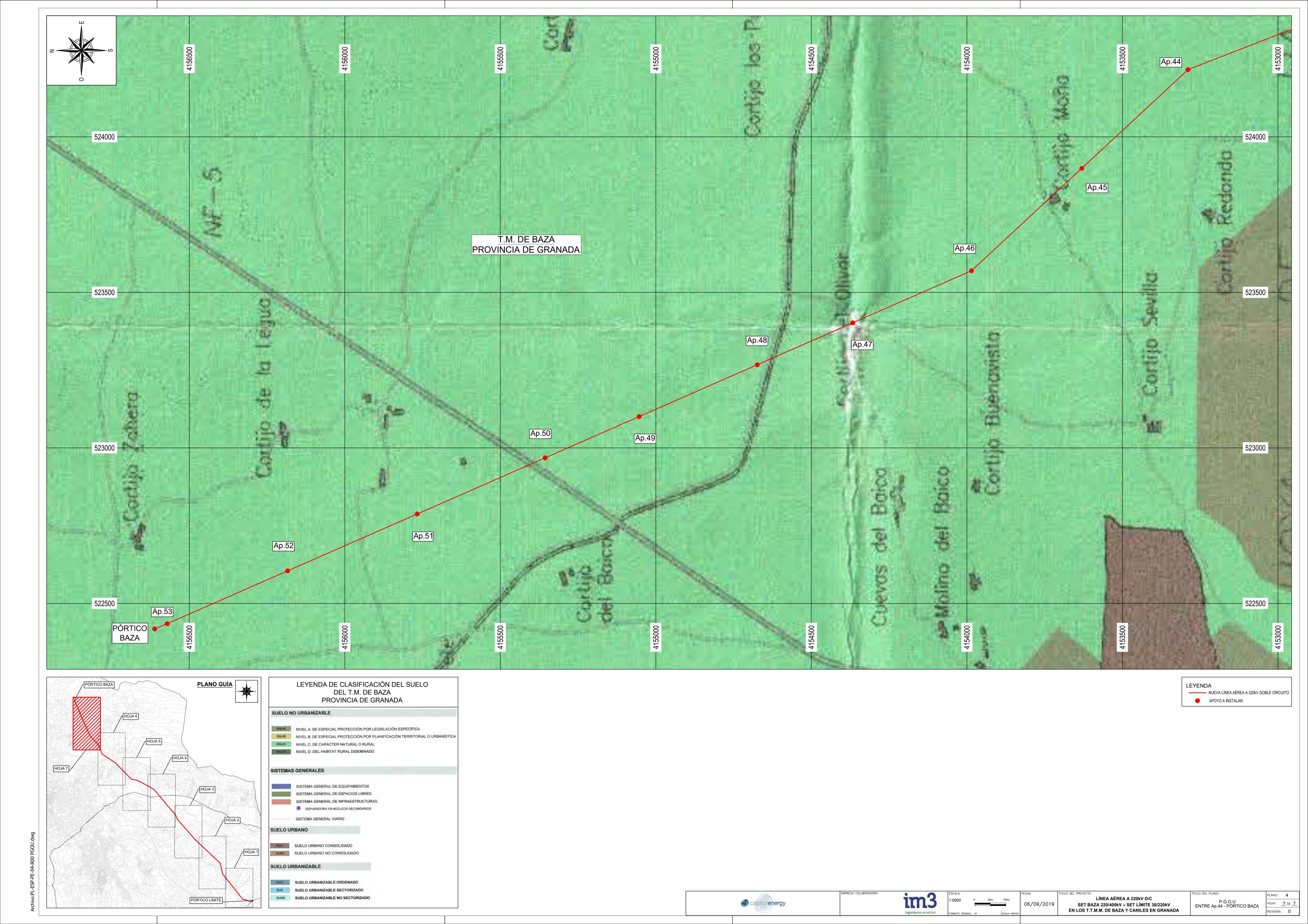








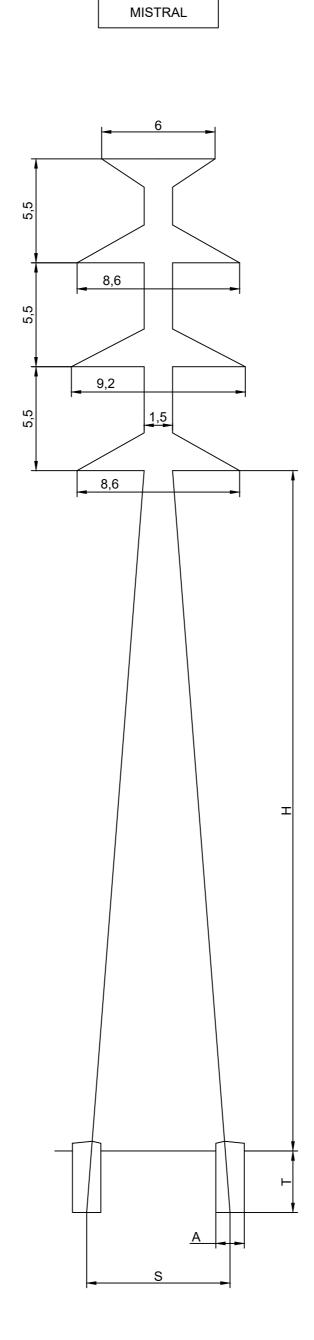


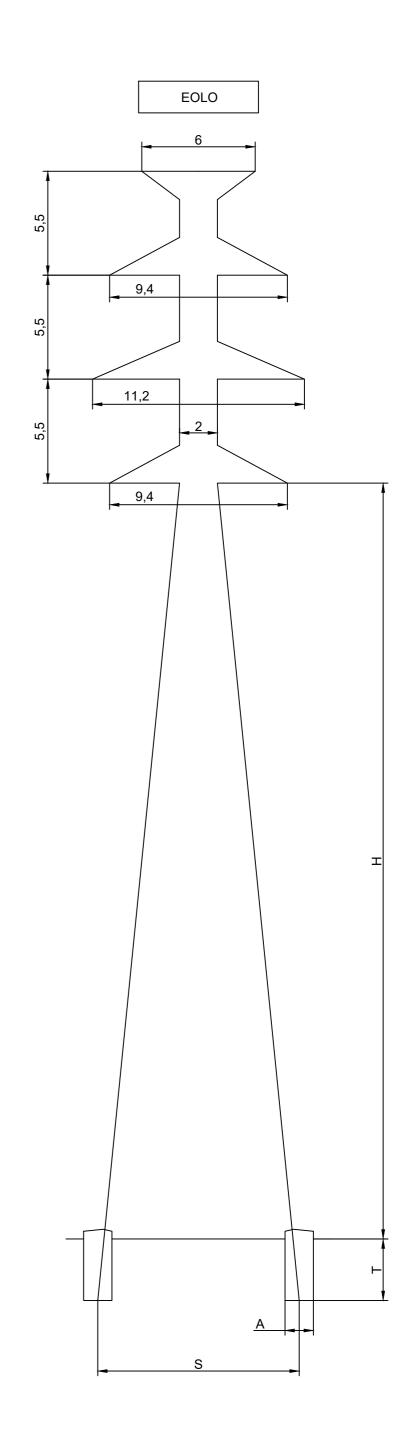


EMPRESA COLABORADORA:

05/

| TITULO DEL PROYECTO:
| LÍNEA AÉREA A 220kV D/C |
| 05/12/2019 | SET BAZA 220/400kV – SET LÍMITE 30/220 |
| EN LOS T.T.M.M. DE BAZA Y CANILES EN GR.

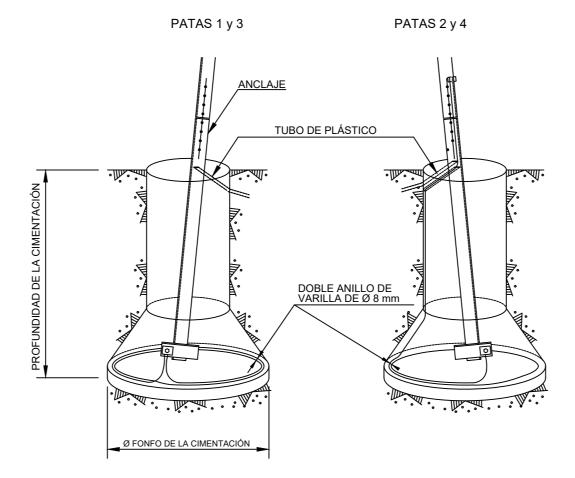

	TITULO DEL PLANO:
A AÉREA A 220kV D/C 0/400kV – SET LÍMITE 30/220kV DE BAZA Y CANILES EN GRANADA	APOYOS A INSTALAR


PLANO: 5

HOJA: 1 DE 1

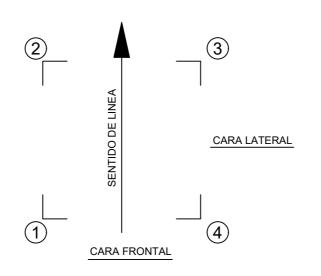
REVISIÓN: 00

APOYO	FUNCIÓN	DESIGNACIÓN	H ALTURA ÚTIL (m)	SEPARACIÓN ENTRE PATAS	ANCHO BLOQUE	ANCHO TOTAL
1	ESP (FL)	MISTRAL-320-15u-DH55b	15	5,1	3,1	8,2
2	ESP (FL)	MISTRAL-320-21u-DH55b	21	4,7	1,55	6,25
3	AL	MISTRAL-80-27u-DH55b	27	5,15	1,55	6,7
4	ANG	MISTRAL-270-27u-DH55b	27	4,7	1,55	6,25
5	AL	MISTRAL-90-33u-DH55b	33	5,15	1,55	6,7
6	AL	MISTRAL-90-33u-DH55b	33	5,1	3,1	8,2
7	AL	MISTRAL-90-33u-DH55b	33	5,15	1,55	6,7
8	AL	MISTRAL-90-30u-DH55b	30	5,15	1,55	6,7
9	AL	MISTRAL-80-30u-DH55b	30	4,3	1,55	5,85
10	ANG	MISTRAL-190-33u-DH55b	33	4,7	1,55	6,25
11	AL	MISTRAL-90-33u-DH55b	33	4,3	1,55	5,85
12	ANC	MISTRAL-270-33u-DH55b	33	5,1	3,1	8,2
13	AL	MISTRAL-90-33u-DH55b	33	5,15	1,55	6,7
14	AL	MISTRAL-90-36u-DH55b	36	5,6	1,55	7,15
15	AL	MISTRAL-90-33u-DH55b	33	5,7	3,1	8,8
16	AL	MISTRAL-90-36u-DH55b	36	4,7	1,55	6,25
17	AL	MISTRAL-90-36u-DH55b	36	4,7	1,55	6,25
18	ANC	MISTRAL-120-30u-DH55b	30	5,15	1,55	6,7
19	AL	MISTRAL-80-30u-DH55b	30	5,15	1,55	6,7
20	AL	MISTRAL-80-27u-DH55b	27	5,15	1,55	6,7
21	AL	MISTRAL-80-30u-DH55b	30	5,15	1,55	6,7
22	AL	MISTRAL-80-27u-DH55b	27	4,7	1,55	6,25
23	ANG	MISTRAL-190-27u-DH55b	27	4,7	1,55	6,25
24	ANC	MISTRAL-190-30u-DH55b	30	5,3	1,9	7,2
25	AL	MISTRAL-80-33u-DH55b	33	5,6	1,55	7,15
26	ANG	MISTRAL-90-30u-DH55b	30	5,6	1,55	7,15
27	ESP (FL)	EOLO-600-20u-DH55a	20	5,6	1,55	7,15
28	AL	MISTRAL-80-27u-DH55b	27	5,15	1,55	6,7
29	AL	MISTRAL-80-30u-DH55b	30	5,6	1,55	7,15
30	ANG	MISTRAL-190-36u-DH55b	36	5,9	1,9	7,8
31	ANG	MISTRAL-120-36u-DH55b	36	5,15	1,55	6,7
32	AL	MISTRAL-80-30u-DH55b	30	5,6	1,55	7,15
33	ANG	MISTRAL-190-36u-DH55b	36	5,15	1,55	6,7
34	ANG	MISTRAL-270-36u-DH55b	36	5,6	1,55	7,15
35	AL	MISTRAL-80-30u-DH55b	30	5,6	1,55	7,15
36	AL	MISTRAL-80-36u-DH55b	36	6,15	1,55	7,7
37	AL2	MISTRAL-90-42u-DH55b	42	6,15	1,55	7,7
38	ANC	MISTRAL-120-30u-DH55b	30	6,75	3,15	9,9
39	ANG	MISTRAL-90-27u-DH55b	27	5,6	1,55	7,15
40	AL	MISTRAL-80-24u-DH55b	24	5,6	1,55	7,15
41	AL	MISTRAL-80-24u-DH55b	24	6,15	1,55	7,7
42	ANG	MISTRAL-270-24u-DH55b	24	6,15	1,55	7,7
43	AL	MISTRAL-80-30u-DH55b	30	6,65	1,9	8,55
44	ANG	MISTRAL-190-36u-DH55b	36	5,6	1,55	7,15
45	AL	MISTRAL-80-36u-DH55b	36	5,6	1,55	7,15
46	ANG	MISTRAL-190-36u-DH55b	36	6,45	1,55	8
47	ANG	MISTRAL-90-39u-DH55b	39	7,75	3,2	10,95
48	ANG	MISTRAL-90-33u-DH55b	33	8,25	3,3	11,55
49	AL	MISTRAL-80-24u-DH55b	24	7,75	3,2	10,95
50	ANG	MISTRAL-90-33u-DH55b	33	5,15	1,55	6,7
51	ANG	MISTRAL-90-27u-DH55b	27	6,05	3,2	9,25
52	FL	MISTRAL-190-33u-DH55b	33	5,6	1,55	7,15
53	FL	MISTRAL-190-24u-DH55b	24	5,6	1,55	7,15

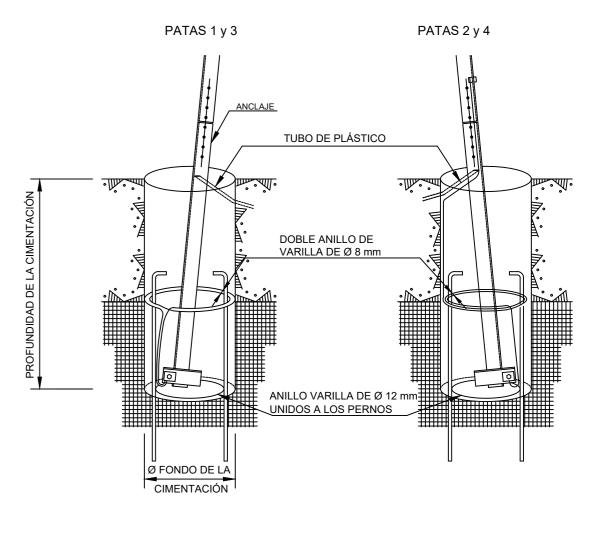


DISPOSICIÓN DE LAS ZANJAS Y DE LA VARILLA DE ACERO DESCARBURADO Ø 8 mm EN EL ANILLO DE P.aT.

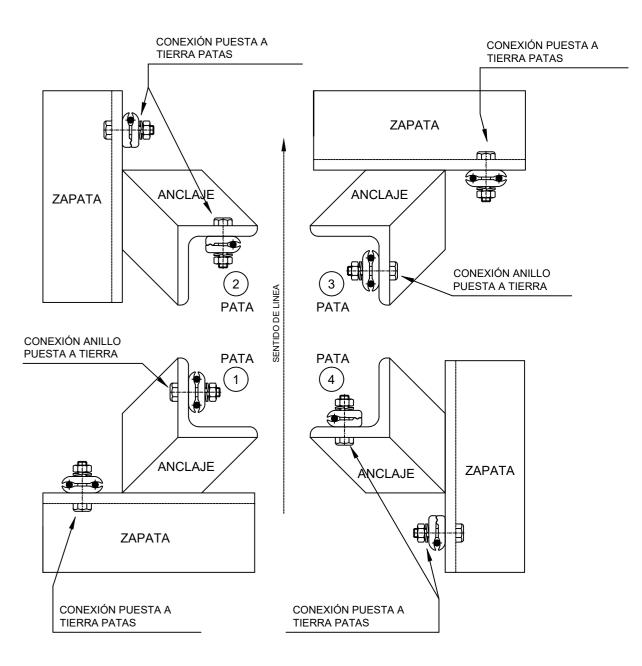
UNIÓN DE LAS VARILLAS DE ACERO MEDIANTE GRAPA PARALELA (VER DETALLE) 1 TUBO DE PLÁSTICO. (VER NOTA 3) CARA LATERAL I TUBO DE PLÁSTICO. (VER NOTA 4) CARA FRONTAL DETALLE


CIMENTACIÓN EN TIERRA

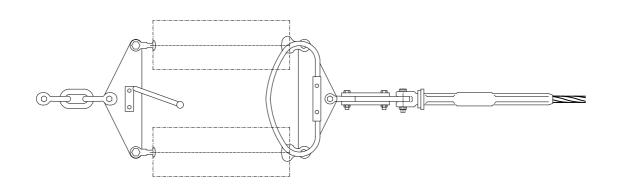
NOTAS:


- 1. PARA UBICAR EL ANILLO DE PUESTA A TIERRA SE TOMARÁN COMO REFERENCIA DE COTAS LA CABEZA DE LOS ANCLAJES SIENDO
- "D" = DIÁMETRO DEL CILINDRO DE LA CIMENTACIÓN TIPO PATAS SEPARADAS SEGÚN PLANO DE CIMENTACIONES DEL APOYO.
- 2. PROFUNDIDAD DE ZANJA:
 - 0,40 m EN ROCA.
 - 0,60 m EN TIERRA.
 - 0,80 m EN ZONA AGRÍGOLA.
- 3. LA PATA 1 Y LA PATA 3 ESTARÁN CONECTADAS CON ANILLO DE PUESTA A TIERRA
- 4. LA PATA 2 Y 4 ESTARÁN CONECTADAS CON LA PUESTA A TIERRA EN PATAS.

IDENTIFICACIÓN PATAS



MPRESA COLABORADORA


CIMENTACIÓN MIXTA

DETALLE CONEXIONES CON ZAPATAS Y ANCLAJE

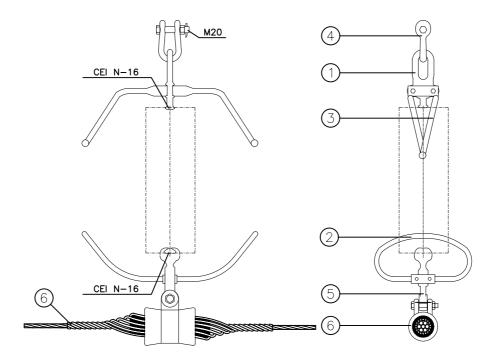
LA PUESTA A TIERRA DE LAS PATAS SE CONECTARAN A LAS ZAPATAS EN PATAS 1-3 Y A LAS ZAPATAS Y ANCLAJES EN PATAS 2-4. LOS ANILLOS DE PUESTA A TIERRA SE CONECTARAN A LA PARTE SUPERIOR DEL ANCLAJE EN PATAS 1-3.

POS.	DENOMINACIÓN	CANT.	CÓDIGO
1 00.		OAITI.	
1	ALARGADERA REGULABLE	1	AR-705/M20
2	CONJ. RAQUETA	1	375/130_220kV
3	CONJ. DESC. SUP.	1	375/240_220kV
4	ESLABON	1	E-24
5	GRILLETE	2	GN-21/T
6	HORQUILLA BOLA PARALELA	2	HBP-16/T
7	HORQUILLA REVIRADA	1	HR-20/T
8	RÓTULA HORQUILLA	2	RH-16/T
9	YUGO	2	Y-400/21
10	GRAPA DE COMPRESIÓN	1	GCH-0605 (HORQUILLA)
	GRAPA DE COMPRESION	1	EC-0605 (EMPALME)

EMPRESA COLABORADORA:

im3

ESCALA: S/E


nieros emetres FORMATO ORIGINAL
TITULO DEL PLANO:

ESCALA GRAFICA

TITULO DEL PROYECTO:

LÍNEA AÉREA A 220kV D/C SET BAZA 220/400kV – SET LÍMITE 30/220kV EN LOS T.T.M.M. DE BAZA Y CANILES EN GRANADA

HERRAJES CADENA DE AMARRE DOBLE PARA LA-545 SIMPLE PLANO: 7
HOJA: 1 DE 6
REVISIÓN: 00

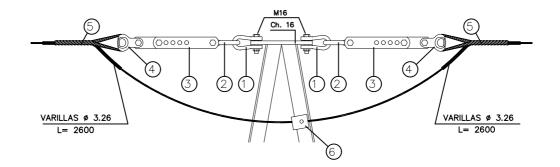
POS.	DENOMINACIÓN	CANT.	REFERENCIA
1	ANILLA BOLA C. PROTEC.	1	AB-16P
2	CONJ. RAQUETA	2	375/195_220kV
3	CONJ. DESC. SUP. DS	2	375/130_220kV
4	GRILLETE RECTO	1	GN-21/T
5	RÓTULA	1	R-16A P20
6	GRAPA SUSPENSIÓN ARMADA	1	GSA-29,87/30,70/D

EMPRESA COLABORADORA:

ESCALA: S/E

FORMATO ORIGINAL TITULO DEL PLANO:

ESCALA GRAFICA


TITULO DEL PROYECTO:

LÍNEA AÉREA A 220kV D/C SET BAZA 220/400kV - SET LÍMITE 30/220kV EN LOS T.T.M.M. DE BAZA Y CANILES EN GRANADA

HERRAJES CADENA DE SUSPENSIÓN SIMPLE PARA LA-545 SIMPLE

7 PLANO: 2 DE 6 HOJA: 00 REVISIÓN:

Archivo:PL-ESP-PE-07-R00.dwg

POS.	DENOMINACIÓN	CANT.	CÓDIGO
1	GRILLETE RECTO	2	GN-16/T
2	ESLABON REVIRADO	2	ER-16
3	ALARGADERA REGULABLE	2	AR-701 (P.INOX)
4	HORQUILLA GUARDACABO	2	HG-16/T
5	CONJ. DE AMARRE PARA OPGW	2	260-WGL-17.00/18.60/I (RED) 160-WRD-23.52/25.12/C/D (RED)
6	GRAPA DE CONEXIÓN A TORRE	1	GSU AL 8-18

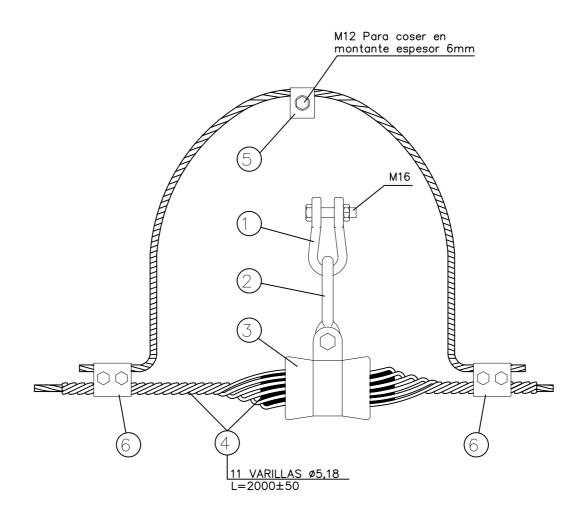
EMPRESA COLABORADORA:

im3
ingenieros emetres

TITULO DEL PLANO:

ESCALA: S/E

FORMATO ORIGINAL A4


ESCALA GRAFICA

TITULO DEL PROYECTO:

LÍNEA AÉREA A 220kV D/C SET BAZA 220/400kV – SET LÍMITE 30/220kV EN LOS T.T.M.M. DE BAZA Y CANILES EN GRANADA

HERRAJES CONJUNTO FO AMARRE PLANO: 7
HOJA: 3 DE 6
REVISIÓN: 00

Archivo:PL-ESP-PE-07-R00.dwg

POS.	DENOMINACIÓN	CANT.	CÓDIGO
1	GRILLETE RECTO	2	GN-16/T
2	ESLABON REVIRADO	1	ER-16
3	CUERPO DE GRAPA GSA	2	MANGUITO 55008 GRAPA 602023-N ABRAZADERA 65052-17.5
4	VARILLAS PREFORMADAS DE GSA	1	200-GSAFO-17.10/17.54/D
5	GRAPA CONEXIÓN A TORRE	1	GSU 8-18
6	GRAPA CONEXIÓN PARALELA	2	PG 11/28

EMPRESA COLABORADORA:

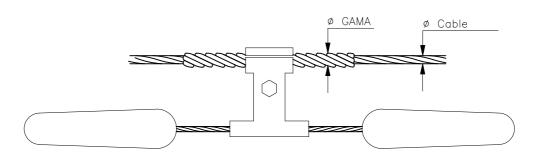
im3

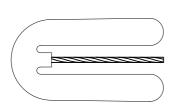
ESCALA: S/E

nieros emetres FORMATO ORIGINAL
TITULO DEL PLANO:

ESCALA GRAFICA

TITULO DEL PROYECTO:


LÍNEA AÉREA A 220kV D/C SET BAZA 220/400kV – SET LÍMITE 30/220kV EN LOS T.T.M.M. DE BAZA Y CANILES EN GRANADA


HERRAJES CONJUNTO FO SUSPENSIÓN PLANO: 7

HOJA: 4 DE 6

REVISIÓN: 00

Archivo:PL-ESP-PE-07-R00.dwg

CABLE	GAMA de Ø
ø15,10 % ø18,58	ø21,50 ⊹ ø30
ø25,00 °, ø32,00	ø16,50 ≗ ø24

EMPRESA COLABORADORA:

im3

TITULO DEL PLANO:

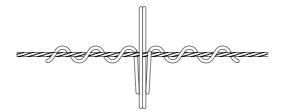
ESCALA: S/E

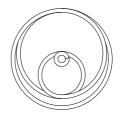
FORMATO ORIGINAL A4

ESCALA GRAFICA

TITULO DEL PROYECTO:

LÍNEA AÉREA A 220kV D/C SET BAZA 220/400kV – SET LÍMITE 30/220kV EN LOS T.T.M.M. DE BAZA Y CANILES EN GRANADA


HERRAJES AMORTIGUADORES


 PLANO:
 7

 HOJA:
 5 DE 6

 REVISIÓN:
 00

27/09/2019

GAMA de Ø ø13,41 <u></u>

• ø17,50

capitalenergy

EMPRESA COLABORADORA:

ESCALA: S/E

FORMATO ORIGINAL TITULO DEL PLANO:

7

TITULO DEL PROYECTO:

LÍNEA AÉREA A 220kV D/C SET BAZA 220/400kV - SET LÍMITE 30/220kV EN LOS T.T.M.M. DE BAZA Y CANILES EN GRANADA

HERRAJES SALVAPÁJAROS ESPIRAL DOBLE

HOJA: 6 DE 6 00

Archivo:PL-ESP-PE-07-R00.dwg

PLANO:

HOJA **143** OF **143**

14. <u>Anexos</u>

14.1. Anexo 1: Árboles de carga de los apoyos

CÓDIGO: MT-ESP-PE-02_R00 HOJA 1 OF 58

capitalenergy	Anexo árboles de carga de los apoyos	im3
INSTALACIÓN:	LINEA AEREA A 220kV D/C SET BAZA 220/400kV – SET LIMITE 30/220kV EN LOS T.M. DE BAZA Y CANILES EN GRANADA	
CLIENTE:	CAPITAL ENERGY	HOJA 1 DE 58
CÓDIGO DEL DOCUMENTO.:	MT-ESP-PE-02_R00	

CONTROL DE REVISIONES

REV. FECHA MOTIVO

0A 03/10/19 Emisión para comentarios
0B 05/12/19 Primera Edición

CÓDIGO: MT-ESP-PE-02_R00 HOJA 2 OF 58

ÍNDICE

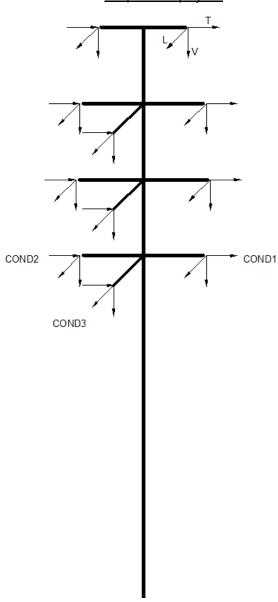
1	Árbolos do corgo	2
1.	Arboles de carga	. J

CÓDIGO: MT-ESP-PE-02_R00 HOJA 3 OF 58

1. Árboles de carga

Árbol de carga correspondiente al apoyo 1 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	721	467	-2214
1ª Hipótesis	COND2	331	251	-2086
(Viento)	COND3	285	327	35
Cs= 1,5	HT1	101	150	698
	HT2	131	243	1193
	COND1	923	274	-2876
2ªA Hipótesis	COND2	440	52	-2724
(Hielo)	COND3	467	318	89
Cs= 1,5	HT1	246	207	1049
	HT2	299	289	1682
	COND1	926	354	-2932
2ªB Hipótesis	COND2	439	117	-2768
(Hielo + Viento)	COND3	470	343	79
Cs= 1,5	HT1	251	251	1120
	HT2	302	340	1738
	COND1	926	278	-2923
4ª Hipótesis	COND2	439	53	-2769
(Rotura)	COND3	470	323	91
Cs= 1,2	HT1	251	215	1111
	HT2	302	297	1728



CÓDIGO: MT-ESP-PE-02_R00

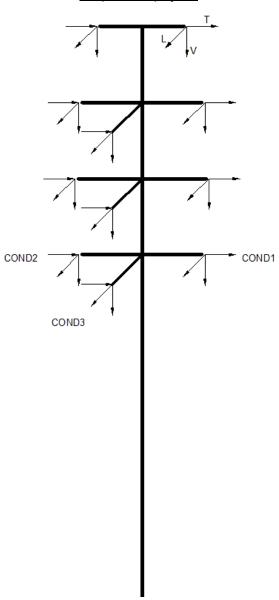
HOJA 4 OF 58

Esquema apoyo 1

Las crucetas correspondientes a COND2 y COND3 serán crucetas cuadradas.

CÓDIGO: MT-ESP-PE-02_R00 HOJA 5 OF 58

Árbol de cargas correspondiente al apoyo 2 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:


Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
1ª Hipótesis	COND1	886	2326	-1875
	COND2	525	449	-3102
(Viento)	COND3	361	1849	1276
Cs= 1,5	HT1	173	1196	1113
	HT2	174	1179	1096
	COND1	1313	2183	-2455
2ªA Hipótesis	COND2	842	0	-4143
(Hielo)	COND3	469	2144	1747
Cs= 1,5	HT1	485	1364	1695
	HT2	489	1344	1665
	COND1	1313	2418	-2543
2ªB Hipótesis	COND2	842	153	-4224
(Hielo + Viento)	COND3	470	2223	1740
Cs= 1,5	HT1	485	1525	1786
	HT2	488	1508	1753
	COND1	1313	2217	-2510
4ª Hipótesis	COND2	842	0	-4224
(Rotura)	COND3	470	2175	1773
Cs= 1,2	HT1	485	1397	1759
	HT2	488	1379	1726

CÓDIGO: MT-ESP-PE-02_R00 HOJA 6 OF 58

Esquema apoyo 2

Las crucetas correspondientes a COND2 y COND3 serán crucetas cuadradas.

CÓDIGO: MT-ESP-PE-02_R00 HOJA 7 OF 58

Árbol de cargas correspondiente al apoyo 3 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	803	831	1
1ª Hipótesis	COND2	805	834	1
(Viento) Cs= 1,5	HT1	367	399	1
03 1,3	HT2	367	400	1
222.111.72.1	COND1	1511	2	0
2ªA Hipótesis (Hielo)	COND2	1515	2	0
Cs= 1,5	HT1	918	1	0
C3- 1,5	HT2	920	1	0
	COND1	1513	305	0
2ªB Hipótesis (Hielo + Viento)	COND2	1517	306	0
Cs= 1,5	HT1	922	229	0
03 1,3	HT2	924	229	0
	COND1	1513	2	634
3ª Hipótesis (Desequilibrio)	COND2	1517	2	634
Cs= 1,2	HT1	922	1	428
	HT2	924	1	428
	COND1	1513	2	2113
4ª Hipótesis	COND2	1517	2	2112
(Rotura) Cs= 1,2	HT1	922	1	1426
00 1,2	HT2	924	1	1426

CÓDIGO: MT-ESP-PE-02_R00 HOJA 8 OF 58

Árbol de cargas correspondiente al apoyo 4 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1104	2826	43
1ª Hipótesis	COND2	1110	2825	43
(Viento) Cs= 1,5	HT1	254	1488	39
C3- 1,3	HT2	256	1487	37
	COND1	1841	2429	11
2ªA Hipótesis (Hielo)	COND2	1852	2421	10
Cs= 1,5	HT1	789	1619	5
C3- 1,3	HT2	794	1616	4
	COND1	1840	2825	12
2ºB Hipótesis	COND2	1850	2818	12
(Hielo + Viento) Cs= 1,5	HT1	786	1916	5
C3- 1,3	HT2	791	1913	4
	COND1	1840	2169	1015
3ª Hipótesis	COND2	1850	2161	1015
(Desequilibrio) Cs= 1,2	HT1	786	1464	683
C3- 1,2	HT2	791	1461	682
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1840	1240	4039
	COND2	1851	1236	4039
	HT1	786	837	2727
03- 1, 2	HT2	791	835	2727

CÓDIGO: MT-ESP-PE-02_R00 HOJA 9 OF 58

Árbol de cargas correspondiente al apoyo 5 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	810	970	0
1ª Hipótesis	COND2	812	973	0
(Viento) Cs= 1,5	HT1	338	477	0
C3- 1,3	HT2	339	478	0
	COND1	1612	2	0
2ªA Hipótesis	COND2	1617	2	0
(Hielo) Cs= 1,5	HT1	945	1	0
C3- 1,3	HT2	947	1	0
	COND1	1611	360	0
2ºB Hipótesis	COND2	1616	361	0
(Hielo + Viento) Cs= 1,5	HT1	945	273	0
C3- 1,5	HT2	947	274	0
	COND1	1611	2	633
3ª Hipótesis	COND2	1616	2	633
(Desequilibrio) Cs= 1,2	HT1	945	1	428
03- 1 ₁ L	HT2	947	1	428
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1611	2	2109
	COND2	1616	2	2108
	HT1	945	1	1426
	HT2	947	1	1426

CÓDIGO: MT-ESP-PE-02_R00 HOJA 10 OF 58

Árbol de cargas correspondiente al apoyo 6 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	912	946	0
1ª Hipótesis	COND2	912	946	0
(Viento) Cs= 1,5	HT1	387	464	0
C3- 1,3	HT2	387	464	0
	COND1	1735	0	0
2ªA Hipótesis (Hielo)	COND2	1735	0	0
Cs= 1,5	HT1	1009	0	0
03 1,0	HT2	1009	0	0
	COND1	1737	349	0
2ªB Hipótesis (Hielo + Viento)	COND2	1737	349	0
Cs= 1,5	HT1	1011	265	0
	HT2	1011	265	0
	COND1	1737	0	633
3ª Hipótesis (Desequilibrio)	COND2	1737	0	633
Cs= 1,2	HT1	1011	0	428
00 1/2	HT2	1011	0	428
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1737	0	2109
	COND2	1737	0	2108
	HT1	1011	0	1426
	HT2	1011	0	1426

CÓDIGO: MT-ESP-PE-02_R00 HOJA 11 OF 58

Árbol de cargas correspondiente al apoyo 7 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	780	938	0
1ª Hipótesis	COND2	780	938	0
(Viento) Cs= 1,5	HT1	311	459	0
C3- 1,3	HT2	311	459	0
	COND1	1552	0	0
2ªA Hipótesis (Hielo)	COND2	1552	0	0
Cs= 1,5	HT1	887	0	0
25 1,5	HT2	887	0	0
	COND1	1551	346	0
2ªB Hipótesis (Hielo + Viento)	COND2	1551	346	0
Cs= 1,5	HT1	886	262	0
33 2,3	HT2	886	262	0
	COND1	1551	0	633
3ª Hipótesis (Desequilibrio)	COND2	1551	0	633
Cs= 1,2	HT1	886	0	428
00 I)E	HT2	886	0	428
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1551	0	2109
	COND2	1551	0	2108
	HT1	886	0	1426
00 1,2	HT2	886	0	1426

 CÓDIGO:
 MT-ESP-PE-02_R00
 HOJA 12 OF 58

Árbol de cargas correspondiente al apoyo 8 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	866	934	1
1ª Hipótesis	COND2	866	934	1
(Viento) Cs= 1,5	HT1	362	457	0
C3- 1,3	HT2	362	457	0
004.111.77	COND1	1666	0	0
2ªA Hipótesis (Hielo)	COND2	1666	0	0
Cs= 1,5	HT1	964	0	0
C3- 1,5	HT2	964	0	0
	COND1	1667	344	0
2ºB Hipótesis	COND2	1667	344	0
(Hielo + Viento) Cs= 1,5	HT1	965	261	0
23 1,3	HT2	965	261	0
	COND1	1667	0	633
3ª Hipótesis (Desequilibrio)	COND2	1667	0	633
Cs= 1,2	HT1	965	0	428
C3- 1,2	HT2	965	0	428
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1667	0	2109
	COND2	1667	0	2108
	HT1	965	0	1426
03- 1, 2	HT2	965	0	1426

CÓDIGO: MT-ESP-PE-02_R00 HOJA 13 OF 58

Árbol de cargas correspondiente al apoyo 9 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	679	921	0
1ª Hipótesis	COND2	681	924	0
(Viento) Cs= 1,5	HT1	267	450	0
C3- 1,3	HT2	268	451	0
004.111.77	COND1	1404	1	0
2ªA Hipótesis (Hielo)	COND2	1409	1	0
Cs= 1,5	HT1	812	1	0
03- 1,5	HT2	813	1	0
	COND1	1401	340	0
2ºB Hipótesis	COND2	1405	341	0
(Hielo + Viento) Cs= 1,5	HT1	809	257	0
23 1,3	HT2	810	258	0
	COND1	1401	1	633
3ª Hipótesis (Desequilibrio)	COND2	1405	1	633
Cs= 1,2	HT1	809	1	428
C3- 1,2	HT2	810	1	428
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1401	1	2109
	COND2	1405	1	2108
	HT1	809	1	1426
03- 1, 2	HT2	810	1	1426

CÓDIGO: MT-ESP-PE-02_R00 HOJA 14 OF 58

Árbol de cargas correspondiente al apoyo 10 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1327	2453	30
1ª Hipótesis	COND2	1330	2453	30
(Viento) Cs= 1,5	HT1	379	1263	20
C3- 1,3	HT2	381	1263	20
222.111.72	COND1	2188	1827	16
2ªA Hipótesis	COND2	2195	1822	17
(Hielo) Cs= 1,5	HT1	1016	1219	7
25 1,5	HT2	1019	1218	8
	COND1	2190	2245	19
2ºB Hipótesis	COND2	2197	2242	20
(Hielo + Viento) Cs= 1,5	HT1	1018	1531	8
C3 1,3	HT2	1021	1530	9
	COND1	2190	1632	1040
3ª Hipótesis	COND2	2197	1628	1040
(Desequilibrio) Cs= 1,2	HT1	1018	1104	699
- 1,E	HT2	1021	1102	700
4ª Hipótesis	COND1	2190	934	4113
	COND2	2197	932	4112
(Rotura) Cs= 1,2	HT1	1018	631	2780
00 1,2	HT2	1021	630	2781

CÓDIGO: MT-ESP-PE-02_R00 HOJA 15 OF 58

Árbol de cargas correspondiente al apoyo 11 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	827	998	0
1ª Hipótesis	COND2	827	997	0
(Viento) Cs= 1,5	HT1	357	493	0
C3- 1,3	HT2	357	493	0
222.111.71	COND1	1653	3	0
2ªA Hipótesis (Hielo)	COND2	1652	3	0
Cs= 1,5	HT1	987	1	0
23 1,3	HT2	987	1	0
	COND1	1652	372	0
2ªB Hipótesis (Hielo + Viento)	COND2	1651	372	0
Cs= 1,5	HT1	987	282	0
33 1,5	HT2	987	282	0
	COND1	1652	3	630
3ª Hipótesis (Desequilibrio)	COND2	1651	3	630
Cs= 1,2	HT1	987	1	427
	HT2	987	1	427
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1652	3	2101
	COND2	1651	3	2100
	HT1	987	1	1423
	HT2	987	1	1423

CÓDIGO: MT-ESP-PE-02_R00 HOJA 16 OF 58

Árbol de cargas correspondiente al apoyo 12 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1295	2855	6
1ª Hipótesis	COND2	1291	2855	4
(Viento) Cs= 1,5	HT1	360	1495	9
C3- 1,3	HT2	358	1495	8
	COND1	2146	2391	1
2ªA Hipótesis (Hielo)	COND2	2136	2398	1
Cs= 1,5	HT1	986	1596	8
C3- 1,3	HT2	982	1600	7
	COND1	2147	2815	4
2ºB Hipótesis	COND2	2138	2820	1
(Hielo + Viento) Cs= 1,5	HT1	987	1916	9
C3 1,3	HT2	983	1919	9
	COND1	2147	1830	2011
3ª Hipótesis	COND2	2138	1836	2010
(Desequilibrio) Cs= 1,2	HT1	987	1239	1366
C3- 1,E	HT2	983	1242	1365
4ª Hipótesis (Rotura) Cs= 1,2	COND1	2147	1220	4021
	COND2	2138	1224	4019
	HT1	987	825	2715
	HT2	983	829	2722

CÓDIGO: MT-ESP-PE-02_R00 HOJA 17 OF 58

Árbol de cargas correspondiente al apoyo 13 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	816	1002	1
1ª Hipótesis	COND2	813	999	1
(Viento) Cs= 1,5	HT1	337	495	0
C3- 1,3	HT2	336	494	0
	COND1	1641	2	0
2ªA Hipótesis (Hielo)	COND2	1635	2	0
Cs= 1,5	HT1	959	1	0
25 1,5	HT2	957	1	0
	COND1	1640	373	0
2ªB Hipótesis (Hielo + Viento)	COND2	1634	372	0
Cs= 1,5	HT1	958	283	0
33 2,3	HT2	956	282	0
	COND1	1640	2	630
3ª Hipótesis (Desequilibrio)	COND2	1634	2	630
Cs= 1,2	HT1	958	1	426
00 1,2	HT2	956	1	426
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1640	2	2100
	COND2	1634	2	2101
	HT1	958	1	1419
	HT2	956	1	1419

CÓDIGO: MT-ESP-PE-02_R00 HOJA 18 OF 58

Árbol de cargas correspondiente al apoyo 14 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	895	1003	0
1ª Hipótesis	COND2	895	1003	0
(Viento) Cs= 1,5	HT1	371	496	0
C3- 1,3	HT2	371	496	0
222.111.6	COND1	1751	0	0
2ªA Hipótesis (Hielo)	COND2	1751	0	0
Cs= 1,5	HT1	1014	0	0
23 1,3	HT2	1014	0	0
	COND1	1751	372	0
2ªB Hipótesis (Hielo + Viento)	COND2	1751	372	0
Cs= 1,5	HT1	1015	283	0
G5 1,5	HT2	1015	283	0
22.11 (1.1	COND1	1751	0	630
3ª Hipótesis (Desequilibrio)	COND2	1751	0	630
Cs= 1,2	HT1	1015	0	426
35 -,-	HT2	1015	0	426
4ª Hipótesis	COND1	1751	0	2100
	COND2	1751	0	2101
(Rotura) Cs= 1,2	HT1	1015	0	1419
00 1,2	HT2	1015	0	1419

CÓDIGO: MT-ESP-PE-02_R00 HOJA 19 OF 58

Árbol de cargas correspondiente al apoyo 15 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	873	1012	0
1ª Hipótesis	COND2	873	1012	0
(Viento) Cs= 1,5	HT1	358	501	0
C3- 1,5	HT2	358	501	0
	COND1	1726	0	0
2ªA Hipótesis	COND2	1726	0	0
(Hielo) Cs= 1,5	HT1	997	0	0
	HT2	997	0	0
	COND1	1726	375	0
2ªB Hipótesis (Hielo + Viento)	COND2	1726	375	0
(Hielo + Viento) Cs= 1,5	HT1	997	286	0
23 2,3	HT2	997	286	0
	COND1	1726	0	630
3ª Hipótesis	COND2	1726	0	630
(Desequilibrio) Cs= 1,2	HT1	997	0	426
	HT2	997	0	426
4ª Hipótesis	COND1	1726	0	2100
	COND2	1726	0	2101
(Rotura) Cs= 1,2	HT1	997	0	1419
US- 1,2	HT2	997	0	1419

CÓDIGO: MT-ESP-PE-02_R00 HOJA 20 OF 58

Árbol de cargas correspondiente al apoyo 16 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
1ª Hipótesis (Viento) Cs= 1,5	COND1	898	1001	0
	COND2	898	1001	0
	HT1	373	495	0
C3- 1,3	HT2	373	495	0
	COND1	1753	0	0
2ªA Hipótesis	COND2	1753	0	0
(Hielo) Cs= 1,5	HT1	1016	0	0
CS- 1,5	HT2	1016	0	0
2ºB Hipótesis (Hielo + Viento) Cs= 1,5	COND1	1754	371	0
	COND2	1754	371	0
	HT1	1016	282	0
	HT2	1016	282	0
3ª Hipótesis (Desequilibrio) Cs= 1,2	COND1	1754	0	630
	COND2	1754	0	630
	HT1	1016	0	426
	HT2	1016	0	426
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1754	0	2100
	COND2	1754	0	2101
	HT1	1016	0	1419
	HT2	1016	0	1419

CÓDIGO: MT-ESP-PE-02_R00 HOJA 21 OF 58

Árbol de cargas correspondiente al apoyo 17 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
1ª Hipótesis (Viento) Cs= 1,5	COND1	874	977	0
	COND2	874	978	0
	HT1	374	482	1
C3- 1,3	HT2	374	482	1
222.11. (COND1	1704	0	0
2ªA Hipótesis	COND2	1705	0	0
(Hielo) Cs= 1,5	HT1	1005	0	0
	HT2	1005	0	0
	COND1	1705	362	0
2ªB Hipótesis (Hielo + Viento) Cs= 1,5	COND2	1706	362	0
	HT1	1007	275	0
	HT2	1007	275	0
	COND1	1705	0	630
3ª Hipótesis (Desequilibrio) Cs= 1,2	COND2	1706	0	630
	HT1	1007	0	426
	HT2	1007	0	426
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1705	0	2100
	COND2	1706	0	2101
	HT1	1007	0	1419
	HT2	1007	0	1419

CÓDIGO: MT-ESP-PE-02_R00 HOJA 22 OF 58

Árbol de cargas correspondiente al apoyo 18 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
1ª Hipótesis (Viento) Cs= 1,5	COND1	1175	1423	1018
	COND2	1176	1424	1017
	HT1	290	670	775
C3- 1,3	HT2	290	671	775
	COND1	1575	341	1054
2ªA Hipótesis (Hielo)	COND2	1576	341	1053
Cs= 1,5	HT1	585	221	823
CS= 1,5	HT2	585	221	823
2ªB Hipótesis (Hielo + Viento) Cs= 1,5	COND1	1574	653	1067
	COND2	1575	653	1066
	HT1	583	428	837
	HT2	583	428	836
3ª Hipótesis (Desequilibrio) Cs= 1,2	COND1	1574	274	2651
	COND2	1575	274	2650
	HT1	583	182	1845
	HT2	583	182	1845
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1574	199	4235
	COND2	1575	199	4235
	HT1	583	134	2853
	HT2	583	134	2853

CÓDIGO: MT-ESP-PE-02_R00 HOJA 23 OF 58

Árbol de cargas correspondiente al apoyo 19 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
1ª Hipótesis (Viento) Cs= 1,5	COND1	903	951	1
	COND2	904	951	1
	HT1	403	467	1
C3- 1,3	HT2	403	467	1
	COND1	1304	0	0
2ªA Hipótesis	COND2	1304	0	0
(Hielo) Cs= 1,5	HT1	708	0	0
	HT2	708	0	0
	COND1	1305	279	0
2ªB Hipótesis (Hielo + Viento) Cs= 1,5	COND2	1306	279	0
	HT1	710	198	0
	HT2	711	198	0
3ª Hipótesis (Desequilibrio) Cs= 1,2	COND1	1305	0	636
	COND2	1306	0	636
	HT1	710	0	429
	HT2	711	0	429
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1305	0	2120
	COND2	1306	0	2120
	HT1	710	0	1428
	HT2	711	0	1428

CÓDIGO: MT-ESP-PE-02_R00 HOJA **24** OF **58**

Árbol de cargas correspondiente al apoyo 20 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
1ª Hipótesis (Viento) Cs= 1,5	COND1	773	965	1
	COND2	773	965	1
	HT1	301	475	1
C3- 1,3	HT2	301	475	1
	COND1	1176	0	0
2ªA Hipótesis	COND2	1176	0	0
(Hielo) Cs= 1,5	HT1	601	0	0
	HT2	601	0	0
2ªB Hipótesis (Hielo + Viento) Cs= 1,5	COND1	1175	283	0
	COND2	1175	283	0
	HT1	599	201	0
	HT2	599	201	0
3ª Hipótesis (Desequilibrio) Cs= 1,2	COND1	1175	0	636
	COND2	1175	0	636
	HT1	599	0	429
	HT2	599	0	429
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1175	0	2120
	COND2	1175	0	2120
	HT1	599	0	1428
	HT2	599	0	1428

CÓDIGO: MT-ESP-PE-02_R00 HOJA 25 OF 58

Árbol de cargas correspondiente al apoyo 21 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	913	944	1
1ª Hipótesis	COND2	913	944	1
(Viento) Cs= 1,5	HT1	392	463	1
C3- 1,3	HT2	392	463	1
004 111 //	COND1	1310	0	0
2ªA Hipótesis (Hielo)	COND2	1310	0	0
Cs= 1,5	HT1	693	0	0
C3- 1,5	HT2	693	0	0
	COND1	1312	276	0
2ºB Hipótesis	COND2	1312	276	0
(Hielo + Viento) Cs= 1,5	HT1	695	196	0
23 1,3	HT2	695	196	0
	COND1	1312	0	636
3ª Hipótesis (Desequilibrio)	COND2	1312	0	636
Cs= 1,2	HT1	695	0	429
C3- 1,2	HT2	695	0	429
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1312	0	2120
	COND2	1312	0	2120
	HT1	695	0	1428
03- 1, 2	HT2	695	0	1428

CÓDIGO: MT-ESP-PE-02_R00 HOJA 26 OF 58

Árbol de cargas correspondiente al apoyo 22 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	692	943	1
1ª Hipótesis	COND2	693	945	1
(Viento) Cs= 1,5	HT1	273	457	1
C3- 1,3	HT2	274	458	1
222.11. (COND1	1078	10	0
2ªA Hipótesis (Hielo)	COND2	1080	10	0
Cs= 1,5	HT1	561	0	0
C3- 1,3	HT2	561	0	0
	COND1	1076	283	0
2ºB Hipótesis	COND2	1078	283	0
(Hielo + Viento) Cs= 1,5	HT1	558	194	0
23 1,3	HT2	559	194	0
	COND1	1076	10	636
3ª Hipótesis (Desequilibrio)	COND2	1078	10	636
Cs= 1,2	HT1	558	0	429
C3- 1,L	HT2	559	0	429
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1076	10	2120
	COND2	1078	10	2120
	HT1	558	0	1428
03- 1, 2	HT2	559	0	1428

CÓDIGO: MT-ESP-PE-02_R00 HOJA 27 OF 58

Árbol de cargas correspondiente al apoyo 23 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1175	2286	3
1ª Hipótesis	COND2	1176	2287	1
(Viento) Cs= 1,5	HT1	147	794	30
C3- 1,5	HT2	293	1216	2
	COND1	1592	1195	3
2ªA Hipótesis	COND2	1594	1194	2
(Hielo) Cs= 1,5	HT1	378	512	39
C3- 1,3	HT2	602	795	11
	COND1	1590	1535	5
2ºB Hipótesis	COND2	1592	1534	4
(Hielo + Viento) Cs= 1,5	HT1	375	751	46
23 1,3	HT2	600	1030	15
	COND1	1590	1068	1056
3ª Hipótesis	COND2	1592	1067	1055
(Desequilibrio) Cs= 1,2	HT1	375	482	515
C3- 1,L	HT2	600	721	723
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1590	610	4202
	COND2	1592	610	4202
	HT1	375	278	1915
03- 1, 2	HT2	600	413	2843

CÓDIGO: MT-ESP-PE-02_R00 HOJA 28 OF 58

Árbol de cargas correspondiente al apoyo 24 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1276	2309	16
1ª Hipótesis	COND2	1275	2321	12
(Viento) Cs= 1,5	HT1	352	1229	10
C3- 1,3	HT2	352	1229	10
222.11. (COND1	1715	1174	16
2ªA Hipótesis (Hielo)	COND2	1714	1188	14
Cs= 1,5	HT1	680	785	12
03 1,0	HT2	679	786	11
	COND1	1715	1527	17
2ªB Hipótesis (Hielo + Viento)	COND2	1714	1540	14
Cs= 1,5	HT1	679	1030	13
33 2,3	HT2	678	1030	12
	COND1	1715	900	2111
3ª Hipótesis (Desequilibrio)	COND2	1714	913	2108
Cs= 1,2	HT1	679	611	1428
	HT2	678	611	1428
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1715	599	4204
	COND2	1714	612	4201
	HT1	679	408	2843
	HT2	678	408	2843

CÓDIGO: MT-ESP-PE-02_R00 HOJA 29 OF 58

Árbol de cargas correspondiente al apoyo 25 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1005	1030	1
1ª Hipótesis	COND2	1004	1029	1
(Viento) Cs= 1,5	HT1	471	511	2
C3- 1,3	HT2	470	511	2
222.111.72	COND1	1444	0	0
2ªA Hipótesis (Hielo)	COND2	1443	0	0
Cs= 1,5	HT1	807	0	0
23 1,3	HT2	807	0	0
	COND1	1447	303	0
2ªB Hipótesis (Hielo + Viento)	COND2	1445	303	0
Cs= 1,5	HT1	811	217	0
33 2,5	HT2	811	217	0
22.11.71	COND1	1447	1	635
3ª Hipótesis (Desequilibrio)	COND2	1445	1	634
Cs= 1,2	HT1	811	0	429
-,-	HT2	811	0	429
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1447	1	2115
	COND2	1445	1	2114
	HT1	811	0	1430
33 1/2	HT2	811	0	1430

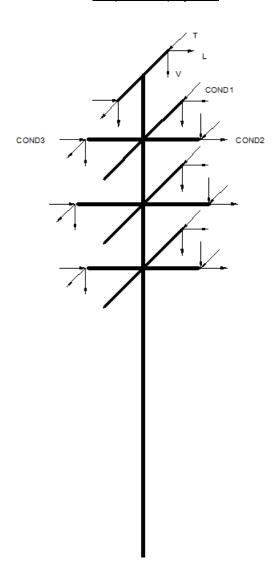
CÓDIGO: MT-ESP-PE-02_R00 HOJA 30 OF 58

Árbol de cargas correspondiente al apoyo 26 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1260	1212	2
1ª Hipótesis	COND2	1260	1212	2
(Viento) Cs= 1,5	HT1	332	543	3
C3- 1,3	HT2	332	543	3
224 111 //	COND1	1672	101	9
2ªA Hipótesis (Hielo)	COND2	1672	101	9
Cs= 1,5	HT1	638	67	3
03- 1,5	HT2	638	67	3
	COND1	1672	415	5
2ºB Hipótesis	COND2	1673	415	7
(Hielo + Viento) Cs= 1,5	HT1	637	274	8
23 1,3	HT2	637	274	9
	COND1	1672	91	1062
3ª Hipótesis	COND2	1673	91	1064
(Desequilibrio) Cs= 1,2	HT1	637	61	721
C3- 1,L	HT2	637	61	722
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1672	52	4234
	COND2	1673	52	4235
	HT1	637	35	2859
	HT2	637	35	2860

CÓDIGO: MT-ESP-PE-02_R00 HOJA 31 OF 58

Árbol de cargas correspondiente al apoyo 27 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:


Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1252	2279	2
1ª Hipótesis	COND2	961	796	3910
(Viento)	COND3	1082	1664	-4035
Cs= 1,5	HT1	341	1216	1
	HT2	442	1372	44
	COND1	1671	1187	3
2ªA Hipótesis	COND2	1195	136	4144
(Hielo)	COND3	1418	987	-4159
Cs= 1,5	HT1	654	796	11
	HT2	794	980	14
	COND1	1671	1527	5
2ªB Hipótesis	COND2	1196	308	4192
(Hielo + Viento)	COND3	1344	1197	-4221
Cs= 1,5	HT1	654	1030	15
	HT2	798	1221	35
	COND1	1671	1061	1056
3ª Hipótesis	COND2	756	571	4201
(Desequilibrio)	COND3	903	576	-4206
Cs= 1,2	HT1	654	721	723
	HT2	655	721	723
	COND1	1671	607	4203
4ª Hipótesis	COND2	1276	571	4201
(Rotura)	COND3	1423	1008	-4248
Cs= 1,2	HT1	654	413	2843
	HT2	798	605	2846

CÓDIGO: MT-ESP-PE-02_R00 HOJA 32 OF 58

Esquema apoyo 27

La cruceta de cada nivel que no recibe esfuerzos será una cruceta cuadrada, realizando un puente para el paso de uno de los circuitos.

CÓDIGO: MT-ESP-PE-02_R00 HOJA 33 OF 58

Árbol de cargas correspondiente al apoyo 28 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	921	933	1
1ª Hipótesis	COND2	921	933	1
(Viento) Cs= 1,5	HT1	398	457	1
C3- 1,3	HT2	398	457	1
222.11. (COND1	1313	0	0
2ªA Hipótesis (Hielo)	COND2	1313	0	0
Cs= 1,5	HT1	696	0	0
25 1,5	HT2	696	0	0
	COND1	1316	273	0
2ªB Hipótesis (Hielo + Viento)	COND2	1316	273	0
Cs= 1,5	HT1	699	194	0
	HT2	699	194	0
	COND1	1316	0	635
3ª Hipótesis (Desequilibrio)	COND2	1316	0	635
Cs= 1,2	HT1	699	0	428
23 1,2	HT2	699	0	428
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1316	0	2117
	COND2	1316	0	2118
	HT1	699	0	1426
00 1,2	HT2	699	0	1426

CÓDIGO: MT-ESP-PE-02_R00 HOJA 34 OF 58

Árbol de cargas correspondiente al apoyo 29 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	734	940	1
1ª Hipótesis	COND2	732	939	1
(Viento) Cs= 1,5	HT1	298	461	0
C3- 1,3	HT2	298	460	0
	COND1	1124	1	0
2ªA Hipótesis (Hielo)	COND2	1122	1	0
Cs= 1,5	HT1	590	0	0
C3- 1,3	HT2	589	0	0
	COND1	1122	276	0
2ºB Hipótesis	COND2	1120	275	0
(Hielo + Viento) Cs= 1,5	HT1	589	195	0
23 1,3	HT2	588	195	0
	COND1	1122	1	635
3ª Hipótesis (Desequilibrio)	COND2	1120	1	635
Cs= 1,2	HT1	589	0	428
C3- 1,L	HT2	588	0	428
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1122	1	2117
	COND2	1120	1	2118
	HT1	589	0	1426
	HT2	588	0	1426

CÓDIGO: MT-ESP-PE-02_R00 HOJA 35 OF 58

Árbol de cargas correspondiente al apoyo 30 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1384	2537	30
1ª Hipótesis	COND2	1382	2536	30
(Viento) Cs= 1,5	HT1	416	1368	27
C3- 1,3	HT2	415	1368	26
	COND1	1833	1398	24
2ªA Hipótesis	COND2	1829	1401	24
(Hielo) Cs= 1,5	HT1	754	931	5
C3- 1,3	HT2	752	932	5
	COND1	1835	1759	22
2ºB Hipótesis	COND2	1831	1760	23
(Hielo + Viento) Cs= 1,5	HT1	756	1183	2
23 1,3	HT2	754	1184	2
	COND1	1835	1250	1056
3ª Hipótesis	COND2	1831	1253	1057
(Desequilibrio) Cs= 1,2	HT1	756	845	709
03- 1 ₁ L	HT2	754	845	709
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1835	716	4174
	COND2	1831	717	4174
	HT1	756	483	2816
03- 1, 2	HT2	754	484	2816

CÓDIGO: MT-ESP-PE-02_R00 HOJA 36 OF 58

Árbol de cargas correspondiente al apoyo 31 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1413	1454	0
1ª Hipótesis	COND2	1410	1451	1
(Viento) Cs= 1,5	HT1	428	686	11
C3- 1,3	HT2	427	685	11
222.111.72.1	COND1	1890	211	5
2ªA Hipótesis	COND2	1887	210	4
(Hielo) Cs= 1,5	HT1	786	141	7
23 1,3	HT2	785	141	8
	COND1	1892	569	2
2ºB Hipótesis	COND2	1888	568	2
(Hielo + Viento) Cs= 1,5	HT1	787	382	2
03 1,3	HT2	786	381	3
	COND1	1892	189	1055
3ª Hipótesis	COND2	1888	188	1056
(Desequilibrio) Cs= 1,2	HT1	787	128	716
- 1,Z	HT2	786	128	717
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1892	108	4218
	COND2	1888	108	4218
	HT1	787	73	2859
00 - 1,2	HT2	786	73	2859

CÓDIGO: MT-ESP-PE-02_R00 HOJA 37 OF 58

Árbol de cargas correspondiente al apoyo 32 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	716	1059	2
1ª Hipótesis	COND2	715	1057	2
(Viento) Cs= 1,5	HT1	285	527	1
C3- 1,3	HT2	284	527	1
222.111.6	COND1	1160	0	0
2ªA Hipótesis	COND2	1158	0	0
(Hielo) Cs= 1,5	HT1	613	0	0
C3- 1,5	HT2	612	0	0
	COND1	1156	312	0
2ºB Hipótesis	COND2	1153	311	0
(Hielo + Viento) Cs= 1,5	HT1	609	223	0
03 1,3	HT2	608	223	0
	COND1	1156	0	633
3ª Hipótesis	COND2	1153	0	633
(Desequilibrio) Cs= 1,2	HT1	609	0	429
C3- 1,L	HT2	608	0	429
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1156	0	2110
	COND2	1153	0	2110
	HT1	609	0	1430
	HT2	608	0	1430

CÓDIGO: MT-ESP-PE-02_R00 HOJA 38 OF 58

Árbol de cargas correspondiente al apoyo 33 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1357	2321	20
1ª Hipótesis	COND2	1358	2319	19
(Viento) Cs= 1,5	HT1	397	1230	4
C3- 1,3	HT2	397	1230	3
222.111.72	COND1	1822	1133	22
2ªA Hipótesis	COND2	1823	1131	22
(Hielo) Cs= 1,5	HT1	745	756	9
23 1,3	HT2	745	755	8
	COND1	1823	1501	23
2ªB Hipótesis (Hielo + Viento)	COND2	1824	1499	22
Cs= 1,5	HT1	745	1012	11
33 2,5	HT2	745	1012	11
22.11.71	COND1	1823	1014	1069
3ª Hipótesis (Desequilibrio)	COND2	1823	1012	1069
Cs= 1,2	HT1	745	686	720
	HT2	745	685	720
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1823	582	4203
	COND2	1823	579	4204
	HT1	745	393	2845
00 1,2	HT2	745	392	2845

CÓDIGO: MT-ESP-PE-02_R00 HOJA 39 OF 58

Árbol de cargas correspondiente al apoyo 34 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1518	3526	26
1ª Hipótesis	COND2	1520	3524	26
(Viento) Cs= 1,5	HT1	497	1987	5
C3- 1,5	HT2	497	1986	5
	COND1	1991	2397	24
2ªA Hipótesis	COND2	1995	2391	24
(Hielo) Cs= 1,5	HT1	856	1598	13
C3- 1,5	HT2	858	1595	14
	COND1	1995	2784	26
2ºB Hipótesis	COND2	1999	2779	26
(Hielo + Viento) Cs= 1,5	HT1	860	1879	18
C3- 1,3	HT2	862	1877	18
	COND1	1995	2144	1036
3ª Hipótesis	COND2	1999	2139	1037
(Desequilibrio) Cs= 1,2	HT1	860	1450	702
03- 1,L	HT2	862	1448	702
	COND1	1995	1228	4062
4ª Hipótesis	COND2	1999	1226	4062
(Rotura) Cs= 1,2	HT1	860	831	2749
C3- 1,2	HT2	862	830	2749

CÓDIGO: MT-ESP-PE-02_R00 HOJA 40 OF 58

Árbol de cargas correspondiente al apoyo 35 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	721	996	3
1ª Hipótesis	COND2	725	999	3
(Viento) Cs= 1,5	HT1	281	492	1
C3- 1,3	HT2	282	493	1
	COND1	1136	2	0
2ªA Hipótesis	COND2	1141	2	0
(Hielo) Cs= 1,5	HT1	588	1	0
25 1,5	HT2	590	1	0
	COND1	1133	294	0
2ªB Hipótesis	COND2	1138	294	0
(Hielo + Viento) Cs= 1,5	HT1	585	209	0
03 1,3	HT2	587	209	0
	COND1	1133	2	632
3ª Hipótesis (Desequilibrio)	COND2	1138	2	632
Cs= 1,2	HT1	585	1	428
C3- 1,2	HT2	587	1	428
	COND1	1133	2	2107
4ª Hipótesis (Rotura) Cs= 1,2	COND2	1138	2	2107
	HT1	585	1	1426
03 1,2	HT2	587	1	1426

CÓDIGO: MT-ESP-PE-02_R00 HOJA 41 OF 58

Árbol de cargas correspondiente al apoyo 36 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	704	993	1
1ª Hipótesis	COND2	705	993	1
(Viento) Cs= 1,5	HT1	254	491	1
C3- 1,3	HT2	254	491	1
004 111 //	COND1	1118	0	0
2ªA Hipótesis (Hielo)	COND2	1118	0	0
Cs= 1,5	HT1	559	0	0
C3- 1,5	HT2	559	0	0
	COND1	1115	291	0
2ªB Hipótesis	COND2	1115	291	0
(Hielo + Viento) Cs= 1,5	HT1	555	208	0
23 1,3	HT2	555	208	0
	COND1	1115	0	632
3ª Hipótesis (Desequilibrio)	COND2	1115	0	632
Cs= 1,2	HT1	555	0	428
C3- 1,2	HT2	555	0	428
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1115	0	2107
	COND2	1115	0	2107
	HT1	555	0	1426
03- 1, 2	HT2	555	0	1426

CÓDIGO: MT-ESP-PE-02_R00 HOJA 42 OF 58

Árbol de cargas correspondiente al apoyo 37 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1253	985	5
1ª Hipótesis	COND2	1253	984	5
(Viento) Cs= 1,5	HT1	619	486	5
C3- 1,3	HT2	619	485	5
	COND1	1679	0	0
2ªA Hipótesis (Hielo)	COND2	1679	0	0
Cs= 1,5	HT1	955	0	0
25 1,5	HT2	955	0	0
	COND1	1688	289	1
2ºB Hipótesis	COND2	1687	289	1
(Hielo + Viento) Cs= 1,5	HT1	965	206	1
03 1,3	HT2	965	206	1
	COND1	1688	0	633
3ª Hipótesis (Desequilibrio)	COND2	1687	0	633
Cs= 1,2	HT1	965	0	428
00 1/2	HT2	965	0	428
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1688	0	2108
	COND2	1687	0	2107
	HT1	965	0	1426
05-1,2	HT2	965	0	1426

CÓDIGO: MT-ESP-PE-02_R00 HOJA 43 OF 58

Árbol de cargas correspondiente al apoyo 38 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1449	1739	82
1ª Hipótesis	COND2	1449	1738	80
(Viento) Cs= 1,5	HT1	481	879	137
C3- 1,3	HT2	481	879	136
	COND1	1780	877	26
2ªA Hipótesis	COND2	1780	879	22
(Hielo) Cs= 1,5	HT1	731	570	161
C3- 1,5	HT2	731	570	162
	COND1	1784	1136	48
2ºB Hipótesis	COND2	1784	1137	47
(Hielo + Viento) Cs= 1,5	HT1	734	738	194
C3 1/3	HT2	734	739	193
	COND1	1784	671	2121
3ª Hipótesis	COND2	1784	672	2120
(Desequilibrio) Cs= 1,2	HT1	734	446	1516
	HT2	734	446	1515
	COND1	1784	449	4190
4ª Hipótesis (Rotura) Cs= 1,2	COND2	1784	450	4189
	HT1	734	304	2835
	HT2	734	304	2834

CÓDIGO: MT-ESP-PE-02_R00 HOJA 44 OF 58

Árbol de cargas correspondiente al apoyo 39 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	259	888	134
1ª Hipótesis	COND2	255	887	133
(Viento) Cs= 1,5	HT1	234	355	127
C3- 1,3	HT2	235	354	127
	COND1	526	1	77
2ªA Hipótesis	COND2	521	1	74
(Hielo) Cs= 1,5	HT1	52	0	123
C3- 1,3	HT2	54	0	125
	COND1	513	242	94
2ªB Hipótesis	COND2	509	242	94
(Hielo + Viento) Cs= 1,5	HT1	65	150	147
05 1,5	HT2	67	150	147
	COND1	513	0	1135
3ª Hipótesis (Desequilibrio)	COND2	509	0	1135
Cs= 1,2	HT1	65	0	810
C3- 1,L	HT2	67	0	811
	COND1	513	0	4256
4ª Hipótesis (Rotura) Cs= 1,2	COND2	509	0	4256
	HT1	65	0	2800
	HT2	67	0	2800

CÓDIGO: MT-ESP-PE-02_R00 HOJA 45 OF 58

Árbol de cargas correspondiente al apoyo 40 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	748	817	0
1ª Hipótesis	COND2	748	817	0
(Viento) Cs= 1,5	HT1	325	391	1
C3- 1,3	HT2	325	391	1
222.111.6	COND1	1083	0	0
2ªA Hipótesis (Hielo)	COND2	1083	0	0
Cs= 1,5	HT1	580	0	0
23 1,3	HT2	580	0	0
	COND1	1084	237	0
2ªB Hipótesis (Hielo + Viento)	COND2	1084	237	0
Cs= 1,5	HT1	581	166	0
G5 1,5	HT2	581	166	0
22.11 (1.1	COND1	1084	0	638
3ª Hipótesis (Desequilibrio)	COND2	1084	0	638
Cs= 1,2	HT1	581	0	420
00 1,2	HT2	581	0	420
	COND1	1084	0	2128
4ª Hipótesis	COND2	1084	0	2128
(Rotura) Cs= 1,2	HT1	581	0	1400
00 1,2	HT2	581	0	1400

CÓDIGO: MT-ESP-PE-02_R00 HOJA 46 OF 58

Árbol de cargas correspondiente al apoyo 41 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	492	736	3
1ª Hipótesis	COND2	497	739	3
(Viento) Cs= 1,5	HT1	184	346	1
C3- 1,3	HT2	186	347	1
222.111.72.1	COND1	781	3	0
2ªA Hipótesis (Hielo)	COND2	787	3	0
Cs= 1,5	HT1	399	1	0
23 1,3	HT2	401	1	0
	COND1	778	214	0
2ºB Hipótesis	COND2	784	215	0
(Hielo + Viento) Cs= 1,5	HT1	397	147	0
03 1,3	HT2	399	148	0
	COND1	778	3	638
3ª Hipótesis (Desequilibrio)	COND2	784	3	638
Cs= 1,2	HT1	397	1	420
00 1/2	HT2	399	1	420
	COND1	778	3	2128
4ª Hipótesis (Rotura) Cs= 1,2	COND2	784	3	2128
	HT1	397	1	1400
00 1,2	HT2	399	1	1400

CÓDIGO: MT-ESP-PE-02_R00 HOJA 47 OF 58

Árbol de cargas correspondiente al apoyo 42 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1179	3311	4
1ª Hipótesis	COND2	1182	3306	5
(Viento) Cs= 1,5	HT1	299	1857	20
C3- 1,3	HT2	300	1854	20
	COND1	1480	2539	1
2ªA Hipótesis	COND2	1486	2529	1
(Hielo) Cs= 1,5	HT1	525	1659	32
C3- 1,5	HT2	528	1654	30
	COND1	1483	2817	3
2ºB Hipótesis	COND2	1489	2808	4
(Hielo + Viento) Cs= 1,5	HT1	527	1853	36
C3 1/3	HT2	530	1848	35
	COND1	1483	2265	1018
3ª Hipótesis	COND2	1489	2255	1020
(Desequilibrio) Cs= 1,2	HT1	527	1500	704
C3- 1,E	HT2	530	1495	703
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1483	1295	4059
	COND2	1489	1290	4062
	HT1	527	862	2705
	HT2	530	859	2705

CÓDIGO: MT-ESP-PE-02_R00 HOJA 48 OF 58

Árbol de cargas correspondiente al apoyo 43 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	778	862	0
1ª Hipótesis	COND2	778	863	0
(Viento) Cs= 1,5	HT1	360	417	0
C3- 1,3	HT2	361	417	0
	COND1	1132	4	0
2ªA Hipótesis (Hielo)	COND2	1134	4	0
Cs= 1,5	HT1	631	2	0
C3- 1,5	HT2	632	2	0
	COND1	1133	254	0
2ºB Hipótesis	COND2	1134	254	0
(Hielo + Viento) Cs= 1,5	HT1	634	178	0
23 1,3	HT2	634	178	0
	COND1	1133	4	639
3ª Hipótesis (Desequilibrio)	COND2	1134	4	639
Cs= 1,2	HT1	634	2	426
C3- 1,E	HT2	634	2	426
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1133	3	2130
	COND2	1134	3	2131
	HT1	634	2	1419
	HT2	634	2	1419

CÓDIGO: MT-ESP-PE-02_R00 HOJA 49 OF 58

Árbol de cargas correspondiente al apoyo 44 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1255	2663	24
1ª Hipótesis	COND2	1252	2663	25
(Viento) Cs= 1,5	HT1	324	1445	3
C3- 1,3	HT2	323	1445	3
	COND1	1688	1560	26
2ªA Hipótesis (Hielo)	COND2	1683	1563	29
Cs= 1,5	HT1	644	1033	17
03 1,0	HT2	642	1034	17
	COND1	1688	1913	23
2ªB Hipótesis (Hielo + Viento)	COND2	1683	1916	24
Cs= 1,5	HT1	642	1280	26
55 2,5	HT2	641	1281	27
	COND1	1688	1394	1060
3ª Hipótesis (Desequilibrio)	COND2	1683	1397	1061
Cs= 1,2	HT1	642	936	726
00 1/2	HT2	641	937	727
4ª Hipótesis (Rotura) Cs= 1,2	COND1	1688	798	4185
	COND2	1683	800	4186
	HT1	642	537	2818
00 1,2	HT2	641	538	2818

CÓDIGO: MT-ESP-PE-02_R00 HOJA 50 OF 58

Árbol de cargas correspondiente al apoyo 45 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	983	1109	0
1ª Hipótesis	COND2	983	1108	0
(Viento) Cs= 1,5	HT1	444	555	0
C3- 1,3	HT2	444	555	0
	COND1	1457	1	0
2ªA Hipótesis (Hielo)	COND2	1456	1	0
Cs= 1,5	HT1	803	1	0
23 1,3	HT2	803	1	0
	COND1	1457	328	0
2ºB Hipótesis	COND2	1457	328	0
(Hielo + Viento) Cs= 1,5	HT1	804	236	0
03 1,3	HT2	804	236	0
	COND1	1457	1	636
3ª Hipótesis (Desequilibrio)	COND2	1457	1	636
Cs= 1,2	HT1	804	1	430
00 1/2	HT2	804	1	430
	COND1	1457	1	2121
4ª Hipótesis	COND2	1457	1	2121
(Rotura) Cs= 1,2	HT1	804	1	1434
00 1,2	HT2	804	1	1434

CÓDIGO: MT-ESP-PE-02_R00 HOJA 51 OF 58

Árbol de cargas correspondiente al apoyo 46 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1410	2528	4
1ª Hipótesis	COND2	1413	2529	4
(Viento) Cs= 1,5	HT1	436	1363	16
C3- 1,3	HT2	436	1364	17
222.11 /	COND1	1862	1385	0
2ªA Hipótesis	COND2	1866	1383	1
(Hielo) Cs= 1,5	HT1	777	923	4
C3- 1,5	HT2	778	922	5
	COND1	1864	1746	1
2ºB Hipótesis	COND2	1868	1745	1
(Hielo + Viento) Cs= 1,5	HT1	779	1176	1
C3- 1,3	HT2	780	1176	2
	COND1	1864	1238	1048
3ª Hipótesis	COND2	1868	1236	1048
(Desequilibrio) Cs= 1,2	HT1	779	837	709
C3- 1,2	HT2	780	836	708
	COND1	1864	708	4182
4ª Hipótesis	COND2	1868	707	4182
(Rotura) Cs= 1,2	HT1	779	479	2829
C3- 1,2	HT2	780	478	2829

CÓDIGO: MT-ESP-PE-02_R00 HOJA 52 OF 58

Árbol de cargas correspondiente al apoyo 47 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
_	COND1	1368	1039	29
1ª Hipótesis	COND2	1369	1040	29
(Viento) Cs= 1,5	HT1	443	439	52
C3- 1,3	HT2	443	440	53
222.11. (COND1	1750	1	9
2ªA Hipótesis	COND2	1752	1	10
(Hielo) Cs= 1,5	HT1	735	0	60
C3- 1,3	HT2	736	0	61
	COND1	1753	289	17
2ªB Hipótesis	COND2	1756	289	17
(Hielo + Viento) Cs= 1,5	HT1	739	186	73
C3- 1,3	HT2	740	187	74
	COND1	1753	1	1073
3ª Hipótesis	COND2	1756	1	1073
(Desequilibrio) Cs= 1,2	HT1	739	0	772
C3- 1,2	HT2	740	0	772
	COND1	1753	1	4239
4ª Hipótesis	COND2	1756	1	4239
(Rotura) Cs= 1,2	HT1	739	0	2867
03- 1, 2	HT2	740	0	2868

CÓDIGO: MT-ESP-PE-02_R00 HOJA 53 OF 58

Árbol de cargas correspondiente al apoyo 48 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	985	1036	22
1ª Hipótesis	COND2	985	1036	22
(Viento) Cs= 1,5	HT1	190	438	38
C3- 1,3	HT2	190	438	38
	COND1	1352	0	8
2ªA Hipótesis	COND2	1352	0	8
(Hielo) Cs= 1,5	HT1	458	0	40
C3- 1,5	HT2	458	0	40
	COND1	1349	288	12
2ºB Hipótesis	COND2	1349	288	12
(Hielo + Viento) Cs= 1,5	HT1	454	186	49
C3- 1,3	HT2	454	186	49
	COND1	1349	0	1067
3ª Hipótesis	COND2	1349	0	1067
(Desequilibrio) Cs= 1,2	HT1	454	0	747
C3- 1/L	HT2	454	0	747
	COND1	1349	0	4233
4ª Hipótesis	COND2	1349	0	4233
(Rotura) Cs= 1,2	HT1	454	0	2842
	HT2	454	0	2842

CÓDIGO: MT-ESP-PE-02_R00 HOJA 54 OF 58

Árbol de cargas correspondiente al apoyo 49 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	473	893	0
1ª Hipótesis	COND2	473	893	0
(Viento) Cs= 1,5	HT1	163	434	0
C3- 1,5	HT2	163	434	0
	COND1	835	0	0
2ªA Hipótesis	COND2	835	0	0
(Hielo) Cs= 1,5	HT1	427	0	0
C3- 1,5	HT2	427	0	0
	COND1	828	260	0
2ºB Hipótesis	COND2	828	260	0
(Hielo + Viento) Cs= 1,5	HT1	422	184	0
C3- 1,3	HT2	422	184	0
	COND1	828	0	635
3ª Hipótesis	COND2	828	0	635
(Desequilibrio) Cs= 1,2	HT1	422	0	426
	HT2	422	0	426
	COND1	828	0	2117
4ª Hipótesis	COND2	828	0	2117
(Rotura) Cs= 1,2	HT1	422	0	1421
	HT2	422	0	1421

CÓDIGO: MT-ESP-PE-02_R00 HOJA 55 OF 58

Árbol de cargas correspondiente al apoyo 50 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1419	1080	10
1ª Hipótesis	COND2	1419	1080	10
(Viento) Cs= 1,5	HT1	445	462	10
C3- 1,3	HT2	445	462	10
222.11. (COND1	1820	0	0
2ªA Hipótesis	COND2	1820	0	0
(Hielo) Cs= 1,5	HT1	747	0	19
C3- 1,3	HT2	747	0	19
	COND1	1824	297	6
2ºB Hipótesis	COND2	1824	297	6
(Hielo + Viento) Cs= 1,5	HT1	751	193	27
C3- 1,3	HT2	751	193	27
	COND1	1824	0	1064
3ª Hipótesis	COND2	1824	0	1064
(Desequilibrio) Cs= 1,2	HT1	751	0	738
C3- 1,2	HT2	751	0	738
	COND1	1824	0	4239
4ª Hipótesis	COND2	1824	0	4239
(Rotura) Cs= 1,2	HT1	751	0	2870
C3- 1,2	HT2	751	0	2870

CÓDIGO: MT-ESP-PE-02_R00 HOJA 56 OF 58

Árbol de cargas correspondiente al apoyo 51 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1208	1206	1
1ª Hipótesis	COND2	1208	1206	1
(Viento) Cs= 1,5	HT1	321	529	2
C3- 1,3	HT2	321	529	2
222.11 /	COND1	1622	0	0
2ªA Hipótesis (Hielo)	COND2	1622	0	0
Cs= 1,5	HT1	657	0	0
C3- 1,3	HT2	657	0	0
	COND1	1658	337	1
2ºB Hipótesis	COND2	1658	337	1
(Hielo + Viento) Cs= 1,5	HT1	654	224	1
23 2,3	HT2	654	224	1
	COND1	1658	0	1061
3ª Hipótesis (Desequilibrio)	COND2	1658	0	1061
Cs= 1,2	HT1	654	0	718
C3- 1,2	HT2	654	0	718
	COND1	1658	0	4240
4ª Hipótesis	COND2	1658	0	4240
(Rotura) Cs= 1,2	HT1	654	0	2870
03- 1, 2	HT2	654	0	2870

CÓDIGO: MT-ESP-PE-02_R00 HOJA **57** OF **58**

Árbol de cargas correspondiente al apoyo 52 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1385	1177	1812
1ª Hipótesis	COND2	1386	1178	1812
(Viento) Cs= 1,5	HT1	438	517	1123
C3- 1,3	HT2	438	517	1123
	COND1	1823	0	1866
2ªA Hipótesis	COND2	1823	0	1867
(Hielo) Cs= 1,5	HT1	771	0	1212
C5 1,5	HT2	771	0	1212
	COND1	1826	331	1899
2ªB Hipótesis	COND2	1826	331	1900
(Hielo + Viento) Cs= 1,5	HT1	774	219	1244
03 1,3	HT2	774	219	1244
	COND1	1826	0	4240
4ª Hipótesis	COND2	1826	0	4240
(Rotura) Cs= 1,2	HT1	774	0	2869
C5- 1,2	HT2	774	0	2869

CÓDIGO: MT-ESP-PE-02_R00 HOJA 58 OF 58

Árbol de cargas correspondiente al apoyo 53 de la línea en 220kV: SET Límite 30/220 kV - SET Baza 220/400 kV:

Hipótesis	COND/HT	V (daN)	T(daN)	L(daN)
	COND1	1103	949	2749
1ª Hipótesis	COND2	916	918	2708
(Viento) Cs= 1,5	HT1	331	379	1668
C3- 1,3	HT2	334	353	1668
	COND1	1380	248	2810
2ºA Hipótesis	COND2	1317	210	2785
(Hielo) Cs= 1,5	HT1	610	130	1821
C3- 1,3	HT2	600	82	1821
	COND1	1378	441	2874
2ºB Hipótesis	COND2	1318	403	2845
(Hielo + Viento) Cs= 1,5	HT1	601	248	1451
C3 1,3	HT2	595	203	1433
	COND1	1432	187	3082
4ª Hipótesis	COND2	1419	187	3083
(Rotura) Cs= 1,2	HT1	601	126	2077
C3- 1,2	HT2	595	126	2077