

INFORME DEL EJERCICIO DE COMPARACIÓN INTERLABORATORIO (EILA 2024)

ENSAYOS DE HORMIGÓN

A nivel de central de fabricación:

CENTRAL 14

Documento	Revisión	Fecha	Descripción
Informe Hormig ó n Eila24	0	02 de enero de 2025	1a Edici ó n

ENSAY	YOS DE HORMIGÓN	1
1.	OBJETIVOS DEL EILA24	3
2.	NORMATIVA DE APLICACIÓN PARA EL ANÁLISIS ESTADÍSTICO	3
3.	NORMATIVA DE APLICACIÓN PARA LA REALIZACION DEL ENSAYO	4
4.	HORMIGON: TIPO Y FABRICACIÓN DE LAS PROBETAS	4
5.	CONSERVACIÓN DE LAS PROBETAS IN SITU ANTES DE SU RECOGIDA	5
6.	ENSAYOS DE HOMOGENEIDAD.	6
7.	LABORATORIOS DE ENSAYO PARTICIPANTES EN EL EILA24 HORMIGONES	6
Α.	ESTUDIO PRELIMINAR RESULTADOS RESISTENCIA A COMPRESIÓN A 28 DÍAS: PROBETA	
CILÍ	ÍNDRICAS	10
i	i. Resultados aportados por código y Central. HA-30/F/20/XC4	10
i	ii. Gráficas de las determinaciones individuales de los laboratorios con la media de la C	entral
(con to	odo el grupo de valores, antes de descartar)	10
b.	ESTUDIO PRELIMINAR RESULTADOS RESISTENCIA A COMPRESIÓN A 28 DÍAS: PROBETAS CÚBICA	S
EN M	MOLDES METÁLICOS	11
	i. Resultados aportados de las tres determinaciones por código y Central. HA-30/F/20	
11		
i	ii. Gráficas de las determinaciones individuales de los laboratorios con la media de la C	entral
(con to	odo el grupo de valores, antes de descartar)	
C.	ESTUDIO PRELIMINAR RESULTADOS RESISTENCIA A COMPRESIÓN A 28 DÍAS: PROBETAS CÚBICA	
_	INA/ U OTROS PLÁSTICOSINA/ U OTROS PLÁSTICOS	
	i. Resultados aportados de los tres ensayos por código y Central. HA-30/F/20/XC4	
	ii. Gráficas de las determinaciones individuales de los laboratorios con la media de la C	
(con to	odo el grupo de valores, antes de descartar)	12
D.	CALIBRACIONES DE LOS EQUIPOS	
ANÁLI	ISIS ESTADÍSTICO Y ZSCORE DE RESULTADOS CENTRAL 14:	14
8.	EVALUACIÓN GLOBAL DE LOS LABORATORIOS PARA LOS ENSAYOS DE HORMIGÓN	45
Q	ACDADECIMIENTOS	17

Documento		Revisión	Fecha	Descripción
	Informe Hormig ó n Eila24-C14	0	02 de enero de 2025	1a Edici ó n

1. OBJETIVOS DEL EILA24

Los ejercicios de intercomparación entre laboratorios de ensayo para el control de calidad de la edificación tienen su origen y fundamento en la norma UNE-EN ISO/IEC 17025 Requisitos generales para la competencia de los laboratorios de ensayo y calibración, de acuerdo con la cual los laboratorios deben tener implantado un sistema de gestión de la calidad, y para ello, en su apartado 7.7 Aseguramiento de la validez de los resultados establece que el laboratorio debe contar con un procedimiento para hacer el seguimiento de la validez de los resultados y que este debe incluir, cuando sea apropiado, la participación en comparaciones interlaboratorios.

En concreto, el ejercicio de intercomparación de laboratorios EILA tiene los siguientes objetivos:

- Evaluación del desempeño de los laboratorios para ensayos.
- Identificación de problemas en los laboratorios e inicio de actividades correctivas.
- Establecimiento de eficacia y comparabilidad de ensayos.
- Identificación de diferencias entre laboratorios.
- Caracterización de métodos.
- Formación de los laboratorios participantes, basándose en los resultados de su participación.

Sobre estos objetivos, en las Jornadas de inicio de los diferentes ejercicios EILA se realizan ponencias de carácter formativo, con la colaboración de expertos del Instituto Eduardo Torroja.

2. NORMATIVA DE APLICACIÓN PARA EL ANÁLISIS ESTADÍSTICO

El tratamiento estadístico de los resultados obtenidos por los laboratorios se analiza siguiendo las siguientes normas:

- **UNE 82009-2:1999** "Exactitud (veracidad y precisión) de resultados y métodos de medición. Parte 2: Método básico para la determinación de la repetibilidad y la reproducibilidad de un método de medición normalizado".
- UNE-EN ISO/IEC 17043:2010 "Evaluación de la conformidad. Requisitos generales para los ensayos de aptitud", tomando como valor de referencia del ensayo los valores medios no aberrantes obtenidos.

Además, se consideran dos documentos de ayuda elaborados por la **Entidad Nacional de Acreditación ENAC** para la realización de los ejercicios de intercomparación:

- NT-03 "Política de ENAC sobre Intercomparaciones".
- **G-ENAC-14** "Guía sobre la participación en programas de intercomparación.".

Documento		Revisión	Fecha	Descripción
	Informe Hormig ó n Eila24-C14	0	02 de enero de 2025	1a Edici ó n

3. NORMATIVA DE APLICACIÓN PARA LA REALIZACION DEL ENSAYO

Para la realización de los *ensayos de hormigón* se tendrán en cuenta las siguientes normas:

- Toma de muestras de hormigón fresco, según **UNE-EN 12350-1:2009**. Ensayos de hormigón fresco. Parte1. Toma de muestras.
- Fabricación de probetas, según **UNE-EN 12390-2:2009 y UNE-EN 12390-2:2009/1M:2015.** Ensayos de hormigón endurecido. Parte 2. Fabricación y curado de probetas para ensayos de resistencia, y art. 57.3.2 del Código Estructural.
- Resistencia a compresión del hormigón a 28 días, según UNE-EN 12390-3: 2009 y UNE-EN 12390-3:2009/AC:2011. Ensayos de hormigón endurecido. Parte 3. Determinación de resistencia a compresión de probetas, y art. 57.3.2 del Código Estructural en lo referente al recorrido relativo entre las tres probetas a ensayar y, además, no se aplicará el factor de conversión de la tabla 57.3.2 del Código Estructural, en adelante Código.

4. HORMIGON: TIPO Y FABRICACIÓN DE LAS PROBETAS.

El tipo de hormigón que se establece por Protocolo es: HA-30/F/20/XC4

- Consistencia fluida
- Tamaño máximo del árido 20
- Resistencia característica de 30 N/mm2
- Mínimo contenido de cemento: 300Kg/m3
- Máxima relación agua cemento: 0.55
- Tipo de ambiente: XC4

La elección del suministrador de hormigón, por parte de la asociación colaboradora ANEFHOP, ha sido, preferentemente, de plantas con hormigón que disponga de distintivo de calidad oficialmente reconocido (DCOR) y amasado con amasadora fija, al objeto de garantizar los requisitos de homogeneidad establecidos en el Código Estructural. Los Coordinadores autonómicos son los que han elegido un laboratorio, de entre los participantes, para realizar, en su caso, los ensayos de homogeneidad el día de la toma, quedando reflejado en su *Acta de Toma de muestras y de Incidencias* suscrita.

En todo caso, la central ha hecho entrega de la correspondiente *Hoja de suministro de carg*a el mismo día de celebración al coordinador autonómico.

Documento		Revisión	Fecha	Descripción
	Informe Hormig ó n Eila24-C14	0	02 de enero de 2025	1a Edici ó n

5. CONSERVACIÓN DE LAS PROBETAS IN SITU ANTES DE SU RECOGIDA

Según el artículo 57.3.2 del Código Estructural, las probetas una vez fabricadas y mantenidas en el molde permanecerán en la obra entre 16 y 48 horas (en verano).

En cuanto a las condiciones de temperatura exterior alrededor de las probetas deben permanecer en el intervalo de $20^{\circ}\text{C} \pm 5^{\circ}\text{C}$ ($25^{\circ}\text{C} \pm 5^{\circ}\text{C}$ en tiempo caluroso).

CENTRAL 14: La temperatura promedio es de 19,5°C. Siendo la mínima la del código 257 con 15,6°C y la máxima la del código 250 con 24,9°C.

Observada el Acta de tomas e incidencias no recoge las temperaturas del hormigón y no se puede confirmar. En cualquier caso, es recomendable comprobar el equipo de medición utilizado de los códigos 257 y 250 por la notable desviación que hay entre ellos.

El artículo 57.3.2 también establece que, si no es posible mantener las condiciones de temperatura durante un periodo superior a 2 horas, el constructor deberá disponer una habitación o recinto donde depositar las probetas y que sea capaz de mantener las temperaturas de conservación establecidas.

CENTRAL 14: En cuanto a la existencia de habitación o recinto donde depositar las probetas y registrar su temperatura, de los 19 laboratorios, el 100% indican que no lo hay.

No se puede confirmar en el Acta de tomas e incidencias, pues no se recoge nada al respecto.

Documento	Revisión	Fecha	Descripción	
Informe Hormigón Eila24-C14	0	02 de enero de 2025	1a Edici ó n	

6. ENSAYOS DE HOMOGENEIDAD.

CENTRAL 14: ha fabricado el tipo de hormigón HM-30/F/20/XC4

Los resultados de los ensayos de homogeneidad aportados por el coordinador autonómico son los siguientes:

		CENTRAL 14 HA-30/F/20/XC4	1º MUESTRA	2º MUESTRA3,	Diferencias	Tolerancias	Norma de ensayo
	1	Consistencia					
		Si el asiento medio es ≤ a 90 mm				30 mm	UNE EN 12350-2
Grupo A		Si el asiento es > 90 mm	110	120	10	40 mm	UNE EN 12350-2
			FLUIDA				
	2	Resistencia a 7 días a compresión (% respecto a la media) en N/mm²	31,5	30,7	2,6	7,5%	UNE EN 12390-3
	3	Densidad del hormigón en kg/m3	2440	2450	10	16 kg/m3	UNE EN 12350-6
	4	Contenido de aire (% respecto al volumen de hormigón)	2,2%	2,3%	0,1%	1%	UNE EN 12350-7
Grupo B	5	Contenido de árido grueso (% respecto al peso de la muestra tomada)	36,80%	36,90%	0,10%	6%	UNE EN 146406
	6	Módulo granulométrico del árido	4,6	4,7	0,1	0,5	UNE EN 146406

(Deben obtenerse resultados satisfactorios en los dos ensayos del grupo A y en al menos dos de los cuatro del grupo B)

De los resultados obtenidos se concluye que se dan condiciones suficientes de homogeneidad (es necesario cumplir con las dos tolerancias del grupo A y al menos dos de las cuatro del grupo B).

7. LABORATORIOS DE ENSAYO PARTICIPANTES EN EL EILA24 HORMIGONES

ENSAYOS	CENTRAL 14		
Resistencia a compresión 28 días: cilíndricas	p= 19	n=3	
Resistencia a compresión 28 días: cúbicas en moldes de plástico/ resina	p= 13	n=3	
Resistencia a compresión 28 días: cúbicas en moldes metálicos	p= 15	n=3	

Mencionar que este año no se realizaba el ensayo de consistencia por cada laboratorio por conseguir que con una sola carretilla pudiera hacerse los 9 moldes de probetas, dejando que solo el laboratorio designado por el Coordinador autonómico los realizara para los ensayos de homogeneidad. Para próximos EILAs se ha decidido que cada laboratorio realice sus ensayos de consistencia, aunque no entre dicho ensayo en el análisis estadístico.

Documento	Revisión	Fecha	Descripción
Informe Hormigón Eila24-C14	0	02 de enero de 2025	1a Edici ó n

ENSAYO DE RESISTENCIA A COMPRESIÓN A 28 DÍAS:

Moldes cilíndricos, moldes cúbicos metálicos y de otros materiales.

Como en años anteriores, las resistencias a compresión con moldes cúbicos no se han modificado con el objeto de comparar el factor de conversión resultante con el recogido en el apartado 57.3.2 del Código Estructural y que se detallan a continuación:

Tabla 57.3.2. Coeficiente de conversión: $\lambda_{cil, cub15}$.

Resistencia probeta cúbica (fc; N/mm²)	$\lambda_{cil,cub15}$
fc < 60	0,90
60 ≤ fc < 80	0,95
fc ≥ 80	1,00

 $f_c = \lambda_{cil.cub15} * f_{c.cúbica}$

En particular, este ejercicio pretende comparar las resistencias obtenidas con moldes cúbicos, según el material de este, bien metálicos y/o bien de plástico o resinas. Se observa en la tabla siguiente que las resistencias en los moldes cúbicos metálicos son las más altas frente a las de plástico/resina. Y ambas son superiores a las obtenidas con moldes cilíndricos.

Central	Tipo de cemento	Cemento (Minimo XC4 300 kg/m3)	A/C (Maxim. XC4 0,55)	Resistencia media CIL (N/mm²)	CONVERSION cilindricas- cub met	CONVERSION cilindricas- cub plastico	Resistenci a media CUB PLAST (N/mm²)	Resistencia media CUB MET (N/mm²)	ASENTAMIENTO	Particip acion cubicas plastico /cilind.	Particip acion cubicas met. /cilind.
C01-02	CEM II/A-M 42,5 PORTLAND	289 (*)	0,51 (*)	39,1	0,984	0,989	39,5	39,7	FLUIDA	88,24%	64,71%
C03	CEM II/A-L 42,5 R	318	0,48	36,8	0,858	0,895	41,1	42,9	FLUIDA	85,71%	85,71%
C04	CEM II/B-M 42,5R	324	0,41	37,6	0,861	0,879	42,8	43,7	BLANDA	100,00%	53,33%
C05	CEM 11/A-L 42,5 R	316	0,46	35,0	0,884	0,870	40,2	39,6	FLUIDA	44,44%	55,56%
C06	CEM II/AL 42,5 R	324	0,39	48,2	0,883	0,893	54,0	54,6	FLUIDA	75,00%	75,00%
C07-C08	CEM III/A 42,5 N/SRC	312	0,50	51,8	0,943	0,916	56,6	55,0	FLUIDA	80,00%	70,00%
C09	CEM II/B-S 42,5 R/SRC	300	0,53	45,9	0,841	0,853	53,8	54,6	LIQUIDA	100,00%	70,00%
C10	CEM II/B-M(S-L)42,5R	301	0,55	35,0	0,929	0,968	36,1	37,6	BLANDA	92,31%	76,92%
C11	CEM II A-M (P-L) 42,5R	314	0,52	47,0	0,872	0,890	52,8	53,9	FLUIDA	95,24%	85,71%
C12M	CEM II/B-S 42,5 R/SRC	302	0,41	37,6	0,882	0,917	41,0	42,6	FLUIDA	80,00%	80,00%
C12m	CEMM II A-L 42,5R	329	0,55	38,6		0,965	40,0		FLUIDA	50,00%	0,00%
C12i	CEM III/A-42,5 N/SRC	354	0,47	36,3	0,961			37,8	FLUIDA	0,00%	100,00%
C13	CEM II/A-L 42,5 R	322	0,38	30,9	0,852	0,939	32,9	36,3	FLUIDA	60,00%	40,00%
C14	CEM IV/ A(V) 42,5 R	331	0,50	42,5	0,945	0,985	43,2	45,0	FLUIDA	68,42%	78,95%
C15	CEM II A-L 42,5R	339	0,45	38,0	0,876	0,905	42,0	43,4	blanda/fluida	60,00%	66,67%
C16	CEM II / A-P 42,5R	330	0.45	37,5	0,841	0,868	43,2	44,6	FLUIDA	88,24%	64,71%
C17	CEM II/AP42,5R COSMO	340	0,35	36,3	0,942	0,909	39,9	38,5	LIQUIDA	50,00%	28,57%
C18	CEM II/A-M(V-L) 42,5	387	0,38	42,0	0,897	0,929	45,2	46,8	BLANDA	80,00%	85,00%
C19	CEM II (B-M) 42,5 R	337	0,50	39,5	0,942	0,898	43,9	41,9	blanda/fluida	100,00%	50,00%

Factor promedio Factor de conversión mayor Se observa menos resistencia en moldes plasticos frente a los metálicos.

0,908

43,8

Aunque en estos ultimos ha habido menos participación, en general.

0,896

De los 235 participantes que han presentado resultados con probetas cilíndricas, 176 han fabricado también probetas cúbicas en moldes de plástico/resina y 147 en moldes cúbicos metálicos.

En la columna de asentamiento, en color burdeos están las centrales que no han presentado ensayos de homogeneidad o sus amasadas no lo son y, por tanto, sus informes no serán publicados.

(*) hormigón fabricado HM-25/F/20/XC1, diferente al indicado en el protocolo general.

Documento	Revisión	Fecha	Descripción
Informe Hormigón Eila24-C14	0	02 de enero de 2025	1a Edici ó n

ESTUDIO PRELIMINAR (ANÁLISIS PRE-ESTADÍSTICO)

VALORES NO DESCARTADOS ("SOSPECHOSOS")

- EXPRESIÓN DE LOS RESULTADOS.
- El resultado de los dos ensayos de consistencia se expresará en mm, conforme al apartado 33.5 Docilidad del hormigón del Código Estructural, <u>redondeado a los 10 mm</u>, conforme la norma UNE EN 12650-2:2009.
- El resultado de las tres determinaciones de la resistencia a compresión a 28 días se expresará en N/mm2, y conforme la Norma UNE EN 12390-3:2009 vigente, con una aproximación de 0,1 N/mm². Por tanto, el resultado sospechoso es aquel que no se expresa conforme lo expuesto anteriormente. Detectado, se reemplaza por el valor correcto en el análisis estadístico, y se deja señalado en observaciones de este.

VALORES NO DESCARTADOS CON DESVIACIONES AL PROTOCOLO-NORMA O RESPECTO DEL GRUPO:

- DIFERENCIAS DE PESOS: Se han analizado los diferentes datos de los pesos de las probetas, a medida que iban tratándose con agua en el curado. Se han sombreado en "amarillo" aquellos que no han aportado el dato o su resultado parece una transcripción errónea. Sin embargo, cuando la probeta ha perdido peso tras el curado o balsa, se ha sombreado en "morado" por considerar que hay evidencias de una posible No Conformidad y se recomienda que el laboratorio observe los registros y estado de su cámara húmeda.
- CALCULO DE LA INCERTIDUMBRE DEL ENSAYO: La norma UNE EN ISO 17025:2017 establece que los laboratorios deben evaluar la incertidumbre de medición e identificar su contribución en sus resultados de ensayo (apartado 7.6 de la citada norma). Pudiendo haber sido el 100%, de los 235 laboratorios participantes, han presentado el dato 91,50%, siendo un poco más que en el EILA 23 (89,91%).

VALORES DESCARTADOS (SD en la Tabla 6.1): DESVIACIONES EXCLUYENTES.

- **NO HAY TRAZABILIDAD** entre los datos de la carga aplicada y área de las probetas 02, 05 y 07 con la resistencia aportada. Serán sombreados en "rosa" y descartados del Análisis estadístico.
- **RECORRIDO RELATIVO**. En el artículo 57.3.2 del Código Estructural se establece que para considerar válidos los valores de resistencia del hormigón, **el recorrido relativo** de un grupo

Documento	Revisión	Fecha	Descripción
Informe Hormig ó n Eila24-C14	0	02 de enero de 2025	1a Edici ó n

de tres probetas obtenido mediante la diferencia entre el mayor resultado y el menor, dividida por el valor medio de las tres, tomadas de la misma amasada, no podrá exceder el 20 %. Los que no lo calculan correctamente se sombrean en amarillo y son corregidos; y, aquellos que superan este límite, da lugar a una No conformidad en la ejecución del ensayo, y son descartados del Análisis estadístico. Se han sombreado en "rosa". En este ejercicio hay un código en cilíndricas.

 ROTURAS NO SATISFACTORIAS DE LAS PROBETAS. Da lugar a una No conformidad en la ejecución del ensayo, y las probetas con rotura no satisfactoria son descartados del Análisis estadístico.

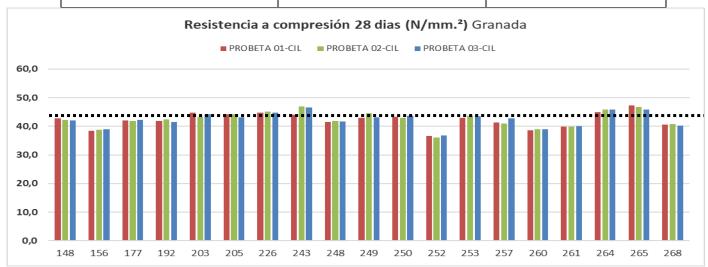
CENTRAL 14: Los códigos 226, 250 y 253 indican rotura insatisfactoria en sus tres probetas cúbica con moldes metálicos. Serán descartados, no pudiendo ser analizados estadísticamente con el resto del grupo.

Documento	Revisión	Fecha	Descripción
Informe Hormigón Eila24-C14	0	02 de enero de 2025	1a Edici ó n

a. ESTUDIO PRELIMINAR RESULTADOS RESISTENCIA A COMPRESIÓN A 28 DÍAS: PROBETAS CILÍNDRICAS

i. R	Resultados apo	ortados por	código v	Central.	HA-30/F	/20	/XC4
------	----------------	-------------	----------	----------	---------	-----	------

		METODO CONSERVACIO	MATERIAL DEL	AREA SEC. TRANSV. CARAS CON CARGA	•	NCIAS DE PESO ERVACION calc		PREPARACION PREVIA	CARGA MAXIMA DE ROTURA	RESIST. Calculada	RESIST	ENCIA A COMPRE	SION	RESISTENCIA COMPRE.	RECO RRIDO	RECO RRIDO 28 DIAS	INCERTIDU MBRE
CCAA	COD LAB	N	MOLDE	PROBETA 02	PROBETA 01	PROBETA 02	PROBETA 03		PROBETA 02	PROBETA 02	PROBETA 01-CIL	PROBETA 02-CIL	PROBETA 03-CIL	MEDIA	28 DIAS	calculada	
▼	▼	v	▼	(mm²) 🚽	(g) 🕌	(g) 🔻	(g) 🔻	~	(kN) 🕌	(N/mm²) 🔻	(N/mm²) 🚽	(N/mm²)	(N/mm²)	(N/mm²) 🕌	(%)	≤20% ▽	▼
	C14																
C14	148	BALSA	METÁLIC	17626,5	94,50	95,00	90,50	PULIDO	76	4,3	42,8000	42,2000	42,0000	42,3	2	1,9%	0,4
C14	156	C. Húmeda	Metálico	17680,89	19,00	17,00	37,00	Pulido	685,32	38,8	38,4000	38,8000	39,0000	38,7333	1	1,5%	0,3
C14	177	C. Húmeda	Metálico	17671,5	48,00	72,00	26,00	Pulido	738,595	41,8	42,0000	41,8000	42,3000	42	1,2	1,2%	1,7
C14		C. Húmeda		17671	30,00	18,00	45,00	Pulido	748,71	42,4	41,9000	42,4000	41,6000	41,9	1,9	1,9%	1,7
C14		C. Húmeda		17671,5	45,00	49,00	57,00	Pulido	767,18	43,4	44,7000	43,4000	44,3000	44,13	2,92	2,9%	1,8
C14		C. Húmeda		17671,5	59,00	47,00	47,00	Pulido	781,27	44,2	44,2000	44,2000	43,2000	43,9	2,26	2,3%	1,8
C14		C. Húmeda		17671,5	14,00	10,00	8,00	Pulido	797,71	45,1	44,7000	45,1400	44,8600	44,9	0,9	1,0%	1,8
C14		C. Húmeda		17671,45	30,00	22,00	35,00	Pulido	828,247	46,9	44,0720	46,8690	46,5940	45,84	6,1	6,1%	0,5
C14	248	Balsa	Metálico	17672	39,00	40,00	39,00	Pulido	739,4	41,8	41,5000	41,9000	41,7000	41,7	1	1,0%	1
C14	249		Metálico		######	######	######	Pulido	787,7		43,0000	44,6000	43,2000	43,6	0,87	3,7%	
C14		C. Húmeda		17671,46	-13,00	-76,00	-20,00	Pulido	760,21	43,0	43,3000	43,0000	43,7000	43,3		1,6%	0,9
C14		C. Húmeda		147,67	35,00	53,00	51,00	Pulido	639,2	4328,6	36,6000	36,1700	36,7900	36,53		1,7%	0,9
C14	253	C. Húmeda		17671,46	-15,00	-13,00	-10,00	Pulido	770,9	43,6	43,0000	43,6000	43,5000	43,4		1,4%	1,1
C14	257		Metálico	17671,5	23,00	26,00	18,00	Pulido	742,6	42,0	41,4000	41,0000	42,7000	41,7	4,06	4,1%	1,1
C14		C. Húmeda		17680,8847	85,00	70,00	78,00	Pulido	688,14	38,9	38,7000	38,9000	39,0000	38,8667	1	0,8%	0,3
C14		C. Húmeda		17683,2416	18,00	19,00	29,00	Pulido	703,2	39,8	39,8000	39,8000	40,1000	39,9	1	0,8%	0,3
C14		C. Húmeda		17671	48,00	50,00	56,00	Pulido	810	45,8	44,9000	45,8000	45,9000	45,6	2,2	2,2%	0,9
C14	265		Metálico	17671,4587	0,00	0,00	0,00	Pulido	826,4	46,8	47,2634	46,7647	45,9375	46,6552	3	2,8%	2,1
C14	268	C. Húmeda	Metálico	17706,23	######	######	######	Pulido	723	40,8	40,6072	40,8331	40,2118	40,6	2	1,5%	0,5


Dato destacado por su posible influencia en el resultado (*p.ej: Que pierda peso al salir de 28 días de curado o no haya dado los datos suficientes*) o no ha dado el valor de incertidumbre que, con la UNE EN ISO 17025:2017, es obligatorio. Con # significa que no ha dado alguno de los dos pesos. En el caso de que no cumpla la trazabilidad entre sus datos con el resultado de resistencia aportado será descartado- SD. (Código 252) (El código 249 no aporta datos suficientes para comprobar la trazabilidad, en próximos EILAs será descartado)

Valores sospechosos por error en la expresión de las unidades. Se señala. El resultado de las tres determinaciones de la resistencia a compresión a 28 días se expresará en N/mm2, y conforme la Norma UNE EN 12390-3:2009 vigente, con una aproximación de 0,1 N/mm².

Recorrido relativo calculado según artículo 57.3.2 del Código Estructural difiere del calculado

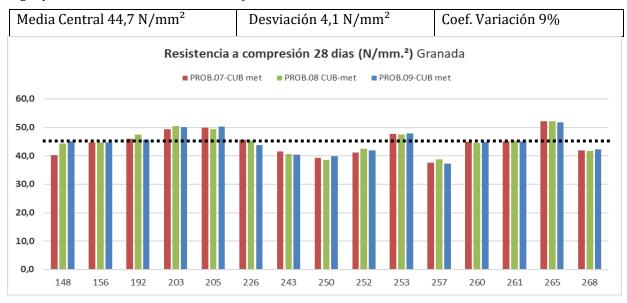
ii. Gráficas de las determinaciones individuales de los laboratorios con la media de la Central (con todo el grupo de valores, antes de descartar)

Media Central 42,4 N/mm² Desviación 2,7 N/mm² Coef. Variación 6%

Documento	Revisión	Fecha	Descripción
Informe Hormigón Eila24-C14	0	02 de enero de 2025	1a Edici ó n

b. Estudio preliminar resultados resistencia a compresión a 28 días: probetas CÚBICAS en moldes metálicos

i. Resultados aportados de las tres determinaciones por código y Central. HA-30/F/20/XC4


			AREA SEC. Transv. Caras Con Carga		NCIAS DE PESO CONSERVACION		PREPARACIO	CARGA Maxima de Rotura	RESIST. Calculada	RESISTI	ENCIA A COMPRESIO	DN	RESISTEN CIA	RECORRIDO	RECORRIDO 28 DIAS	INCERTIDUMBRE
CCAA	COD LAB	CONSERVACI ON	PROBETA 08	PROBETA 07	PROBETA 08	PROBETA 09	N PREVIA	PROBETA 08	PROBETA 08	PROB.07-CUB met P	ROB.08 CUB-met P	ROB.09-CUB met	COMPRE. MEDIA	28 DIAS	calculada	
•	v	▼	(mm²) 🔻	(g) 🔻	(g)	(g) v	-	(kN) 🔻	(N/mm²) 🔻	(N/mm²) 🔻	(N/mm²) 🔻	(N/mm²) 🔻	(N/mm²)	(%)	≤20% ▼	•
	C14															
C14	148	BALSA	22525,3	51,00	53,00	53,00	NINGUN	101,5	4,5	40,3000	44,3000	45,0000	43,2	10,8	10,9%	0,4
C14	156	C.	22513,5	27,00	25,00	20,00	Pulido	1005,84	44,7	44,7000	44,7000	44,7000	44,7	1	0,0%	0,3
C14	192	C.	22500	62,00	56,00	54,00	Ninguno	1065,71	47,4	46,0000	47,4000	45,7000	46,3	3,7	3,7%	1,9
C14	203	C.	22500	24,00	31,00	33,00	Ninguno	1134	50,4	49,4000	50,4000	50,1000	49,9	2,05	2,0%	2
C14	205	C.	22500	32,00	27,00	32,00	Ninguno	1110,59	49,4	49,9000	49,4000	50,2000	49,8	1,59	1,6%	2
C14	226	C.	22500	10,00	14,00	8,00	Ninguno	1018,04	45,2	45,6600	45,2500	43,6900	44,9	4,57	4,4%	1,8
C14	243	C.	22500	30,00	20,00	20,00	Ninguno	915,329	40,7	41,5290	40,6810	40,3550	40,855	2,87	2,9%	0,5
C14	250	C.	22500	-19,40	-13,60	-16,00	Ninguno	885,25	39,3	39,3200	38,5700	39,8000	39,23		3,1%	0,82
C14	252	C.	22500	49,00	44,00	35,00	Ninguno	956,3	42,5	41,1200	42,5000	41,9000	41,84		3,3%	0,9
C14	253	C.	22500	5,00	0,00	0,00	Ninguno	839,94	37,3	47,6000	47,5000	47,8000	47,6		0,6%	1,2
C14	257	Balsa	22500	9,00	5,00	8,00	Ninguno	869,6	38,6	37,5400	38,6500	37,2100	37,8	3,81	3,8%	1
C14	260	C.	22515	42,00	48,00	47,00	Pulido	1001,72	44,5	44,9000	44,5000	44,8000	44,73333333	1	0,9%	0,3
C14	261	C.	22521	42,00	48,00	47,00	Pulido	1018,8	45,2	45,0000	45,2000	45,1000	45,1	1	0,4%	0,3
C14	265	Balsa	22440	0,00	0,00	0,00	Ninguno	1168,6	52,1	52,2059	52,0766	51,7969	52,02647075	1	0,8%	2,1
C14	268	C.	22500	-12,00	-15,00	-17,00	Pulido	938	41,7	41,9556	41,6889	42,3556	42	2	1,6%	0,5

Dato destacado por su posible influencia en el resultado (*p.ej: Que pierda peso al salir de 28 días de curado o no haya dado los datos suficientes*) o no ha dado el valor de incertidumbre que, con la UNE EN ISO 17025:2017, es obligatorio. En el caso de que no cumpla la trazabilidad entre sus datos con el resultado de resistencia aportado será descartado- SD. (Código 253)

Valores sospechosos por error en la expresión de las unidades. Se señala. El resultado de las tres determinaciones de la resistencia a compresión a 28 días se expresará en N/mm2, y conforme la Norma UNE EN 12390-3:2009 vigente, con una aproximación de 0,1 N/mm². El código 252 intercambia las celdas de carga máxima y resistencia. Se subsana.

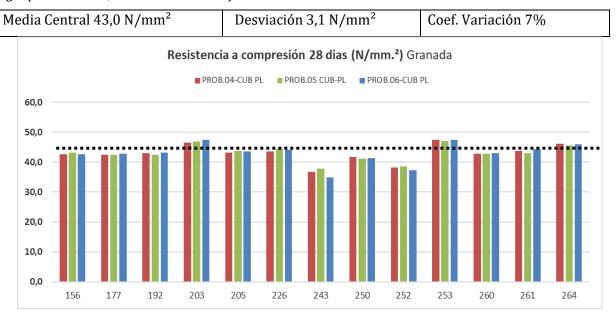
Recorrido relativo calculado según artículo 57.3.2 del Código Estructural difiere del calculado

ii. Gráficas de las determinaciones individuales de los laboratorios con la media de la Central (con todo el grupo de valores, antes de descartar)

Documento	Revisión	Fecha	Descripción
Informe Hormigón Eila24-C14	0	02 de enero de 2025	1a Edici ó n

c. Estudio preliminar resultados resistencia a compresión a 28 días: probetas CÚBICAS resina/ u otros plásticos

i. Resultados aportados de los tres ensayos por código y Central. HA-30/F/20/XC4


		METODO		AREA SEC. Transv. Caras Con Carga		NCIAS DE PESO Conservación		PREPARACIO	CARGA Maxima de Rotura	RESIST. Calculada	RESI	STENCIA A COMPRES	ION	RESISTENCIA	RECORRIDO	RECORRIDO 28 DIAS	INCERTIDUMBRE
CCAA	COD LAB	CONSERVACI ON	MOLDE	PROBETA 05	PROBETA 04	PROBETA 05	PROBETA 06	N PREVIA	PROBETA 05	PROBETA 05	PROB.04-CUB PL	PROB.05 CUB-PL	PROB.06-CUB PL	COMPRE. MEDIA	28 DIAS	calculada	
•	▼	v	▼	(mm²) 🔻	(g) 🔻	(g) 🔻	(g) 🔻	٧	(kN) 🔻	(N/mm²) 🔻	(N/mm²) 🔻	(N/mm²) 🔻	(N/mm²) 🔻	(N/mm²) 🔻	(%)	≤20% 🔻	v
	C14																
C14	156	C.	Plástico	22516,5	19,00	24,00	22,00	Pulido	971,79	43,2	42,7000	43,2000	42,7000	42,8666667	1	1,2%	0,3
C14	177	C.	Resina	22500	37,00	34,00	41,00	Ninguno	954,9	42,4	42,5000	42,4000	42,8000	42,6	0,94	0,9%	1,7
C14	192	C.	Resina	22500	67,00	70,00	61,00	Ninguno	956,25	42,5	43,0000	42,5000	43,3000	42,9	1,8	1,9%	1,7
C14	203	C.	Plástico	22500	9,00	36,00	23,00	Ninguno	1057,02	47,0	46,5000	47,0000	47,5000	47	2,08	2,1%	1,9
C14	205	C.	Resina	22500	32,00	23,00	40,00	Ninguno	985,55	43,8	43,3000	43,8000	43,6000	43,6	1,05	1,1%	1,8
C14	226	C.	Plástico	22500	9,00	5,00	3,00	Ninguno	1001,67	44,5	43,6700	44,5200	44,2300	44,13	1,83	1,9%	1,8
C14	243	C.	Plástico	22500	8,00	17,00	6,00	Ninguno	849,851	37,8	36,7880	37,7710	34,8550	36,47	7,99	8,0%	0,5
C14	250	C.	Resina	22500	73.751,10	-29,20	-19,50	Ninguno	944,18	42,0	41,7400	41,1400	41,2900	41,4		1,4%	0,85
C14	252	C.	Plástico	22500	42,00	49,00	43,00	Ninguno	868,5	38,6	38,1900	38,6000	37,3600	38,05		3,3%	0,9
C14	253	C.	Resina	22500	-96,00	-100,00	-100,00	Ninguno	832	37,0	47,4000	47,1000	47,4000	47,3		0,6%	1,2
C14	260	C.	Plástico	22510	38,00	43,00	34,00	Pulido	966,53	42,9	42,9000	42,9000	43,1000	42,9666667	1	0,5%	0,3
C14	261	C.	Plástico	22513,5	38,00	43,00	34,00	Pulido	966,53	42,9	43,8000	43,0000	44,4000	43,7333333	1	3,2%	0,3
C14	264	C.	Plástico	22500	24,00	38,00	34,00	Ninguno	1026,8	45,6	46,1000	45,6000	46,0000	45,9	1,09	1,1%	0,9

Dato destacado por su posible influencia en el resultado (*p.ej: Que pierda peso al salir de 28 días de curado o no haya dado los datos suficientes*) o no ha dado el valor de incertidumbre que, con la UNE EN ISO 17025:2017, es obligatorio. En el caso de que no cumpla la trazabilidad entre sus datos con el resultado de resistencia aportado será descartado- SD (Código 253)

Valores sospechosos por error en la expresión de las unidades. Se señala. El resultado de las tres determinaciones de la resistencia a compresión a 28 días se expresará en N/mm2, y conforme la Norma UNE EN 12390-3:2009 vigente, con una aproximación de 0,1 N/mm². El código 252 intercambia las celdas de carga máxima y resistencia. Se subsana.

Recorrido relativo calculado según artículo 57.3.2 del Código Estructural difiere del calculado

ii. Gráficas de las determinaciones individuales de los laboratorios con la media de la Central (con todo el grupo de valores, antes de descartar)

Documento	Revisión	Fecha	Descripción
Informe Hormigón Eila24-C14	0	02 de enero de 2025	1a Edici ó n

d. CALIBRACIONES DE LOS EQUIPOS

En base a la norma **UNE EN ISO IEC 17025:2017**, en su apartado 6.4 sobre el equipamiento que utiliza el laboratorio para realizar un ensayo, este debe establecer un programa de calibración, el cual se debe revisar y ajustar según sea necesario para mantener la confianza en el estado de calibración. Además, se debe verificar que cumplen con los requisitos especificados en las normas de ensayo. Por ello, se solicita en las fichas de resultados, **la fecha de la última verificación y de calibración** de los siguientes equipos, de conformidad con el apartado 6.4.8 de la citada norma:

• de las **máquinas de ensayo a compresión** que superen los dos años reglamentarios que establece la norma UNE EN 12390-4 o no la indiquen, se obliga a que aclare cómo asegura que está calibrada y/o verificada;

C14: todos aportan fecha de calibración y está vigente en la toma de hormigón. salvo los códigos 249 y 268. Deben aportar certificado de calibración a su coordinador autonómico de las prensas CONTROLS 62534 y PROETI 225, respectivamente. En caso contrario, evidencian una No Conformidad. En próximos EILAs, si la prensa no está calibrada no serán analizados.

• del pie de rey como equipo de medición (ver apartado 6.4.6 de la citada norma UNE EN ISO IEC 17025), considerando que debe ser utilizado un instrumento de medición preciso y exacto (el flexómetro no lo es), como es el pie de rey calibrado, al menos, cada dos años; Se sombrean en morado aquellos equipos que no cumplen la vigencia (o no lo indican) y en amarillo aquellos cuyo modelo indicado está incompleto, o es erróneo, o es el mismo equipo para distintos laboratorios:

Cód. Lab.	CATEGORIA	TIPO	MARCA	MODELO	Fecha VERIFICACION	CENTRAL 14 Fecha CALIBRACION
148	Pie de rey	ELÉCTRICO	MAURER	93110		
177	Pie de rey	DIGITAL	NEOTECK			18.10.2023
205	Pie de rey	DIGITAL	MITUTOYO	CDP20P	18.10.2023	
226	Pie de rey		MITUTOYO			21.02.2024
249	Pie de rey					
250	Pie de rey	FLEXOMETRO	STANLEY	03-487	01.05.2024	
252	Pie de rey	FLEXOMETRO	STANLEY	03-487	29.04.2024	
253	Pie de rey	flexómetro	RS PRO	0 A 150	10,05,2024	31,10,2023
268	Pie de rey	PIE DE REY	MITUTOYO	300 mm	06.07.2023	

Citar el grupo de laboratorios: 260-261 porque tienen los mismos equipos: cámara, prensa de ensayo compresión, pie de rey y equipos para medir la temperatura, con mismas fechas de

Documento	Revisión	Fecha	Descripción
Informe Hormig ó n Eila24-C14	0	02 de enero de 2025	1a Edici ó n

calibración. Deben aportar justificación de estas coincidencias y las fichas de calibración de cada uno de los equipos de cada laboratorio.

Con respecto al equipo registrador de las condiciones termo higrotérmicas de <u>la cámara húmeda</u>, se sombrean en amarillo la información incompleta, o que no se corresponde con el equipo (error de transcripción). Se sombrean en morado aquellos equipos que superan los dos años de calibración (o no indican los datos):

Cód. Lab.	CATEGORIA	TIPO	MARCA	MODELO	Fecha VERIFICACION	CENTRAL 14 Fecha CALIBRACION
148	Termohigrómetro	ELECTRÓNICO	FUR	MR77		
192	Termohigrómetro					
203	Termohigrómetro		EXTECH	RH300	15.03.2024	
226	Termohigrómetro	DIGITAL	ETECH	RH300	16.09.2023	
243	Termohigrómetro	INDICADOR/SO NDA	TESTO SE & Co. KGaA	5606251	-	-
248	Termohigrómetro	-	-	-	-	-
	Termómetro	008/ PISC HOR	KALKIM	DIGITAL	-	08.03.2024
249	Termohigrómetro					
257	Higrómetro					
264	Termohigrómetro					
	Termómetro		INMAQ	CH-1	11.01.2024	11.01.2024

Citar el grupo de laboratorios: 260-261 porque tienen los mismos equipos: cámara, prensa de ensayo compresión, pie de rey y equipos para medir la temperatura, con mismas fechas de calibración. Deben aportar justificación de estas coincidencias y las fichas de calibración de cada uno de los equipos de cada laboratorio.

Citar el código 243 que aporta información suficiente del indicador y sonda utilizados en el apartado de Observaciones, pero que, sin embargo, no ha anotado la fecha de calibración.

ANÁLISIS ESTADÍSTICO Y ZSCORE DE RESULTADOS CENTRAL 14:

. RESISTENCIA A COMPRESIÓN A 28 DIAS: Probetas cilíndricas

. RESISTENCIA A COMPRESIÓN A 28 DIAS: Probetas cúbicas en moldes metálicos

. RESISTENCIA A COMPRESIÓN A 28 DIAS: Probetas cúbicas en moldes de resina u otro material plástico

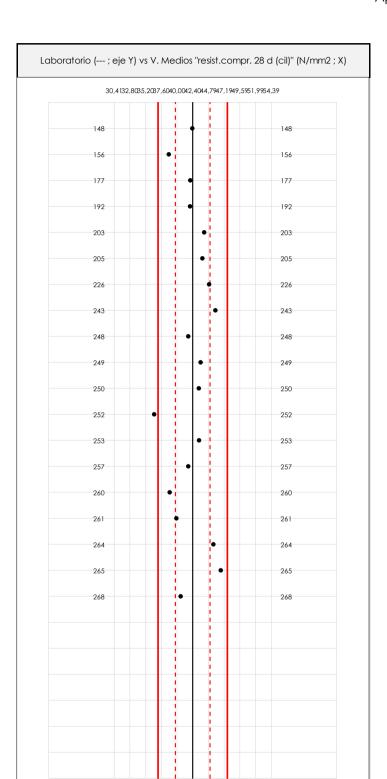
Documento	Revisión	Fecha	Descripción
Informe Hormigón Eila24-C14	0	02 de enero de 2025	1a Edici ó n

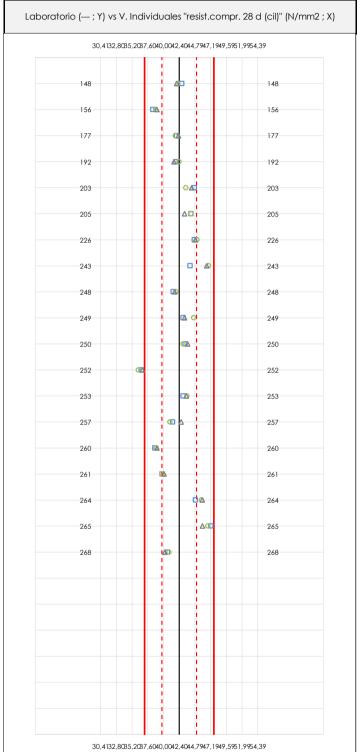
INFORME DE ENSAYO HORMIGON

RESIST.COMPR. 28 D (CIL)

RESIST.COMPR. 28 D (CIL) (N/mm2) Introducción

Criterios de análisis establecidos


El procedimiento llevado a cabo para analizar los resultados del ensayo "resist.compr. 28 d (cil)", está basado en los protocolos EILA24 y las normas UNE 82009-2:1999 y UNE-EN ISO/IEC 17043:2010 y es, para cada laboratorio, el que sigue:


- **01. Análisis A: Estudio pre-estadístico.** Antes de comenzar con los cálculos matemáticos, los datos son minuciosamente analizados para determinar si deben ser incluidos (√) o descartados (X) en función, de si cumplen o no, con unos criterios mínimos previamente establecidos y que pueden afectar a los resultados, tales como:
 - 01. No cumplir con el criterio de validación de la norma de ensayo, en caso de existir éste.
 - 02. No haber realizado el ensayo conforme a la norma de estudio, sin justificar los motivos por los cuales se ha hecho.
 - 03. No haber cumplido con las especificaciones particulares del ensayo descritas en los protocolos (pueden incluir aportar algún dato adicional no especificado en la norma).
 - 04. No haber especificado la fecha de verificación y/o de calibración de los equipos utilizados durante el ensayo (los resultados pueden verse afectados).
 - 05. No haber aportado, como mínimo, el resultado de dos determinaciones puesto que la desviación típica interlaboratorio se ve afectada notablemente por ello.
 - 06. Expresiones erróneas de los resultados que no pudieran explicarse o no tuvieran sentido.
 - 07. No haber completado total y correctamente las hojas de ensayo, pues es posible que falte información para analizar parámetros importantes o que ayuden a explicar datos incorrectos.
 - 08. Cualquier otra incidencia o desviación de los resultados que afecte al conjunto de los datos analizados.
- **02. Análisis B: Mandel, Cochran y Grubbs.** Los resultados aportados por los laboratorios que hayan superado el paso anterior, se verán sometidos al análisis estadístico compuesto por los métodos de Mandel, Cochran y Grubbs. Los criterios de análisis que se han seguido para considerar los resultados como aptos (√) o no aptos (X) por éste procedimiento son:
 - 01. Para cada laboratorio se llevan a cabo los cálculos necesarios para determinar los estadísticos "h y k" de Mandel, "C" de Cochran y "G_{Simp} y G_{Dob}" de Grubbs, pudiendo salir un resultado correcto (X sobre fondo blanco), anómalo (X* sobre fondo rosa) o aberrante (X** sobre fondo morado), para todos o cada uno de ellos.
 - ^{02.} Un laboratorio será considerado como apto, si el binomio Mandel-Cochran y el método de Grubbs no demuestran la presencia de resultados anómalos o aberrantes en comparación con los del resto de participantes. En caso contrario, el laboratorio afectado será excluido y por ende no tenido en cuenta para someterlo al análisis Z-Score.
 - 03. Binomio Mandel-Cochran. Si el ensayo de Mandel justifica para algún laboratorio (en cualquiera de sus estadísticos) la presencia de un valor anómalo o aberrante, antes de considerarlo como no apto se analiza el parámetro de Cochran. En caso de que éste último sea correcto, los resultados del laboratorio se considerarán aceptables. En caso contrario, el laboratorio será descartado.
 - 04. Método de Grubbs. Si el ensayo de Grubbs Simple demuestra que los resultados de algúno de los laboratorios son aberrantes o anómalos, finaliza el análisis y el laboratorio en cuestión deberá ser excluido. En caso de que éste método no demuestre la existencia de algún valor extraño, se lleva a cabo entonces el ensayo de Grubbs Doble aplicando los mismos criterios que para el método simple.
- **03. Análisis C: Evaluación Z-Score.** La totalidad de los laboratorios que hayan superado el "Análisis B" serán estudiados por éste método. En él, se determina si los parámetros Z-Score obtenidos para cada participante son satisfactorios (S), dudosos (D) o insatisfactorios (I), en función de que estén o no dentro de unos límites críticos establecidos.
- **04. Análisis D: Estudio post-estadístico.** Una vez superados los tres análisis anteriores, haremos un último barrido de los datos para ver como quedan los resultados de los laboratorios implicados mediante los diagramas "Box-Plot" o de caja y bigotes antes y después de llevar a cabo los descartes.

RESIST.COMPR. 28 D (CIL) (N/mm2) Análisis A. Estudio pre-estadístico

Apartado A.1. Gráficos de dispersión de valores medios

ANALISIS GRAFICO DE DISPERSION MEDIA E INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

30,4132,8035,2037,6040,0042,4044,7947,1949,5951,9954,39

Dispersión de las medias aritméticas intra-laboratorios (gráfico izquierda) y de los valores individuales aportados por los participantes (gráfico derecha), respecto de la media aritmética inter-laboratorios (42,40; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (45,04/39,75; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (47,69/37,11; líneas rojas de trazo continuo), todos ellos valores obtenidos antes de efectuar descartes estadísticos."

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios (gráfico izquierda) representadas por puntos de color negro "•", o los resultados individuales aportados por los participantes (gráfico derecha): el primero (X_{i 1}) se representa con un cuadrado azul "¬", el segundo (X_{i 2}) con un círculo verde "O" y el tercero (X_{i 3}) con un triángulo grís "A".

RESIST.COMPR. 28 D (CIL) (N/mm2) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Código	Lab	X _{i 1}	X _{i 2}	Хі 3	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	¿Pasa A?	Observaciones
					,					
C14	148	42,80	42,20	42,00			0,416	-0,15	✓	
C14	156	38,40	38,80	39,00	38,73	38,73	0,306	-8,64	✓	
C14	177	42,00	41,80	42,30	42,00	42,03	0,252	-0,86	✓	
C14	192	41,90	42,40	41,60	41,90	41,97	0,404	-1,01	✓	
C14	203	44,70	43,40	44,30	44,13	44,13	0,666	4,10	✓	
C14	205	44,20	44,20	43,20	43,90	43,87	0,577	3,47	✓	
C14	226	44,70	45,14	44,86	44,90	44,90	0,223	5,90	✓	
C14	243	44,07	46,87	46,59	45,84	45,85	1,542	8,13	✓	
C14	248	41,50	41,90	41,70	41,70	41,70	0,200	-1,64	✓	
C14	249	43,00	44,60	43,20	43,60	43,60	0,872	2,84	✓	Próximos EILAs será descartado si no aporta todos los datos
C14	250	43,30	43,00	43,70	43,30	43,33	0,351	2,21	✓	
C14	252	36,60	36,17	36,79	36,53	36,52	0,318	-13,86	X	No es trazable su resultado con los datos aportados
C14	253	43,00	43,60	43,50	43,40	43,37	0,321	2,29	✓	
C14	257	41,40	41,00	42,70	41,70	41,70	0,889	-1,64	✓	
C14	260	38,70	38,90	39,00	38,87	38,87	0,153	-8,33	✓	
C14	261	39,80	39,80	40,10	39,90	39,90	0,173	-5,89	✓	
C14	264	44,90	45,80	45,90	45,60	45,53	0,551	7,40	✓	
C14	265	47,26	46,76	45,94	46,66	46,66	0,670	10,04	✓	
C14	268	40,61	40,83	40,21	40,60	40,55	0,314	-4,35	✓	

NOTAS:

Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

⁰⁴ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo]

[no coinciden]

Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

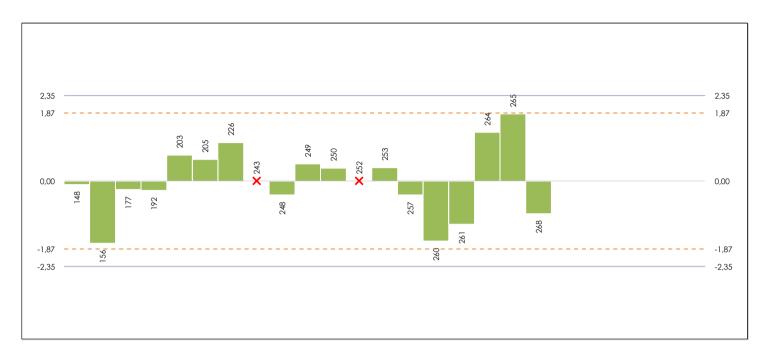
				_	_
	∀X _{i 1}	VX _{i2}	AX ^{i 3}	∀X _{i lab}	∀X _{i arit}
M (N/mm2)	42,25	42,48	42,45	42,40	42,40
SD _L ()	2,62	2,84	2,61	2,65	2,64
CV (%)	6,19	6,67	6,14	6,25	6,24

- · "∀X; i" determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- · "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.

Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, antes de descartar los laboratorios anómalos y/o aberrantes:

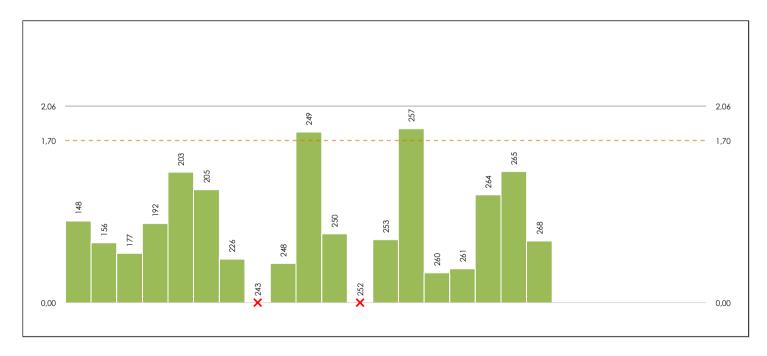
	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	1,381	3,868	6,187	6,340	17,751
Referencia	2,900	8,000		3,100	11,700

- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- · "γ_R" varianza de reproducibilidad.
- · "R (%)" reproducibilidad.


^{02 &}quot;X_{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i lab}" es la media aritmética intralaboratorio y "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

[&]quot;S_{L i}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media aritmética interlaboratorios.

RESIST.COMPR. 28 D (CIL) (N/mm2) Análisis B. Mandel, Cochran y Grubbs


Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

RESIST.COMPR. 28 D (CIL) (N/mm2) Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Código	Lab	Xi 1	X _{i 2}	X _{i 3}	$\overline{X}_{i\;lab}$	$\overline{X}_{i \; arit}$	S_{Li}	D _{i arit %}	h _i	k_{i}	C_{i}	$G_{\text{Sim Inf}}$	$G_{\text{Sim Sup}}$	$G_{\text{Dob Inf}}$	$G_{\text{Dob Sup}}$	¿Pasa B?
C14	148	42,800	42,200	42,000	42,300	42,333	0,416	-0,48	-0,09	0,85						✓
C14	156	38,400	38,800	39,000	38,733	38,733	0,306	-8,95	-1,71	0,63		1,711		0,5994		✓
C14	177	42,000	41,800	42,300	42,000	42,033	0,252	-1,19	-0,23	0,52						✓
C14	192	41,900	42,400	41,600	41,900	41,967	0,404	-1,35	-0,26	0,83						✓
C14	203	44,700	43,400	44,300	44,130	44,133	0,666	3,75	0,72	1,37						✓
C14	205	44,200	44,200	43,200	43,900	43,867	0,577	3,12	0,60	1,18						✓
C14	226	44,700	45,140	44,860	44,900	44,900	0,223	5,55	1,06	0,46						✓
C14	243	44,072	46,869	46,594	45,840	45,845										X
C14	248	41,500	41,900	41,700	41,700	41,700	0,200	-1,97	-0,38	0,41						✓
C14	249	43,000	44,600	43,200	43,600	43,600	0,872	2,49	0,48	1,79*	0,196					✓
C14	250	43,300	43,000	43,700	43,300	43,333	0,351	1,87	0,36	0,72						✓
C14	252	36,600	36,170	36,790	36,530	36,520										X
C14	253	43,000	43,600	43,500	43,400	43,367	0,321	1,94	0,37	0,66						✓
C14	257	41,400	41,000	42,700	41,700	41,700	0,889	-1,97	-0,38	1,82*	0,196					✓
C14	260	38,700	38,900	39,000	38,867	38,867	0,153	-8,63	-1,65	0,31				0,5994		✓
C14	261	39,800	39,800	40,100	39,900	39,900	0,173	-6,20	-1,19	0,36						✓
C14	264	44,900	45,800	45,900	45,600	45,533	0,551	7,04	1,35	1,13					0,6302	✓
C14	265	47,263	46,765	45,937	46,655	46,655	0,670	9,67	1,85	1,37			1,850		0,6302	✓
C14	268	40,607	40,833	40,212	40,600	40,551	0,314	-4,68	-0,89	0,65						✓

NOTAS:

" $X_{i\,j}$ con j=1,2,3" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i\,lab}$ " es la media aritmética intralaboratorio y " $\overline{X}_{i\,arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

"h_i y k_i", "C_i", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

⁰⁴ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo]

[no coinciden]

[aberrante **]

[anómalo *]

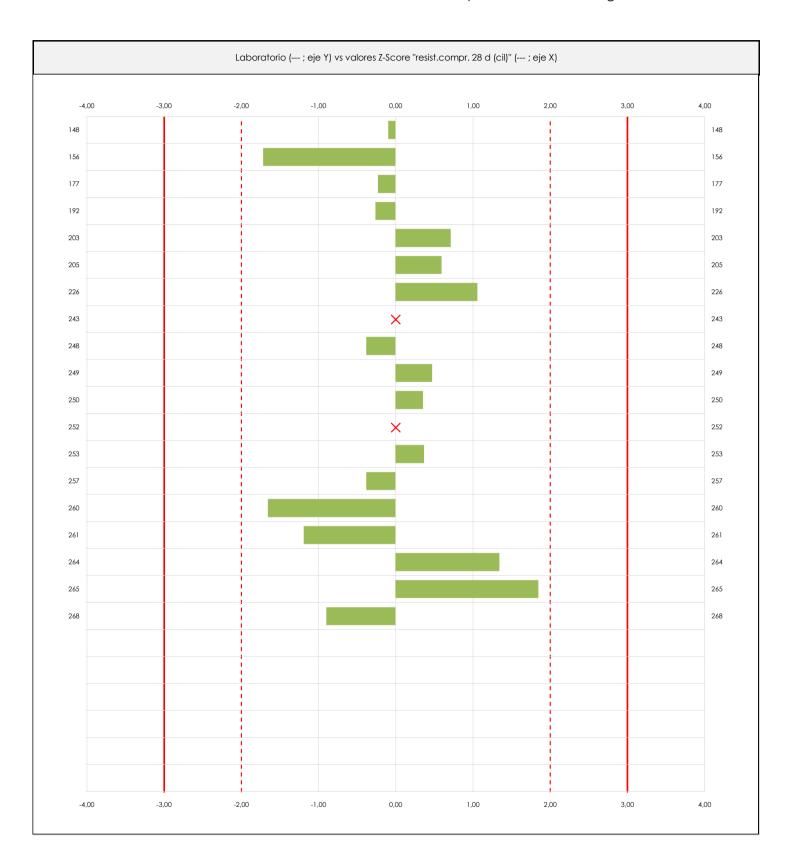
Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

				l 	l -
	∀X _{i 1}	∀X _{i2}	∀X _{i 3}	∀X _{i lab}	∀X _{i arit}
M (N/mm2)	42,48	42,60	42,54	42,54	42,54
SD _L ()	2,33	2,31	2,13	2,23	2,22
CV (%)	5,50	5,42	5,02	5,24	5,23

- \cdot " $\forall X_{i\,j}$ " determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.

Valores de referencia de Mandel, Cochran y Grubbs según tablas de la norma UNE 82009-2, antes de descartar los laboratorios anómalos y/o aberrantes:

	h	k	С	G _{Sim}	G _{Dob}
1%	2,35	2,06	0,343	2,8940	0,2990
5%	1,87	1,70	0,281	2,6200	0,3822


- · "p" número de laboratorios participantes no descrtados.
- \cdot "n" indica el número de ensayos por laboratorio.
- \cdot "h" y "k" indicadores estadísticos de Mandel.
- · "C" valor crítico de Cochran.
- · "G _{Sim}" y "G _{Dob}" valores críticos de Grubbs.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

RESIST.COMPR. 28 D (CIL) (N/mm2) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

RESIST.COMPR. 28 D (CIL) (N/mm2) Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Código	Lab	X _i ₁	X _{i 2}	X _{i 3}	X _{i lab}	X _{i arit}	S _{Li}	D _{i arit %}	¿Pasa A?	¿Pasa B?	Total	Causa	Iteración	Z-Score	Evaluació
C14	148	42.80	42,20	42,00	42,30	42,33	0,416	-0,48	✓		✓			-0,093	S
C14	156	38,40	38,80	39,00	38,73	38,73	0,306	-8,95	√		-			-1,711	S
C14	177	42,00	41,80	42,30	42,00	42,03	0,252	-1,19	√	/	-			-0,228	S
C14	192	41,90	42,40	41,60	41,90	41,97	0,404	-1,35	√	√	1			-0,258	S
C14	203	44,70	43,40	44,30	44,13	44,13	0,666	3,75	√	√	√			0,717	S
C14	205	44,20	44,20	43,20	43,90	43,87	0,577	3,12	√	✓	√			0,597	S
C14	226	44,70	45,14	44,86	44,90	44,90	0,223	5,55	√	✓	√			1,061	S
C14	243	44,07	46,87	46,59	45,84	45,85			√	Х	Х	AB	0		
C14	248	41,50	41,90	41,70	41,70	41,70	0,200	-1,97	√		1			-0,377	S
C14	249	43,00	44,60	43,20	43,60	43,60	0,872	2,49	√	√	√			0,477	S
C14	250	43,30	43,00	43,70	43,30	43,33	0,351	1,87	√	√	√			0,357	S
C14	252	36,60	36,17	36,79	36,53	36,52			Х	X	Х	SD			
C14	253	43,00	43,60	43,50	43,40	43,37	0,321	1,94	√	√	√			0,372	S
C14	257	41,40	41,00	42,70	41,70	41,70	0,889	-1,97	√	√	√			-0,377	S
C14	260	38,70	38,90	39,00	38,87	38,87	0,153	-8,63	✓	√	√			-1,651	S
C14	261	39,80	39,80	40,10	39,90	39,90	0,173	-6,20	✓	√	1			-1,187	S
C14	264	44,90	45,80	45,90	45,60	45,53	0,551	7,04	✓	√	√			1,346	S
C14	265	47,26	46,76	45,94	46,66	46,66	0,670	9,67	✓	✓	√			1,850	S
	268	40,61	40,83	40,21	40,60	40,55	0,314	-4,68	√	√	√			-0,894	S

NOTAS:

[no coinciden]

[dudoso]

[insatisfactorio]

05 Valores de referencia asignados para el cálculo de las varianzas y evaluación Z-Score (excluidos los resultados anómalos y aberrantes del análisis estadístico):

	∀X _{i 1}	∀X _{i2}	ΨX _{i 3}	∀X _{i lab}	∀X _{i arit}
M (N/mm2)	42,48	42,60	42,54	42,54	42,54
SD _L ()	2,33	2,31	2,13	2,23	2,22
CV (%)	5,50	5,42	5,02	5,24	5,23

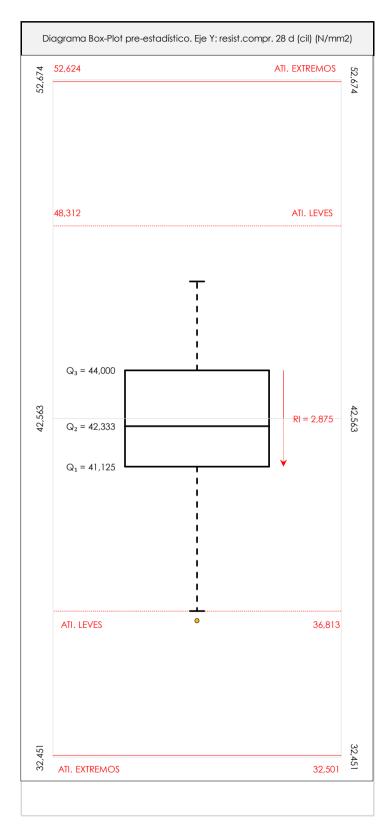
- · "∀X; i" determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- · "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.
- 06 Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, después de descartar los laboratorios anómalos y/o aberrantes:

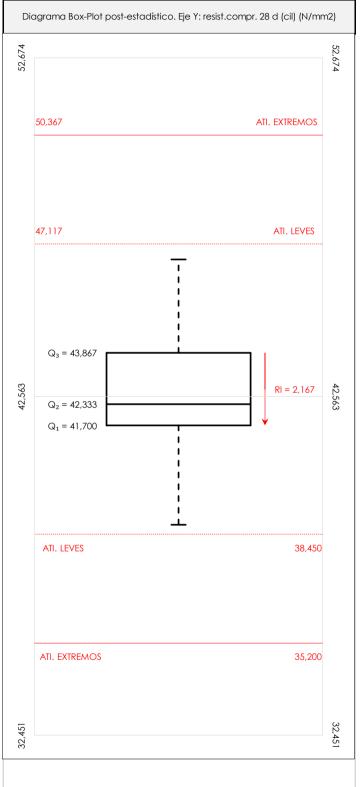
	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	1,146	3,209	5,186	5,312	14,872
Referencia	2,900	8,000		3,100	11,700

- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- · "γ_R" varianza de reproducibilidad.
- · "R (%)" reproducibilidad.

^{01 &}quot;X_{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i lab}$ " es la media aritmética intralaboratorio y " $\overline{X}_{i arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.


 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leq 2] [Dudoso (D) - si 2 < | ZS | \leq 3] [Insatisfactorio (I) - si | ZS | > 3].


⁰⁴ El código colorimétrico empleado para las celdas es:

RESIST.COMPR. 28 D (CIL) (N/mm2) Análisis D. Estudios post-estadísticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

RESIST.COMPR. 28 D (CIL) (N/mm2) Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA24 para el ensayo "RESIST.COMPR. 28 D (CIL)", ha contado con la participación de un total de 19 laboratorios, debiendo haber aportado cada uno de ellos, un total de 3 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 1 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS		PRE	-ESTADIST	ico		ESTADISTICO					
Variables	Xi 1	Xi 2	X _{i 3}	$\overline{X}_{i lab}$	$\overline{\mathbf{X}}_{iarit}$	Xi 1	Xi 2	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$	
Valor Máximo (max ; %)	47,26	46,87	46,59	46,66	46,66	47,26	46,76	45,94	46,66	46,66	
Valor Mínimo (min ; %)	36,60	36,17	36,79	36,53	36,52	38,40	38,80	39,00	38,73	38,73	
Valor Promedio (M; %)	42,25	42,48	42,45	42,40	42,40	42,48	42,60	42,54	42,54	42,54	
Desviación Típica (SDL ;)	2,62	2,84	2,61	2,65	2,64	2,33	2,31	2,13	2,23	2,22	
Coef. Variación (CV ;)	0,06	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,05	0,05	
VARIABLES	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)	
Valor Calculado	1,38	3,87	6,19	6,34	17,75	1,15	3,21	5,19	5,31	14,87	
Valor Referencia	2,90	8,00		3,10	11,70	2,90	8,00		3,10	11,70	

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{Sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS	PRE-ESTADISTICO					ESTADISTICO				
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G _{Dob}
Nivel de Significación 1%	2,35	2,06	0,343	2,894	0,2990	2,35	2,06	0,372	2,894	0,2990
Nivel de Significación 5%	1,87	1,70	0,281	2,620	0,3822	1,87	1,70	0,305	2,620	0,3822

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 17 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

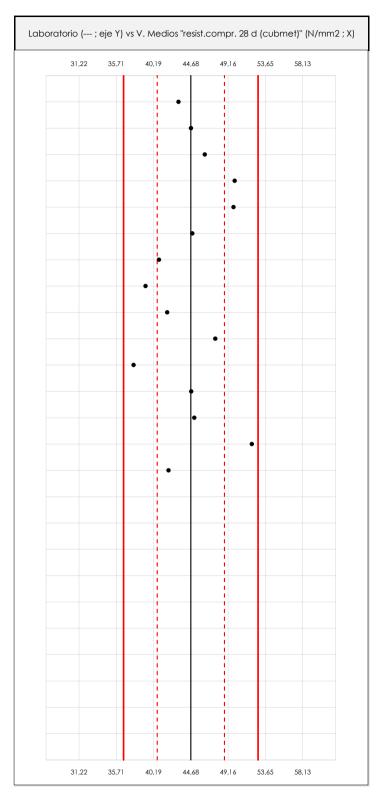
Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

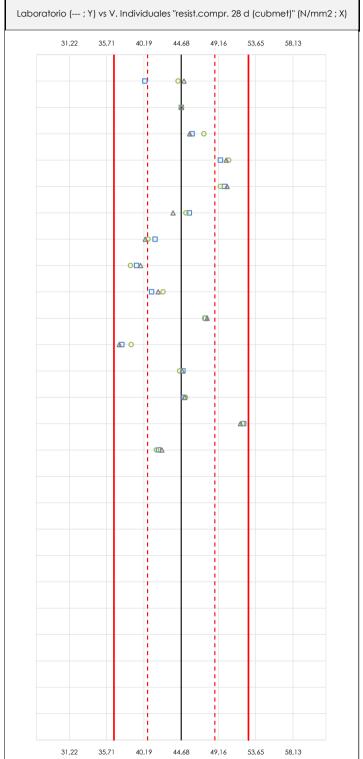
INFORME DE ENSAYO HORMIGON

RESIST.COMPR. 28 D (CUBMET)

Introducción

Criterios de análisis establecidos


El procedimiento llevado a cabo para analizar los resultados del ensayo "resist.compr. 28 d (cubmet)", está basado en los protocolos EILA24 y las normas UNE 82009-2:1999 y UNE-EN ISO/IEC 17043:2010 y es, para cada laboratorio, el que sigue:


- **01. Análisis A: Estudio pre-estadístico.** Antes de comenzar con los cálculos matemáticos, los datos son minuciosamente analizados para determinar si deben ser incluidos (√) o descartados (X) en función, de si cumplen o no, con unos criterios mínimos previamente establecidos y que pueden afectar a los resultados, tales como:
 - 01. No cumplir con el criterio de validación de la norma de ensayo, en caso de existir éste.
 - 02. No haber realizado el ensayo conforme a la norma de estudio, sin justificar los motivos por los cuales se ha hecho.
 - 03. No haber cumplido con las especificaciones particulares del ensayo descritas en los protocolos (pueden incluir aportar algún dato adicional no especificado en la norma).
 - 04. No haber especificado la fecha de verificación y/o de calibración de los equipos utilizados durante el ensayo (los resultados pueden verse afectados).
 - 05. No haber aportado, como mínimo, el resultado de dos determinaciones puesto que la desviación típica interlaboratorio se ve afectada notablemente por ello.
 - 06. Expresiones erróneas de los resultados que no pudieran explicarse o no tuvieran sentido.
 - 07. No haber completado total y correctamente las hojas de ensayo, pues es posible que falte información para analizar parámetros importantes o que ayuden a explicar datos incorrectos.
 - 08. Cualquier otra incidencia o desviación de los resultados que afecte al conjunto de los datos analizados.
- **02. Análisis B: Mandel, Cochran y Grubbs.** Los resultados aportados por los laboratorios que hayan superado el paso anterior, se verán sometidos al análisis estadístico compuesto por los métodos de Mandel, Cochran y Grubbs. Los criterios de análisis que se han seguido para considerar los resultados como aptos (✓) o no aptos (X) por éste procedimiento son:
 - 01. Para cada laboratorio se llevan a cabo los cálculos necesarios para determinar los estadísticos "h y k" de Mandel, "C" de Cochran y "G_{Simp} y G_{Dob}" de Grubbs, pudiendo salir un resultado correcto (X sobre fondo blanco), anómalo (X* sobre fondo rosa) o aberrante (X** sobre fondo morado), para todos o cada uno de ellos.
 - Un laboratorio será considerado como apto, si el binomio Mandel-Cochran y el método de Grubbs no demuestran la presencia de resultados anómalos o aberrantes en comparación con los del resto de participantes. En caso contrario, el laboratorio afectado será excluido y por ende no tenido en cuenta para someterlo al análisis Z-Score.
 - ^{03.} Binomio Mandel-Cochran. Si el ensayo de Mandel justifica para algún laboratorio (en cualquiera de sus estadísticos) la presencia de un valor anómalo o aberrante, antes de considerarlo como no apto se analiza el parámetro de Cochran. En caso de que éste último sea correcto, los resultados del laboratorio se considerarán aceptables. En caso contrario, el laboratorio será descartado.
 - ^{04.} Método de Grubbs. Si el ensayo de Grubbs Simple demuestra que los resultados de algúno de los laboratorios son aberrantes o anómalos, finaliza el análisis y el laboratorio en cuestión deberá ser excluido. En caso de que éste método no demuestre la existencia de algún valor extraño, se lleva a cabo entonces el ensayo de Grubbs Doble aplicando los mismos criterios que para el método simple.
- **03. Análisis C: Evaluación Z-Score.** La totalidad de los laboratorios que hayan superado el "Análisis B" serán estudiados por éste método. En él, se determina si los parámetros Z-Score obtenidos para cada participante son satisfactorios (S), dudosos (D) o insatisfactorios (I), en función de que estén o no dentro de unos límites críticos establecidos.
- **04. Análisis D: Estudio post-estadístico.** Una vez superados los tres análisis anteriores, haremos un último barrido de los datos para ver como quedan los resultados de los laboratorios implicados mediante los diagramas "Box-Plot" o de caja y bigotes antes y después de llevar a cabo los descartes.

RESIST.COMPR. 28 D (CUBMET) (N/mm2) Análisis A. Estudio pre-estadístico

Apartado A.1. Gráficos de dispersión de valores medios

ANALISIS GRAFICO DE DISPERSION MEDIA E INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios (gráfico izquierda) y de los valores individuales aportados por los participantes (gráfico derecha), respecto de la media aritmética inter-laboratorios (44,68; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (48,72/40,63; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (52,77/36,58; líneas rojas de trazo continuo), todos ellos valores obtenidos antes de efectuar descartes estadísticos."

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios (gráfico izquierda) representadas por puntos de color negro "•", o los resultados individuales aportados por los participantes (gráfico derecha): el primero (X_{i 1}) se representa con un cuadrado azul "¬", el segundo (X_{i 2}) con un círculo verde "O" y el tercero (X_{i 3}) con un triángulo grís "\D".

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

C14	C14	Código	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	¿Pasa A?	Observaciones
C14	C14	C14	148	40,30	44,30	45,00	43,20	43,20	2,536	-3,31	√	
C14 203 49,40 50,40 50,10 49,90 49,83 0,404 11,54 C14 226 45,66 45,25 43,69 44,90 44,87 1,039 0,43 C14 243 41,53 40,68 40,36 40,86 40,86 0,606 -8,55 C14 250 39,32 38,57 39,80 39,23 39,23 0,620 -12,19 C14 252 41,12 42,50 41,90 41,84 41,84 0,692 -6,35 C14 253 47,60 47,50 47,80 47,60 47,63 0,153 6,62 C14 257 37,54 38,65 37,21 37,80 37,80 0,754 -15,39 C14 260 44,90 44,50 44,80 44,73 44,73 0,208 0,13 C14 261 45,00 45,20 45,10 45,10 0,100 0,95 C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 C15 27 0,513 11,84 C17 0,513 11,84 C18 49,90 49,40 50,20 49,80 44,90 44,90 44,90 44,80 44,73 44,73 0,208 0,13 C18 263 52,21 52,08 51,80 52,03 52,03 0,209 16,45 C19 27 0,513 11,84 C19 49,90 44,50 44,80 44,73 44,73 0,208 0,13 C19 28 11,84 C19 49,80 49,90 44,50 44,80 44,73 44,73 0,208 0,13 C19 28 12,10 12,	C14 203 49,40 50,40 50,10 49,90 49,83 0,404 11,54 C14 226 45,66 45,25 43,69 44,90 44,87 1,039 0,43 C14 243 41,53 40,68 40,36 40,86 40,86 0,606 -8,55 C14 250 39,32 38,57 39,80 39,23 39,23 0,620 -12,19 C14 252 41,12 42,50 41,90 41,84 41,84 0,692 -6,35 C14 253 47,60 47,50 47,80 47,80 47,60 47,63 0,153 6,62 C14 257 37,54 38,65 37,21 37,80 37,80 0,754 -15,39 C14 260 44,90 44,50 44,80 44,73 44,73 0,208 0,13 C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 C5 49,90 49,90 49,40 50,20 49,90 49,80 49,97 0,513 11,84 C1,514 C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 C5 11,12 C5 11,12 C5 12,13 C6 14,12 C6 14,12 C7 14 261 45,00 45,20 45,10 45,10 0,100 0,95 C7 15 11,184 C7 16 11,184 C7 17 15,184 C7 18 11,184 C7 18 11,184 C8 26 27 C8 27 C8 28 28 28 28 28 28 28 28 28 28 28 28 28	C14	156	44,70	44,70	44,70	44,70	44,70	0,000	0,05	✓	
C14	C14	C14	192	46,00	47,40	45,70	46,30	46,37	0,907	3,78	✓	
C14	C14	C14	203	49,40	50,40	50,10	49,90	49,97	0,513	11,84	✓	
C14	C14	C14	205	49,90	49,40	50,20	49,80	49,83	0,404	11,54	✓	
C14	C14	C14	226	45,66	45,25	43,69	44,90	44,87	1,039	0,43	Х	Se descartan las tres probetas por rotura insatisfactoria
C14 252 41,12 42,50 41,84 41,84 0,692 -6,35 ✓ Intercambia datos de carga con resistencia. Se subsana C14 253 47,60 47,50 47,80 47,60 47,63 0,153 6,62 X No es trazable su resultado con los datos aportados C14 257 37,54 38,65 37,21 37,80 37,80 0,754 -15,39 ✓ C14 260 44,90 44,50 44,80 44,73 44,73 0,208 0,13 ✓ C14 261 45,00 45,20 45,10 45,10 45,10 0,100 0,95 ✓ C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 ✓	C14	C14	243	41,53	40,68	40,36	40,86	40,86	0,606	-8,55	✓	
C14 253 47,60 47,50 47,80 47,60 47,63 0,153 6,62 X No es trazable su resultado con los datos aportados C14 257 37,54 38,65 37,21 37,80 37,80 0,754 -15,39 ✓ C14 260 44,90 44,50 44,80 44,73 44,73 0,208 0,13 ✓ C14 261 45,00 45,20 45,10 45,10 45,10 0,100 0,95 ✓ C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 ✓	C14 253 47,60 47,50 47,80 47,60 47,63 0,153 6,62 X No es trazable su resultado con los datos aportados C14 257 37,54 38,65 37,21 37,80 37,80 0,754 -15,39 ✓ C14 260 44,90 44,50 44,80 44,73 44,73 0,208 0,13 ✓ C14 261 45,00 45,20 45,10 45,10 45,10 0,100 0,95 ✓ C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 ✓	C14	250	39,32	38,57	39,80	39,23	39,23	0,620	-12,19	X	Se descartan las tres probetas por rotura insatisfactoria
C14 257 37,54 38,65 37,21 37,80 37,80 0,754 -15,39 ✓ C14 260 44,90 44,50 44,80 44,73 44,73 0,208 0,13 ✓ C14 261 45,00 45,20 45,10 45,10 45,10 0,100 0,95 ✓ C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 ✓	C14 257 37,54 38,65 37,21 37,80 37,80 0,754 -15,39 ✓ C14 260 44,90 44,50 44,80 44,73 44,73 0,208 0,13 ✓ C14 261 45,00 45,20 45,10 45,10 45,10 0,100 0,95 ✓ C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 ✓	C14	252	41,12	42,50	41,90	41,84	41,84	0,692	-6,35	✓	Intercambia datos de carga con resistencia. Se subsana
C14 260 44,90 44,50 44,80 44,73 44,73 0,208 0,13 ✓ C14 261 45,00 45,20 45,10 45,10 45,10 0,100 0,95 ✓ C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 ✓	C14 260 44,90 44,50 44,80 44,73 44,73 0,208 0,13 ✓ C14 261 45,00 45,20 45,10 45,10 45,10 0,100 0,95 ✓ C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 ✓	C14	253	47,60	47,50	47,80	47,60	47,63	0,153	6,62	X	No es trazable su resultado con los datos aportados
C14 261 45,00 45,20 45,10 45,10 0,100 0,95 ✓ C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 ✓	C14 261 45,00 45,20 45,10 45,10 0,100 0,95 ✓ C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 ✓	C14	257	37,54	38,65	37,21	37,80	37,80	0,754	-15,39	✓	
C14 265 <mark>52,21 52,08 51,80</mark> 52,03 <mark>52,03</mark> 0,209 16,45 √	C14 265 52,21 52,08 51,80 52,03 52,03 0,209 16,45 ✓	C14	260	44,90	44,50	44,80	44,73	44,73	0,208	0,13	✓	
The state of the s	The state of the s	C14	261	45,00	45,20	45,10	45,10	45,10	0,100	0,95	✓	
C14 268 41,96 41,69 42,36 42,00 42,00 0,336 -5,99 √	C14 268 41,96 41,69 42,36 42,00 42,00 0,336 -5,99 √	C14	265	52,21	52,08	51,80	52,03	52,03	0,209	16,45	✓	
		C14	268	41,96	41,69	42,36	42,00	42,00	0,336	-5,99	✓	

NOTAS:

Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

 04 El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo]

[no coinciden]

Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

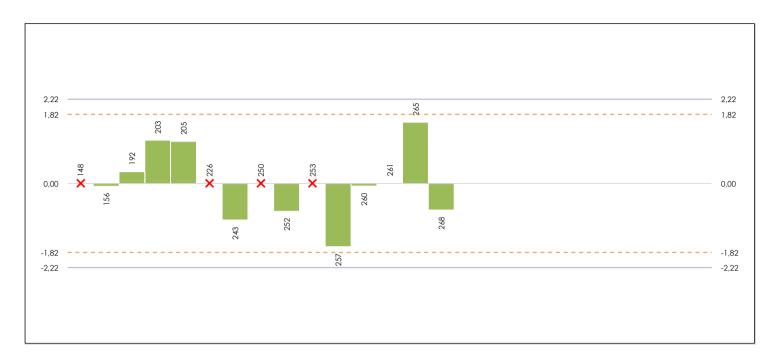
	AX ^{i 1}	∀X _{i2}	∀X _{i3}	$\forall \overline{X}_{i lab}$	$\forall \overline{X}_{i \text{ arit}}$
M (N/mm2)	44,48	44,85	44,70	44,67	44,68
SD _L ()	4,19	4,04	4,09	4,03	4,05
CV (%)	9,42	9,01	9,15	9,03	9,06

- \cdot " $\forall X_{i\,j}$ " determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \, arit}$ " medias calculadas.
- · "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.

Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, antes de descartar los laboratorios anómalos y/o aberrantes:

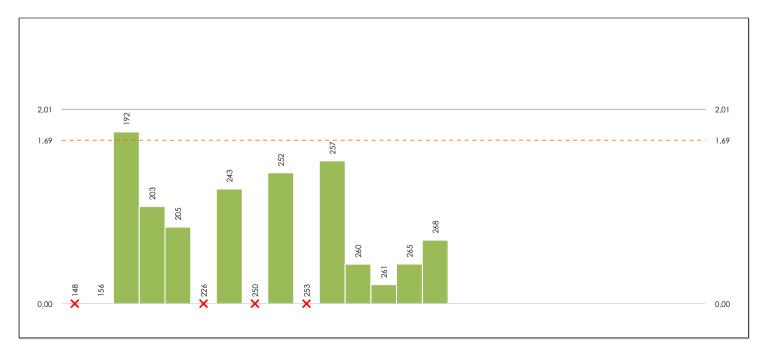
	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	1,899	5,316	8,993	9,191	25,736
Referencia	3,200	9,000		4,700	13,200

- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- · " γ_R " varianza de reproducibilidad.
- · "R (%)" reproducibilidad.


^{02 &}quot;X_{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i lab}" es la media aritmética intralaboratorio y "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

[&]quot;S_{L i}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media aritmética interlaboratorios.

RESIST.COMPR. 28 D (CUBMET) (N/mm2) Análisis B. Mandel, Cochran y Grubbs


Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Código	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	C _i	$G_{\text{Sim Inf}}$	$G_{\text{Sim Sup}}$	G _{Dob Inf}	$G_{\text{Dob Sup}}$	¿Pasa B?
C14	148	40,300	44,300	45,000	43,200	43,200										Х
C14	156	44,700	44,700	44,700	44,700	44,700	0,000	-0,71	-0,07	0,00						
C14	192	46,000	47,400	45,700	46,300	46,367	0,907	2,99	0,31	1,77*	0,286					√
C14	203	49,400	50,400	50,100	49,900	49,967	0,513	10,99	1,14	1,00					0,5229	√
C14	205	49,900	49,400	50,200	49,800	49,833	0,404	10,69	1,11	0,79						√
C14	226	45,660	45,250	43,690	44,900	44,867										Х
C14	243	41,529	40,681	40,355	40,855	40,855	0,606	-9,25	-0,96	1,19				0,5525		√
C14	250	39,320	38,570	39,800	39,230	39,230										Х
C14	252	41,120	42,500	41,900	41,840	41,840	0,692	-7,06	-0,73	1,35						✓
C14	253	47,600	47,500	47,800	47,600	47,633										X
C14	257	37,540	38,650	37,210	37,800	37,800	0,754	-16,04	-1,67	1,48		1,668		0,5525		✓
C14	260	44,900	44,500	44,800	44,733	44,733	0,208	-0,64	-0,07	0,41						✓
C14	261	45,000	45,200	45,100	45,100	45,100	0,100	0,18	0,02	0,20						✓
C14	265	52,206	52,077	51,797	52,026	52,026	0,209	15,56	1,62	0,41			1,618		0,5229	✓
C14	268	41,956	41,689	42,356	42,000	42,000	0,336	-6,71	-0,70	0,66						✓

NOTAS:

" $X_{i,j}$ con j=1,2,3" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i\,lab}$ " es la media aritmética intralaboratorio y " $\overline{X}_{i\,arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

"h, y k;", "C;", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{04}\,$ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo]

[aberrante **]

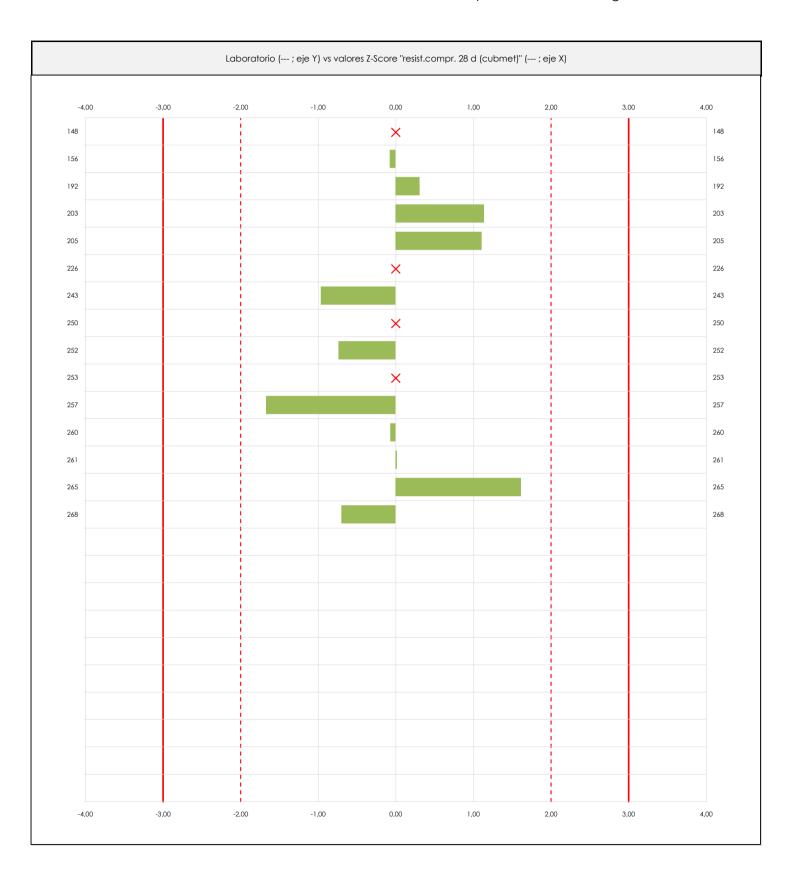
Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

	$\forall X_{i}$ 1	∀X _{i2}	∀X _{i3}	$\forall \overline{X}_{i lab}$	∀X _{i arit}
M (N/mm2)	44,93	45,20	44,93	45,00	45,02
SD _L ()	4,34	4,25	4,46	4,32	4,33
CV (%)	9,66	9,40	9,92	9,59	9,62

- \cdot " $\forall X_{i\,j}$ " determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \, arit}$ " medias calculadas.
- · "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.

Valores de referencia de Mandel, Cochran y Grubbs según tablas de la norma UNE 82009-2, antes de descartar los laboratorios anómalos y/o aberrantes:

	h	k	С	G _{Sim}	G _{Dob}
1%	2,22	2,01	0,407	2,5640	0,1448
5%	1,82	1,69	0,335	2,3550	0,2213


- · "p" número de laboratorios participantes no descrtados.
- · "n" indica el número de ensayos por laboratorio.
- · "h" y "k" indicadores estadísticos de Mandel.
- · "C" valor crítico de Cochran.
- \cdot "G $_{\text{Sim}}$ " y "G $_{\text{Dob}}$ " valores críticos de Grubbs.

^{02 &}quot;S_L", es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Código	Lab	X _i ₁	X _{i 2}	X _{i 3}	X _{i lab}	X _{i arit}	S _{Li}	D _{i arit %}	¿Pasa A?	¿Pasa B?	Total	Causa	Iteración	Z-Score	Evaluació
C14	148	40,30	44,30	45,00	43,20	43,20			✓	X	X	AB	0		
C14	156	44,70	44,70	44,70	44,70	44,70	0,000	-0,71	✓	✓	√			-0,074	S
C14	192	46,00	47,40	45,70	46,30	46,37	0,907	2,99	✓	✓	✓			0,311	S
C14	203	49,40	50,40	50,10	49,90	49,97	0,513	10,99	✓	✓	✓			1,143	S
C14	205	49,90	49,40	50,20	49,80	49,83	0,404	10,69	✓	✓	✓			1,112	S
C14	226	45,66	45,25	43,69	44,90	44,87			X	X	X	SD			
C14	243	41,53	40,68	40,36	40,86	40,86	0,606	-9,25	✓	✓	✓			-0,962	S
C14	250	39,32	38,57	39,80	39,23	39,23			X	X	X	SD			
C14	252	41,12	42,50	41,90	41,84	41,84	0,692	-7,06	✓	✓	✓			-0,735	S
C14	253	47,60	47,50	47,80	47,60	47,63			X	X	X	SD			
C14	257	37,54	38,65	37,21	37,80	37,80	0,754	-16,04	✓	✓	✓			-1,668	S
C14	260	44,90	44,50	44,80	44,73	44,73	0,208	-0,64	✓	✓	✓			-0,066	S
C14	261	45,00	45,20	45,10	45,10	45,10	0,100	0,18	✓	✓	✓			0,018	S
C14	265	52,21	52,08	51,80	52,03	52,03	0,209	15,56	✓	✓	✓			1,618	S
C14	268	41,96	41,69	42,36	42,00	42,00	0,336	-6,71	✓	✓	✓			-0,698	S

NOTAS:

[no coinciden]

[dudoso]

[insatisfactorio]

05 Valores de referencia asignados para el cálculo de las varianzas y evaluación Z-Score (excluidos los resultados anómalos y aberrantes del análisis estadístico):

	∀X _{i 1}	VX _{i2}	∀X _{i3}	∀X _{ilab}	∀ X i arit
M (N/mm2)	44,93	45,20	44,93	45,00	45,02
SD _L ()	4,34	4,25	4,46	4,32	4,33
CV (%)	9,66	9,40	9,92	9,59	9,62

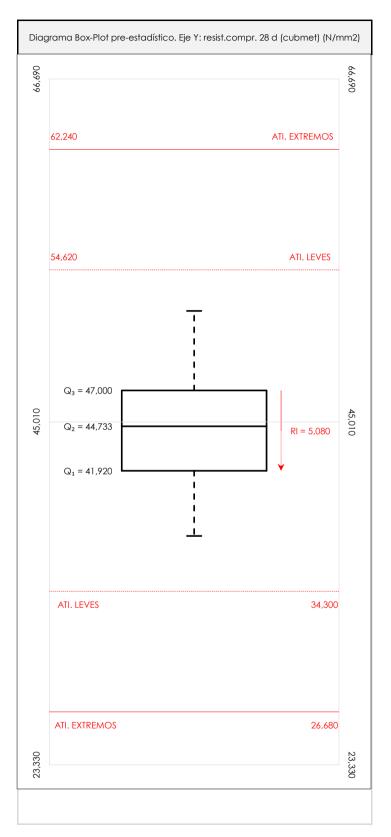
- · "∀X;" determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, \text{lab}}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \, \text{arit}}$ " medias calculadas.
- · "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.
- 06 Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, después de descartar los laboratorios anómalos y/o aberrantes:

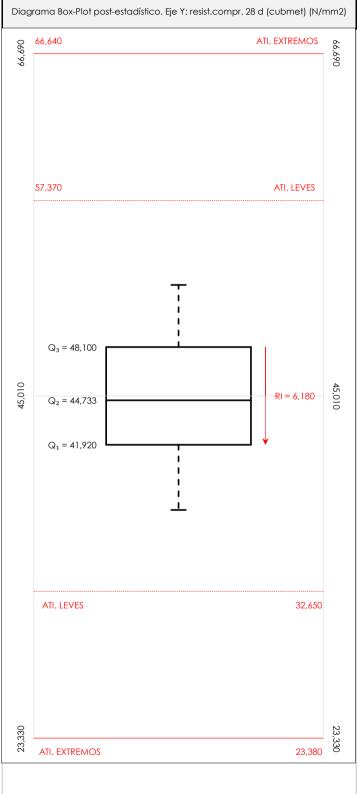
	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	1,136	3,180	9,594	9,661	27,052
Referencia	3,200	9,000		4,700	13,200

- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- · " γ_R " varianza de reproducibilidad.
- · "R (%)" reproducibilidad.

 $^{^{01}}$ "X_{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{l \, lab}$ " es la media aritmética intralaboratorio y " $\overline{X}_{l \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.


 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].


⁰⁴ El código colorimétrico empleado para las celdas es:

RESIST.COMPR. 28 D (CUBMET) (N/mm2) Análisis D. Estudios post-estadísticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

RESIST.COMPR. 28 D (CUBMET) (N/mm2) Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA24 para el ensayo "RESIST.COMPR. 28 D (CUBMET)", ha contado con la participación de un total de 15 laboratorios, debiendo haber aportado cada uno de ellos, un total de 3 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 4 laboratorios han sido apartados de la evaluación final: 3 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			E	STADISTIC	0	
Variables	X _{i 1}	Xi 2	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$	Xi 1	Xi 2	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	52,21	52,08	51,80	52,03	52,03	52,21	52,08	51,80	52,03	52,03
Valor Mínimo (min ; %)	37,54	38,57	37,21	37,80	37,80	37,54	38,65	37,21	37,80	37,80
Valor Promedio (M; %)	44,48	44,85	44,70	44,67	44,68	44,93	45,20	44,93	45,00	45,02
Desviación Típica (SDL ;)	4,19	4,04	4,09	4,03	4,05	4,34	4,25	4,46	4,32	4,33
Coef. Variación (CV ;)	0,09	0,09	0,09	0,09	0,09	0,10	0,09	0,10	0,10	0,10
VARIABLES	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Valor Calculado	1,90	5,32	8,99	9,19	25,74	1,14	3,18	9,59	9,66	27,05
Valor Referencia	3,20	9,00		4,70	13,20	3,20	9,00		4,70	13,20

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			E	STADISTIC	5	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,22	2,01	0,407	2,564	0,1448	2,22	2,01	0,504	2,564	0,1448
Nivel de Significación 5%	1,82	1,69	0,335	2,355	0,2213	1,82	1,69	0,417	2,355	0,2213

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 11 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

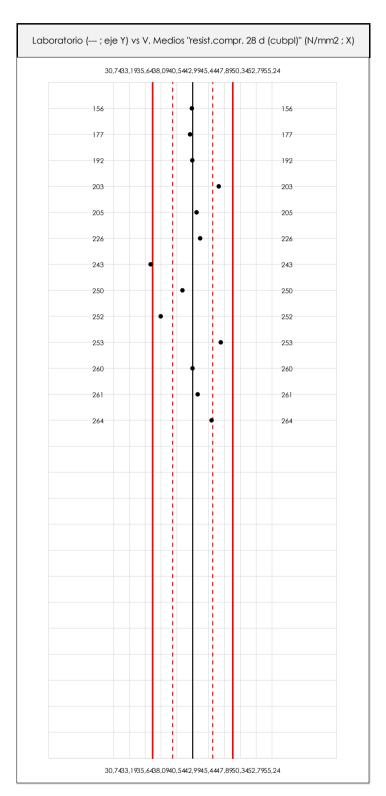
Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

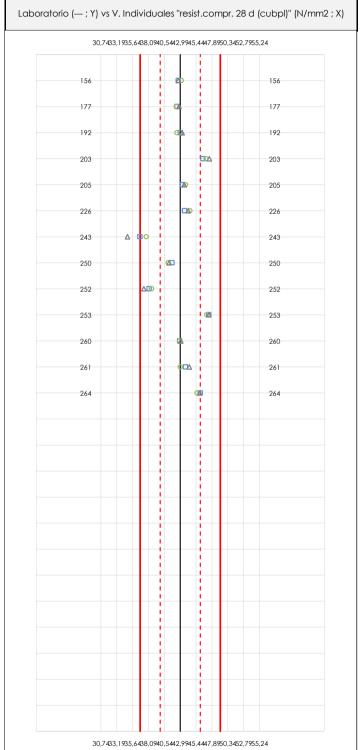
INFORME DE ENSAYO HORMIGON

RESIST.COMPR. 28 D (CUBPL)

RESIST.COMPR. 28 D (CUBPL) (N/mm2) Introducción

Criterios de análisis establecidos


El procedimiento llevado a cabo para analizar los resultados del ensayo "resist.compr. 28 d (cubpl)", está basado en los protocolos EILA24 y las normas UNE 82009-2:1999 y UNE-EN ISO/IEC 17043:2010 y es, para cada laboratorio, el que sigue:


- **01. Análisis A: Estudio pre-estadístico.** Antes de comenzar con los cálculos matemáticos, los datos son minuciosamente analizados para determinar si deben ser incluidos (√) o descartados (X) en función, de si cumplen o no, con unos criterios mínimos previamente establecidos y que pueden afectar a los resultados, tales como:
 - 01. No cumplir con el criterio de validación de la norma de ensayo, en caso de existir éste.
 - 02. No haber realizado el ensayo conforme a la norma de estudio, sin justificar los motivos por los cuales se ha hecho.
 - 03. No haber cumplido con las especificaciones particulares del ensayo descritas en los protocolos (pueden incluir aportar algún dato adicional no especificado en la norma).
 - 04. No haber especificado la fecha de verificación y/o de calibración de los equipos utilizados durante el ensayo (los resultados pueden verse afectados).
 - 05. No haber aportado, como mínimo, el resultado de dos determinaciones puesto que la desviación típica interlaboratorio se ve afectada notablemente por ello.
 - 06. Expresiones erróneas de los resultados que no pudieran explicarse o no tuvieran sentido.
 - 07. No haber completado total y correctamente las hojas de ensayo, pues es posible que falte información para analizar parámetros importantes o que ayuden a explicar datos incorrectos.
 - 08. Cualquier otra incidencia o desviación de los resultados que afecte al conjunto de los datos analizados.
- **02. Análisis B: Mandel, Cochran y Grubbs.** Los resultados aportados por los laboratorios que hayan superado el paso anterior, se verán sometidos al análisis estadístico compuesto por los métodos de Mandel, Cochran y Grubbs. Los criterios de análisis que se han seguido para considerar los resultados como aptos (√) o no aptos (X) por éste procedimiento son:
 - 01. Para cada laboratorio se llevan a cabo los cálculos necesarios para determinar los estadísticos "h y k" de Mandel, "C" de Cochran y "G_{Simp} y G_{Dob}" de Grubbs, pudiendo salir un resultado correcto (X sobre fondo blanco), anómalo (X* sobre fondo rosa) o aberrante (X** sobre fondo morado), para todos o cada uno de ellos.
 - ^{02.} Un laboratorio será considerado como apto, si el binomio Mandel-Cochran y el método de Grubbs no demuestran la presencia de resultados anómalos o aberrantes en comparación con los del resto de participantes. En caso contrario, el laboratorio afectado será excluido y por ende no tenido en cuenta para someterlo al análisis Z-Score.
 - 03. Binomio Mandel-Cochran. Si el ensayo de Mandel justifica para algún laboratorio (en cualquiera de sus estadísticos) la presencia de un valor anómalo o aberrante, antes de considerarlo como no apto se analiza el parámetro de Cochran. En caso de que éste último sea correcto, los resultados del laboratorio se considerarán aceptables. En caso contrario, el laboratorio será descartado.
 - 04. Método de Grubbs. Si el ensayo de Grubbs Simple demuestra que los resultados de algúno de los laboratorios son aberrantes o anómalos, finaliza el análisis y el laboratorio en cuestión deberá ser excluido. En caso de que éste método no demuestre la existencia de algún valor extraño, se lleva a cabo entonces el ensayo de Grubbs Doble aplicando los mismos criterios que para el método simple.
- **03. Análisis C: Evaluación Z-Score.** La totalidad de los laboratorios que hayan superado el "Análisis B" serán estudiados por éste método. En él, se determina si los parámetros Z-Score obtenidos para cada participante son satisfactorios (S), dudosos (D) o insatisfactorios (I), en función de que estén o no dentro de unos límites críticos establecidos.
- **04. Análisis D: Estudio post-estadístico.** Una vez superados los tres análisis anteriores, haremos un último barrido de los datos para ver como quedan los resultados de los laboratorios implicados mediante los diagramas "Box-Plot" o de caja y bigotes antes y después de llevar a cabo los descartes.

RESIST.COMPR. 28 D (CUBPL) (N/mm2) Análisis A. Estudio pre-estadístico

Apartado A.1. Gráficos de dispersión de valores medios

ANALISIS GRAFICO DE DISPERSION MEDIA E INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios (gráfico izquierda) y de los valores individuales aportados por los participantes (gráfico derecha), respecto de la media aritmética inter-laboratorios (42,99; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (46,09/39,90; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (49,18/36,80; líneas rojas de trazo continuo), todos ellos valores obtenidos antes de efectuar descartes estadísticos."

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios (gráfico izquierda) representadas por puntos de color negro "•", o los resultados individuales aportados por los participantes (gráfico derecha): el primero (X_{i 1}) se representa con un cuadrado azul "a", el segundo (X_{i 2}) con un círculo verde "O" y el tercero (X_{i 3}) con un triángulo grís "A".

RESIST.COMPR. 28 D (CUBPL) (N/mm2) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Código	Lab	X _{i 1}	X _{i 2}	X _{i 3}	₹ _{i lab}	X _{i arit}	S _{Li}	Di arit %	¿Pasa A?	Observaciones
		- 1				1 3111		1 4111 70	9	
C14	156	42,70	43,20	42,70	42,87	42,87	0,289	-0,29	√	
C14	177	42,50	42,40	42,80	42,60	42,57	0,208	-0,99	√	
C14	192	43,00	42,50	43,30	42,90	42,93	0,404	-0,13	√	
C14	203	46,50	47,00	47,50	47,00	47,00	0,500	9,32	√	
C14	205	43,30	43,80	43,60	43,60	43,57	0,252	1,34	√	
C14	226	43,67	44,52	44,23	44,13	44,14	0,432	2,67	√	
C14	243	36,79	37,77	34,86	36,47	36,47	1,484	-15,17	√	
C14	250	41,74	41,14	41,29	41,40	41,39	0,312	-3,72	√	
C14	252	38,19	38,60	37,36	38,05	38,05	0,632	-11,49	✓	Intercambia datos de carga con la resistencia. Se subsana
C14	253	47,40	47,10	47,40	47,30	47,30	0,173	10,02	Х	No es trazable su resultado con los datos aportados
C14	260	42,90	42,90	43,10	42,97	42,97	0,115	-0,06	✓	
C14	261	43,80	43,00	44,40	43,73	43,73	0,702	1,73	✓	
C14	264	46,10	45,60	46,00	45,90	45,90	0,265	6,77	√	

NOTAS:

Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

⁰⁴ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo]

[no coinciden]

Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

				_	_
	∀X _{i 1}	VX _{i2}	AX ^{i 3}	∀X _{i lab}	∀X _{i arit}
M (N/mm2)	42,97	43,04	42,96	42,99	42,99
SD _L ()	2,97	2,79	3,58	3,10	3,10
CV (%)	6,92	6,48	8,33	7,20	7,20

- · "∀X; i" determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- · "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.

Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, antes de descartar los laboratorios anómalos y/o aberrantes:

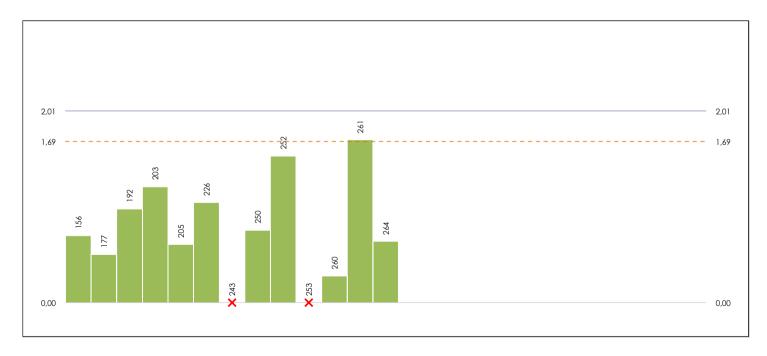
	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	1,305	3,655	7,161	7,279	20,381
Referencia	3,200	9,000		4,700	13,200

- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- · "γ_R" varianza de reproducibilidad.
- · "R (%)" reproducibilidad.

^{02 &}quot;X_{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i lab}" es la media aritmética intralaboratorio y "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

[&]quot;S_{L i}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media aritmética interlaboratorios.

RESIST.COMPR. 28 D (CUBPL) (N/mm2) Análisis B. Mandel, Cochran y Grubbs


Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

RESIST.COMPR. 28 D (CUBPL) (N/mm2)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Código	Lab	X _i ₁	X _{i 2}	Хі 3	$\overline{X}_{i lab}$	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	¿Pasa B?
C14	156	42,700	43,200	42,700	42,867	42,867	0,289	-0,75	-0,14	0,70						√
C14	177	42,500	42,400	42,800	42,600	42,567	0,208	-1,45	-0,27	0,51						✓
C14	192	43,000	42,500	43,300	42,900	42,933	0,404	-0,60	-0,11	0,98						✓
C14	203	46,500	47,000	47,500	47,000	47,000	0,500	8,82	1,65	1,21			1,647		0,5034	✓
C14	205	43,300	43,800	43,600	43,600	43,567	0,252	0,87	0,16	0,61						✓
C14	226	43,670	44,520	44,230	44,130	44,140	0,432	2,19	0,41	1,05						✓
C14	243	36,788	37,771	34,855	36,470	36,471										Х
C14	250	41,740	41,140	41,290	41,400	41,390	0,312	-4,17	-0,78	0,76				0,3445		✓
C14	252	38,190	38,600	37,360	38,050	38,050	0,632	-11,91	-2,22**	1,53	0,265	2,224		0,3445		✓
C14	253	47,400	47,100	47,400	47,300	47,300										X
C14	260	42,900	42,900	43,100	42,967	42,967	0,115	-0,52	-0,10	0,28						✓
C14	261	43,800	43,000	44,400	43,733	43,733	0,702	1,25	0,23	1,71*	0,265					✓
C14	264	46,100	45,600	46,000	45,900	45,900	0,265	6,27	1,17	0,64					0,5034	✓

NOTAS:

" $X_{i\,j}$ con j=1,2,3" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i\,lab}$ " es la media aritmética intralaboratorio y " $\overline{X}_{i\,arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

"h_i y k_i", "C_i", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

⁰⁴ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo]

[no coinciden]

[aberrante **]

[anómalo *]

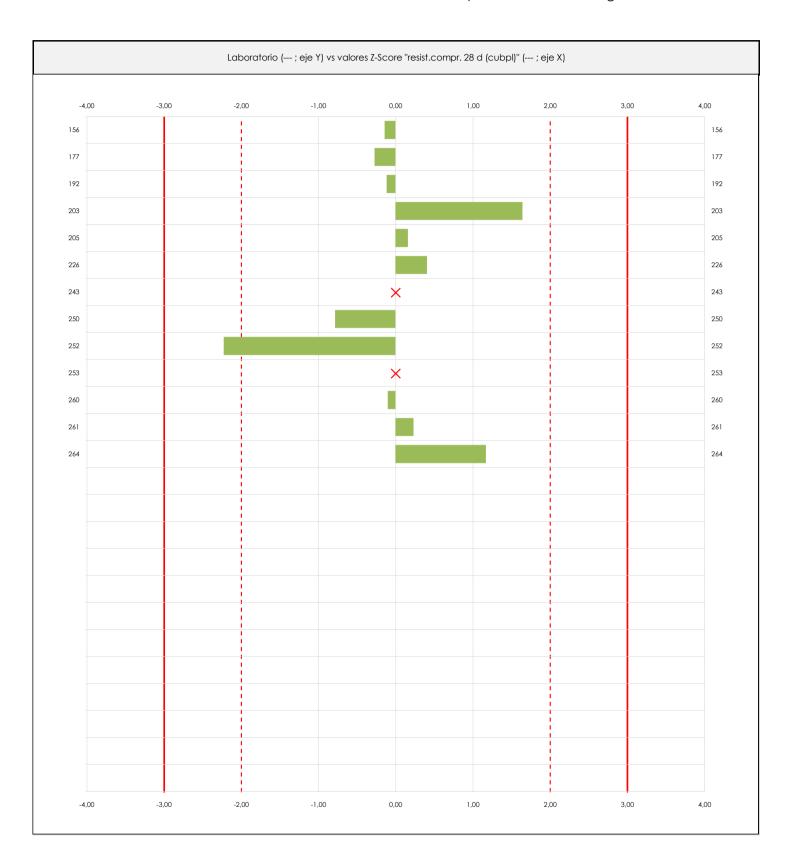
Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

	$\forall X_{i}$ 1	∀X _{i2}	∀X _{i 3}	∀Xilab	$\forall \overline{X}_{i \text{ arit}}$
M (N/mm2)	43,13	43,15	43,30	43,20	43,19
SD _L ()	2,19	2,21	2,59	2,31	2,31
CV (%)	5,08	5,13	5,98	5,35	5,35

- \cdot " $\forall X_{i\,j}$ " determinaciones individuales de los laboratorios.
- \cdot " $\forall \overline{X}_{i \, \text{lab}}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- · "M" promedio del grupo de valores de la central.
- · "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.

Valores de referencia de Mandel, Cochran y Grubbs según tablas de la norma UNE 82009-2, antes de descartar los laboratorios anómalos y/o aberrantes:

	h	k	С	G _{Sim}	G _{Dob}
1%	2,22	2,01	0,450	2,5640	0,1448
5%	1,82	1,69	0,371	2,3550	0,2213


- \cdot "p" número de laboratorios participantes no descrtados.
- \cdot "n" indica el número de ensayos por laboratorio.
- \cdot "h" y "k" indicadores estadísticos de Mandel.
- · "C" valor crítico de Cochran.
- · "G _{Sim}" y "G _{Dob}" valores críticos de Grubbs.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

RESIST.COMPR. 28 D (CUBPL) (N/mm2) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

RESIST.COMPR. 28 D (CUBPL) (N/mm2) Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Código	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	X _{i arit}	S _{Li}	D _{i arit %}	¿Pasa A	? ¿Pasa B?	Total	Causa	Iteración	Z-Score	Evaluación
C14	156	42,70	43,20	42,70	42,87	42,87	0,289	-0,75	✓	√	√			-0,141	S
C14	177	42,50	42,40	42,80	42,60	42,57	0,208	-1,45	✓	✓	✓			-0,270	S
C14	192	43,00	42,50	43,30	42,90	42,93	0,404	-0,60	✓	✓	✓			-0,112	S
C14	203	46,50	47,00	47,50	47,00	47,00	0,500	8,82	✓	✓	✓			1,647	S
C14	205	43,30	43,80	43,60	43,60	43,57	0,252	0,87	✓	✓	✓			0,162	S
C14	226	43,67	44,52	44,23	44,13	44,14	0,432	2,19	✓	✓	✓			0,410	S
C14	243	36,79	37,77	34,86	36,47	36,47			✓	Х	X	AB	0		
C14	250	41,74	41,14	41,29	41,40	41,39	0,312	-4,17	✓	✓	✓			-0,779	S
C14	252	38,19	38,60	37,36	38,05	38,05	0,632	-11,91	✓	✓	✓			-2,224	D
C14	253	47,40	47,10	47,40	47,30	47,30			X	X	X	SD			
C14	260	42,90	42,90	43,10	42,97	42,97	0,115	-0,52	✓	✓	✓			-0,098	S
C14	261	43,80	43,00	44,40	43,73	43,73	0,702	1,25	✓	✓	✓			0,234	S
C14	264	46,10	45,60	46,00	45,90	45,90	0,265	6,27	✓	√	✓			1,171	S

NOTAS:

[no coinciden]

[dudoso]

[insatisfactorio]

05 Valores de referencia asignados para el cálculo de las varianzas y evaluación Z-Score (excluidos los resultados anómalos y aberrantes del análisis estadístico):

	٠	يد. ا	٠	l . 	
	∀X _{i 1}	∀X _{i 2}	∀X _{i 3}	∀X _{i lab}	∀X _{i arit}
M (N/mm2)	43,13	43,15	43,30	43,20	43,19
SD _L ()	2,19	2,21	2,59	2,31	2,31
CV (%)	5,08	5,13	5,98	5,35	5,35

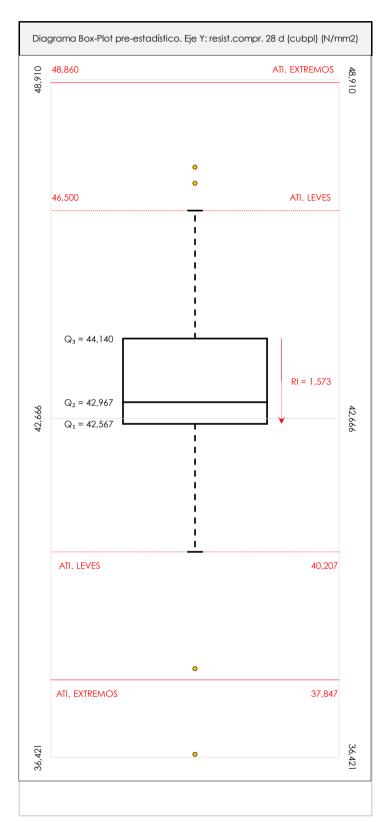
- · "∀X;;" determinaciones individuales de los laboratorios.
- \cdot " $\forall \overline{X}_{i\, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- · "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.
- 06 Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, después de descartar los laboratorios anómalos y/o aberrantes:

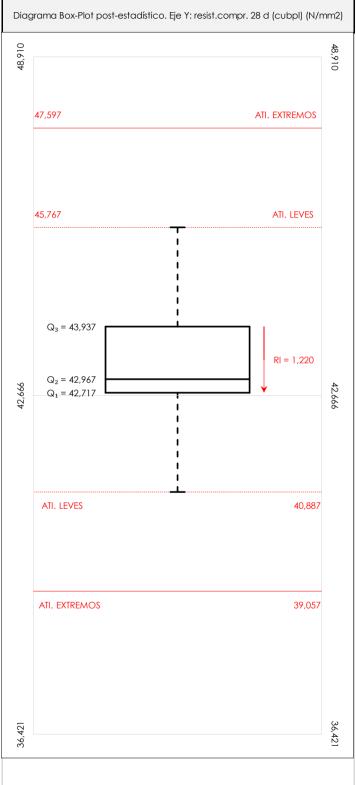
	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	0,953	2,668	5,325	5,410	15,147
Referencia	3,200	9,000		4,700	13,200

- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- · "γ_R" varianza de reproducibilidad.
- · "R (%)" reproducibilidad.

^{01 &}quot; X_{ij} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, lab}$ " es la media aritmética intralaboratorio y " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.


 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leq 2] [Dudoso (D) - si 2 < | ZS | \leq 3] [Insatisfactorio (I) - si | ZS | > 3].


⁰⁴ El código colorimétrico empleado para las celdas es:

RESIST.COMPR. 28 D (CUBPL) (N/mm2) Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

RESIST.COMPR. 28 D (CUBPL) (N/mm2) Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA24 para el ensayo "RESIST.COMPR. 28 D (CUBPL)", ha contado con la participación de un total de 13 laboratorios, debiendo haber aportado cada uno de ellos, un total de 3 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 1 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS		PRE-ESTADISTICO					E	STADISTIC	0	
Variables	Xi 1	Xi 2	X _{i 3}	$\overline{X}_{i lab}$	$\overline{\mathbf{X}}_{iarit}$	Xi 1	Xi 2	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	47,40	47,10	47,50	47,30	47,30	46,50	47,00	47,50	47,00	47,00
Valor Mínimo (min ; %)	36,79	37,77	34,86	36,47	36,47	38,19	38,60	37,36	38,05	38,05
Valor Promedio (M; %)	42,97	43,04	42,96	42,99	42,99	43,13	43,15	43,30	43,20	43,19
Desviación Típica (SDL ;)	2,97	2,79	3,58	3,10	3,10	2,19	2,21	2,59	2,31	2,31
Coef. Variación (CV ;)	0,07	0,06	0,08	0,07	0,07	0,05	0,05	0,06	0,05	0,05
VARIABLES	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Valor Calculado	1,31	3,66	7,16	7,28	20,38	0,95	2,67	5,33	5,41	15,15
Valor Referencia	3,20	9,00		4,70	13,20	3,20	9,00		4,70	13,20

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{Sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI		ESTADISTICO					
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,22	2,01	0,450	2,564	0,1448	2,22	2,01	0,504	2,564	0,1448
Nivel de Significación 5%	1,82	1,69	0,371	2,355	0,2213	1,82	1,69	0,417	2,355	0,2213

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 10 resultados satisfactorios, 1 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

8. EVALUACIÓN GLOBAL DE LOS LABORATORIOS PARA LOS ENSAYOS DE HORMIGÓN

Se recoge en las siguientes tablas la evaluación global de los resultados llevados a cabo en el EILA24 para el material de hormigón, de todos los laboratorios a **nivel de central de fabricación**, que hayan realizado el ensayo y aportado sus resultados.

Tabla 6.1. Evaluación global a nivel de CENTRAL 14

Cód. Lab.		ia compr (CILINDRI			cia compr ías (CUB.M			a compres	
	ZSCORE	INTER	INTRA	ZSCORE	INTER	INTRA	ZSCORE	INTER	INTRA
148	S	0,416	-0,15	AB	2,536	-3,31	NP		
156	S	0,306	-8,64	S	0,000	0,05	S	0,289	-0,29
177	S	0,252	-0,86	S	0,907	3,78	S	0,208	-0,99
192	S	0,404	-1,01	S	0,513	11,84	S	0,404	-0,13
203	S	0,666	4,10	S	0,404	11,54	S	0,500	9,32
205	S	0,577	3,47	SD	1,039	0,43	S	0,252	1,34
226	S	0,223	5,90	S	0,606	-8,55	S	0,432	2,67
243	AB	1,542	8,13	NP			AB	1,484	-15,17
248	S	0,200	-1,64	NP			NP		
249	S	0,872	2,84	NP			NP		
250	S	0,351	2,21	SD	0,620	-12,19	S	0,312	-3,72
252	SD	0,318	-13,86	S	0,692	-6,35	D	0,632	-11,49
253	S	0,321	2,29	SD	0,153	6,62	SD	0,173	10,02
257	S	0,889	-1,64	S	0,754	-15,39	NP		
260	S	0,153	-8,33	S	0,208	0,13	S	0,115	-0,06
261	S	0,173	-5,89	S	0,100	0,95	S	0,702	1,73
264	S	0,551	7,40	NP			S	0,265	6,77
265	S	0,670	10,04	S	0,209	16,45	NP		
268	S	0,314	-4,35	S	0,336	-5,99	NP		

Descartado (SD, por indicar rotura insatisfactoria en las tres probetas o no hay trazabilidad); (--) no participa NP. El código 249 no aporta suficientes datos, en próximos ElLAs será descartado

ZSCORE.- Evaluación z-score

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I);

INTER.- Desviación entre los resultados del laboratorio.

Si está sombreado corresponde a la evaluación de Mandel: Aberrante (AB); Anómalo (AN)

INTRA.- Desviación entre los resultados de todo el grupo de laboratorios sin descartes.
Si está sombreado corresponde a la evaluación de Mandel: Aberrante (AB); Anómalo (AN)

Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades (NC) para que el órgano competente realice las acciones que considere oportunas.

Central C14

MEDIAS DE LOS ENSAYOS EVALUADOS (descartados valores aberrantes/anómalos)

Resistencia 28 días Probetas CILINDRICAS	Media Central 42,5 N/mm ²	Desviación 2,2 N/mm²	Coef. Variación 5,2 %
Resistencia a 28 días Probetas CÚBICAS Moldes metálicos	Media Central 45,0 N/mm ²	Desviación 4,3 N/mm²	Coef. Variación 10 %
Resistencia a 28 días Probetas CÚBICAS Moldes plástico/resina	Media Central 43,2 N/mm ²	Desviación 2,3 N/mm²	Coef. Variación 5,4 %

REPETIBILIDAD- REPRODUCIBILIDAD (descartados valores aberrantes/anómalos**)**

ENSAYOS	REPETIBIL	IDAD	INTERLABORATORIOS	REPRODUCIE	BILIDAD
	γr (%)	r	γL (%)	γR (%)	R
Resistencia a 28 días Pobretas Cilíndricas	1,15%	3,21%	5,19	5,31%	14,87%
Ref. UNE 12390-3	γ r= 2,9%	8,0%	γ L (%)	γ R= 3,1%	11,7%
Resistencia a 28 días Pobretas Cúbicas Moldes metálicos	1,14%	3,18%	9,59	9,66%	27,05%
Ref. UNE 12390-3	Y r= 3,2%	9,0%	γ L (%)	γ R= 4,7%	13,20%
Resistencia a 28 días Pobretas Cúbicas Moldes plástico/resina	0,95%	2,67%	5,32	5,41%	15,15%
ENSAYOS	γr (%)	r	γL (%)	γR (%)	R

9. AGRADECIMIENTOS

Este ejercicio interlaboratorios en el área de HORMIGONES, ha cubierto los objetivos y expectativas previstas, debido fundamentalmente, a la buena predisposición, trabajo, y esfuerzo, de todas las personas y entidades participantes en el mismo, para los cuales, sirva el presente recordatorio, y el más sincero agradecimiento.

COORDINADORES GENERALES

Emilio Meseguer Peña

Victoria de los Ángeles Viedma Peláez

Juan Queipo de Llano

COORDINADORES AUTONÓMICOS

Miguel Ángel Junta de Andalucía

Santos Amaya

Carlos Cuerda Sierra Junta de Andalucía

Ana Rico Oliván Gobierno de Aragón

Esperanza Jarauta Pérez Gobierno de Aragón

Juan Carlos Cortina Villar Principado de Asturias

Ana Carolina Álvarez Cañete Principado de Asturias

Yolanda Garví Blázquez Govern de les Illes Balears

Inmaculada Alcolecha Fuente Govern de les Illes Balears

Javier Jubera Pérez. Gobierno de Canarias

Illes Balears

Yolanda Regalado Cantabria

Pilar Marinero Diez

Comunidad Autónoma de Cantabria GOBIERNO DE CANTABRIA

Agustí Careta Pons Generalitat de Catalunya

t de Catalunya Generalitat de Catalunya

🔊 Junta de

JUNTA DE EXTREMADURA

XUNTA

de La Rioja

Marta Iniesto Alba Junta de Comunidades de Castilla – La Mancha

a de Comunidades de illa – La Mancha

María del Mar Domínguez
Sierra

Junta de Castilla y León

Junta de Castilla y León

José Ángel Rena Sánchez Junta de Extremadura

Mª José Paniagua Mateos Xunta de Galicia

Comunidad Autónoma de Gobierno

Israel López García

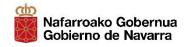
La Rioja

Isabel García Larache Comunidad Autónoma de Madrid

Antonio Azcona Sanz Comunidad Autónoma de

Antonio Azcona Sanz

Madrid


Teresa Barceló Clemares

Comunidad Autónoma de la Región de Murcia

Mª Carmen Mazkiarán López de Goikoetxea Gobierno de Navarra

Manuel Ozores Pastor Generalitat Valenciana

Elvira Salazar Martínez Gobierno Vasco

Alberto Apaolaza Sáez de Gobierno Vasco

Viteri

EUSKO JAURLARITZA

Ane Hernández Pérez de Gobierno Vasco

Guereñu

ORGANIZACIÓN Y GESTIÓN PROGRAMA ESPECÍFICO EILA HORMIGONES

 ANEFHOP. Asociación Nacional de Empresas Fabricantes de Hormigón Preparado

CENTRALES DE HORMIGÓN COLABORADORAS:

HORMIGONES CREACONS S.L. Alcalá de Guadaira (Sevilla)
 HORPRESOL, S.L. Juncaril-Albolote (Granada)

HORSELLA Arriondas (Cantabria)

• HORMIGONES BETÓN Villanueva de Gallego

(Zaragoza)

• INTEDHOR, S.L. Alcázar de San Juan (Ciudad

Real)

HORMIGONES ZARZUELA
 Valladolid

• CEMEX-PROMOTORA MEDITERRANEA 2, S.A. Montcada y Reixac

(Barcelona)

HORMIGONES CARLET, S.A. Carlet (Valencia)

• HORMIGONES ALBA QUERCUS, S.L. Mérida (Badajoz)

MYNHOR, S.L
 Arteixo (A Coruña)

AUXILIAR IBERICA, S.A.
 Palma de Mallorca

• HORMIRAPIT SA Alaior (Menorca)

• SUMINISTROS IBIZA DE INVERSIONES Y Ibiza

CORPORACIÓN SL

• CANARY CONCRETE Las Palmas de G.C.

• CANARY CONCRETE Tenerife

• EIFFAGE Camarma de Esteruelas

(Madrid)

• HORMISSA, HORMIGONES DEL SURESTE, S.A. Murcia

• HORMIGONES ARGA, S.A. Orcoyen (Navarra)

• LAZARO ECHEVARRIA SA Nanclares de Oca (Alava)

ELABORACIÓN PROTOCOLOS Y GESTIÓN DE LAS FICHAS. ANÁLISIS ESTADÍSTICO.

• Fernando Meseguer Serrano

• Victoria de los Ángeles Viedma Peláez

• IETCC, Instituto de Ciencias de la Construcción Eduardo Torroja

LABORATORIOS PARTICIPANTES POR COMUNIDADES AUTÓNOMAS EN EILA 2024: JUNTA DE ANDALUCIA

1.	LAENSA (SE)	AND-L-002
2.	CEMOSA (CO)	AND-L-003
3.	CEMOSA (MA)	AND-L-018
4.	GEOLEN (SE)	AND-L-020
5.	CEMALSA Expertos en Calidad SL (AL)	AND-L-044
6.	SERGEYCO ANDALUCIA SL (CA)	AND-L-046
7.	LABSON (CO)	AND-L-054
8.	GEOTECNICA DEL SUR (GR)	AND-L-059
9.	COGESUR S.L (CA)	AND-L-067
10.	CEMOSA (JA)	AND-L-013
11.	CEMOSA (SE)	AND-L-074
12.	CEMOSA (GR)	AND-L-076
13.	GEOTECNICA DEL SUR (CA)	AND-L-077
14.	TCAL (CO)	AND-L-108
15.	IACC(GR)	AND-L-120
16.	CONCADIZ (CA)	AND-L-125
17.	LTE (GR)	AND-L-149
18.	LABORATORIO ENSAPROC (CO)	AND-L-150
19.	ELABORA (SE)	AND-L-155
20.	INECCA INGENIERIA Y CONTROL, SL (MA)	AND-L-164

21.	INACON (AL)	AND-L-179
22.	EVINTES CALIDAD, SLL (AL)	AND-L-186
23.	SGS TECNOS (GR)	AND-L-191
24.	LTE (SE)	AND-L-206
25.	LTE (MA)	AND-L-210
26.	ATLAS (SE)	AND-L-213
27.	SGS TECNOS (MA)	AND-L-237
28.	CEMOSA (AL-Viator)	AND-L-258
29.	EQA LABORATORIO SL (GR)	AND-L-269
30.	SGS TECNOS (AL)	AND-L-277
31.	CEMOSA (AL-Cuevas)	AND-L-299
32.	LAB. OFICIAL CORDOBA	(oficial)
33.	LAB. OFICIAL GRANADA	(oficial)
34.	LAB. OFICIAL SEVILLA	(oficial)
35.	ANDALUZA DE MORTEROS (ANDEMOSA)	Laboratorio
		Central

GOBIERNO DE ARAGÓN

1. Igeo-2, S.LDelegación de Huesca	ARA-L-002
2. Laboratorio de Ensayos Técnicos, SA (ENSAYA) - Zaragoza	ARA-L-005
3. Control 7, SAU - Zaragoza	ARA-L-006
4. Geodeser Teruel (Geotecnia, Desarrollo y Servicios, S.A.)	ARA-L-009
5. Igeo-2, S.L Delegación de Zaragoza	ARA-L-021
6. Prefabricaciones y Contratas S.A	ARA-L-026
7. Laboratorio para la Calidad de la Edificación del Gobierno de Aragón	(oficial)
8. HORMIPERGA	Laboratorio
	Central

PRINCIPADO DE ASTURIAS

1	. Laboratorio Asturiano de Control Técnico, SAL (LACOTEC)	AST-L-020
2	. Centro de Estudios de Materiales y Control de Obras S.A. (CEMOSA)	AST-L-023
3	. Laboratorio Asturiano Calidad Edificación del Principado de Asturias	(oficial)
4	. JUAN ROCES S.A.	Laboratorio
		Central
5	. GEDHOSA	Laboratorio
		Central

GOBIERNO DE LES ILLES BALEARS

1. Federación de Empresarios de Petita y Mitjana Empresa de Menorca -	BAL-L-001
PIMELAB - Centro Tecnológico	
2. Laboratorio Balear de la Calidad, SLU	BAL-L-002
3. LABARTEC, SLU	BAL-L-005
4. Control BLAU-Q, SLU	BAL-L-007
5. Instituto de la Gestión Técnica de Calidad, SL (IGETEC)	BAL-L-009
6. LABARTEC IBIZA, SLU	BAL-L-010
7. Intercontrol Levante Ibiza SA	BAL-L-013
8. SGS Tecnos, SA- Delegación Menorca	BAL-L-014
9. Laboratorio de Carreteras - Consell de Mallorca	(oficial)

GOBIERNO DE CANARIAS

1. Instituto Canario de Investigaciones en la Construcción, SA (ICINCO,	CNR-L-001
SA)- Delegación Santa Cruz de Tenerife	Givit 2 001
2. Controles Externos de la Calidad Canarias, SL	CNR-L-003
3. Instituto Canario de Investigaciones en la Construcción, SA (ICINCO,	CNR-L-006
SA)- Delegación de Las Palmas	
4. 3. Instituto Canario de Investigaciones en la Construcción, SA	CNR-L-007
(ICINCO, SA)- Delegación de La Palma	
5. Alliroz, S.L.	CNR-L-010
6. Labetec Ensayos Técnicos Canarios, S.A Delegación de Gran Canaria	CNR-L-027
7. Estudios de Suelos y Obras Canarias SL (ESOCAN)	CNR-L-030
8. Labetec Ensayos Técnicos Canarios, S.A Delegación Fuerteventura	CNR-L-035
9. Labetec Ensayos Técnicos Canarios, S.A Delegación Lanzarote	ARA-L-036
10. Labetec Ensayos Técnicos Canarios, S.A Delegación de Tenerife	CNR-L-043
11. Consultores Control Tres, S.L.	CNR-L-044
12. Investigación y control de calidad SAU (INCOSA)	
13. Servicios de Laboratorios y Calidad de la Construcción. Consejería de	(oficial)
Obras Públicas y Transportes - Delegación Tenerife	
14. Laboratorio y Calidad de la construcción- Delegación Gran Canaria del	(oficial)
Gobierno Canarias	

COMUNIDAD AUTÓNOMA DE CANTABRIA

1. ICINSA, SA	CTB-L-003
2. GTK Laboratorio geotécnico	CTB-L-008
3. SONINGEO SL	CTB-L-010
4. HONGOMAR SA	Laboratorio Central

5.	CANTERAS DE SANTANDER (CANDESA)	Laboratorio
		Central

JUNTA DE COMUNIDADES DE CASTILLA - LA MANCHA

1. Laboratorio y consultoría Carring S.L.	CLM-L-005
2. SGS Tecnos, SA- Delegación Ciudad Real	CLM-L-019
3. Sergeyco Castilla- La Mancha	CLM-L-024
4. Unicontrol Ingeniería de Calidad y Arquitectura Aplicada, SL	CLM-L-029
5. Servicios Externos y Aprovisionamiento SL (SEA SL)- Delegación	CLM-L-032
Ciudad Real	
6. Servicios Externos y Aprovisionamiento SL. (SEA SL) - Delegación	CLM-L-033
Albacete	
7. SGS Tecnos, SA- Delegación Guadalajara	CLM-L-038
8. Impello Desarrollo SL	CLM-L-037
9. Ibensa	CLM-L-040
10. Fernández- Pacheco Ingenieros SL- Delegación Albacete Asistencia	CLM-L-043

JUNTA DE CASTILLA Y LEÓN

1 EDTICA Compiging de Ingeniente CI. Delegación de Velladalid	CVLLOOF
1. EPTISA, Servicios de Ingeniería, SL - Delegación de Valladolid	CYL-L-005
2. Investigaciones Geotécnicas y Medioambientales S. L. (INGEMA)	CYL-L-014
3. Investigación y Control de Calidad (INCOSA)	CYL-L-015
4. Centro de Estudio de Materiales y Control De Obra S.A(CEMOSA)-	CYL-L-017
Delegación Valladolid	
5. EPTISA Servicios de Ingeniería SL - Delegación de León	CYL-L-025
6. Cenilesa Ingeniería y Calidad SL	CYL-L-044
7. Centro de Estudio de Materiales y Control de Obra, SA(CEMOSA)-	CYL-L-055
Delegación Zamora	
8. Laboratorios técnica y Estudios, S.L. (LTE)	CYL-L-058
9. Centro de Estudio de Materiales y Control de Obra, SA (CEMOSA)-	CYL-L-062
Delegación Salamanca	
10. TPF Getinsa Euroestudios SL	CYL-L-068
11. Demarcación De Carreteras del Estado en Castilla y León occidental	(oficial)
(MITMA)	
12. Centro de Control de Calidad de Burgos. Dirección General de	(oficial)
Carreteras e Infraestructuras. Junta de Castilla y León	
13. Centro de Control de Calidad de Valladolid. Dirección General de	(oficial)
Carreteras e Infraestructuras. Junta de Castilla y León	
14. GEDHOSA ZARATAN	Laboratorio
	Central

GENERALITAT DE CATALUNYA

T
CAT-L-002
CAT-L-004
CAT-L-012
CAT-L-018
CAT-L-023
CAT-L-026
CAT-L-027
CAT-L-028
CAT-L-037
CAT-L-043
CAT-L-054
CAT-L-056
CAT-L-057
CAT-L-062
CAT-L-068
CAT-L-069
CAT-L-104
CAT-L-109
CAT-L-111
CAT-L-114
CAT-L-115
CAT-L-116
CAT-L-119
CAT-L-120

JUNTA DE EXTREMADURA

1.	Intromac	EXT-L-007
2.	Elaborex, Calidad en la Construcción SL-Delegación Badajoz	EXT-L-014
3.	TPF GETINSA-EUROESTUDIOS, SL	EXT-L-029
4.	Ensaproex	EXT-L-032
5.	ATLAS	EXT-L-035

XUNTA DE GALICIA

1. Ingeniería Geológica y Geofísica, SL (INGEOFISA)	GAL-L-002
2. Control y Estudios, SL (CYE)- Naron	GAL-L-005
3. Geonor Servicios Técnicos, SL	GAL-L-011
4. Galaicontrol, SL (Arteixo)	GAL-L-014

5. Investigación y Control Lugo SL (INVECO)	GAL-L-016
6. Applus Norcontrol, SL (Sada)	GAL-L-018
7. Galaicontrol, SL (Vigo)	GAL-L-021
8. Ingenieria, geotecnia y calidad SL (IG Calidad)	GAL-L-028
9. EPTISA, Servicios de Ingeniería, SL - Delegación de La Coruña	GAL-L-034
10. EPTISA, Servicios de Ingeniería, SL - Delegación de Vigo	GAL-L-035
11. 3C Calidad y Control, SCOOP Galega	GAL-L-044
12. Enmacosa Consultoría Técnica SA	GAL-L-056
13. Control y Estudios, SL (CYE)-Santiago de Compostela	GAL-L-061
14. Investigación y Control Lugo, SL (INVECO,SL)- Lugo	GAL-L-063
15. C.G.I.8 SA	GAL-L-065
16. Gestecnic Ingenieria SL-Carballo	GAL-L-072
17. Enmacosa Consultoría Técnica SA- A Coruña	GAL-L-074
18. Applus Norcontrol SLU-Pontevedra	GAL-L-080
19. Applus Norcontrol SLU-Orense	GAL-L-084
20. 17. Enmacosa Consultoría Técnica SA- Orense	GAL-L-086

COMUNIDAD AUTÓNOMA DE LA RIOJA

1. ENSATEC S.L.	LRJ-L-001
2. ENTECSA Rioja, SL	LRJ-L-005
3. TÜV SÜD IBERIA, SAU	LRJ-L-009
4. Laboratorio de Obras Públicas y Edificaciones -Consejería de	(oficial)
Sostenibilidad y Transición Ecológica	

COMUNIDAD AUTÓNOMA DE MADRID

1. Geotecnia y Medio Ambiente 2000 SL (GMD 2000)	MAD-L-002
2. Cepasa Ensayos Geotécnicos SA	MAD-L-005
3. Ciesm Intevia SAU	MAD-L-019
4. Instituto Técnico de Materiales y Construcciones (INTEMAC)	MAD-L-030
5. Centro de Estudios de Materiales y Control de Obra S.A (CEMOSA)	MAD-L-036
6. Control de Obras Públicas y Edificación, SL	MAD-L-046
7. Geotécnia y calidad en la construcción, SLL	MAD-L-050
8. Esgeyco SL	MAD-L-053
9. Control de Estructuras y Geotecnia SL (CEyGE)	MAD-L-061
10. Laboratorio de Control de Calidad e Ingeniería, S.L. (CCI)	MAD-L-064
11. Control de estructuras y suelos SA (CONES)	MAD-L-065
12. Adamas Control y Geotecnia S.L.L	MAD-L-066
13. Laboratorio Oficial para Ensayo de Materiales de Construcción	MAD-L-077
(LOEMCO)	

14. Centro Investigación Materiales (CIMAT)	MAD-L-082
15. V2 Geotecnia y Control SL.	MAD-L-088
16. Auscultación Control Ensayos SL	MAD-L-089
17. Aprolab Ingenieria y Control de Calidad SL	MAD-L-090
18. Applus Norcontrol, S.L.U	MAD-L-099
19. EC Ingeniería, SL (SOCOTEC) (antes, Euroconsult)	MAD-L-100
20. HORMIGONES MAT	Laboratorio
	Central
21. MAHORSA	Laboratorio
	Central

COMUNIDAD AUTÓNOMA DE LA REGIÓN DE MURCIA

1. Laboratorios del Sureste, S.LMurcia	MUR-L-003
2. Centro de Estudios, Investigaciones y Control de Obras, S.L. (CEICO)	MUR-L-005
3. Inversiones de Murcia, S.L., HORYSU- Delegación de Cartagena	MUR-L-006
4. Inversiones de Murcia, S.L., HORYSU-Delegación de Espinardo	MUR-L-007
5. ITC laboratorio de ensayos, S.L.L.	MUR-L-018
6. Massalia Ingenieros, S.L.	MUR-L-019
7. Técnica y Calidad de Proyectos Industriales, S.L (TYC PROYECTOS)	MUR-L-021
8. INGEOLAB Calidad en Obra S.L.	MUR-L-022
9. Geotecnica del Sur, SA	MUR-L-025
10. Laboratorio Ensaproc-Murcia	MUR-L-026
11. Centro Tecnológico de la Construcción de Energía y Acústica,	MUR-L-027
Región de Murcia (CTCON)	
12. Laboratorios del Sureste, S.LLorca	MUR-L-028
13. AHORSAN- GRUPO ALJEMA RELOSA, S.L.U.	Laboratorio
	Central
14. HORMISSA	Laboratorio
	Central

GOBIERNO DE NAVARRA

1. Laboratorios Entecsa, SA	NAV-L-001
2. Laboratorio de Ensayos Navarra SA (LABENSA)	NAV-L-003
3. Laboratorio de Edificación del Instituto Científico y Tecnológico de	NAV-L-004
la E.T.S. Arquitectura e Ingeniería de Edificación de Navarra	NAV-L-004
4. GEEA Geólogos S.L- Delegación Estella	NAV-L-005
5. GEEA Geólogos S.L- Delegación Pamplona	NAV-L-008
6. Laboratorio Ensaproc SL	NAV-L-015
7. Investigación y Control de Calidad (INCOSA)	NAV-L-017

8. Laboratorio de Control de Calidad Departamento Cohesión	(oficial)
Territorial Gobierno de Navarra	
9. HORMIGONES ARGA BERIAIN	Laboratorio Central

COMUNIDAD VALENCIANA

1. Intercontrol Levante, SA- Delegación de Carlet	VAL-L-001
2. Comaypa, S.A.	VAL-L-006
3. Consulteco, S.L.	VAL-L-013
4. ASVER Verificaciones, SLU	VAL-L-047
5. Laboratorio de Ingeniería y Medio Ambiente S.A (IMASALAB)	VAL-L-051
6. Maestrat Global SL	VAL-L-052
7. Laboratorio de Calidad y Tecnología de los Materiales, S. L. (CyTEM)- Delegación de Ribarroja de Turia (VALENCIA)	VAL-L-053
8. Laboratorio de Calidad y Tecnología de los Materiales, S. L. (CyTEM)- Delegación de Alicante	VAL-L-054
9. Lesin Levante, SLU	VAL-L-056
10. C2C Servicios Técnicos de Inspección S.L Delegación de Albaida (Valencia)	VAL-L-058
11. C2C Servicios Técnicos de Inspección S.L Delegación de Manises (Valencia)	VAL-L-059
12. Servicios de Ingeniería, Geotecnia, Mantenimiento y Control S.L. (SIGMA)	VAL-L-061
13. CANTERA LA TORRETA	Laboratorio Central
14. HORMIFER INGENIERIA DEL HORMIGON Y ACERO SL	Laboratorio Central

GOBIERNO VASCO

1. EPTISA-CINSA Ingeniería y Calidad, SA - Grupo EP	PVS-L-002
2. SAIO TEGI, SA	PVS-L-004
3. GIKE, SA Control Calidad Edificación	PVS-L-005
4. LABIKER Ingeniería y Control de Calidad, SL	PVS-L-006
5. Serinko Servicios de Ingeniería y Comerciales- Euskadi, S.L.	PVS-L-007
6. Euskontrol, S.A.	PVS-L-009
7. Applus Norcontrol, S.L.U.	PVS-L-012
8. Fundación Tecnalia Research and Innovation	PVS-L-013
9. Entecsa Bilbao S. L	PVS-L-034
10. Laboratorios de Control de la Resistencia del Hormigón, SL	PVS-L-036
11. Laboratorio General de la Diputación Foral de Álava	(oficial)

AENOR

1. OGERCO	País Vasco
2. HORMAR XXI	Valencia
3. HONGOMAR S.A.	Cantabria
4. HORMIGONES RELOSA	Murcia

AW

1.	CANTERA LA TORRETA SAU	Valencia
----	------------------------	----------